Skip to content
/ Mask4D Public

Mask4D: End-to-End Mask-Based 4D Panoptic Segmentation for LiDAR Sequences, RA-L, 2023

License

Notifications You must be signed in to change notification settings

PRBonn/Mask4D

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Mask4D: End-to-End Mask-Based 4D Panoptic Segmentation for LiDAR Sequences

This is the official implementation of Mask4D.

Overview

  • Mask4D is a method for 4D panoptic segmentation using masks. It builds on top of MaskPLS using SphereFormer as feature extractor.
  • We reuse the output queries of previous steps to decode and track the same instance over time.
  • It is an end-to-end approach without post-processing step like clustering.
  • We propose Position-aware mask attention to provide prior positional information to the cross-attention and improve the segmentation.

Get started

Install this package by running in the root directory of this repo:

pip3 install -U -e .

Install pdependencies (we test on python=3.8.10, pytorch==1.12.0, cuda==11.3)

pip3 install torch==1.12.0+cu113 torchvision==0.13.0+cu113 --extra-index-url https://download.pytorch.org/whl/cu113
pip3 install -r requirements.txt

Install SparseTransformer.

Data preparation: SemanticKITTI

Download the SemanticKITTI dataset inside the directory data/kitti/. The directory structure should look like this:

./
└── data/
    └── kitti
        └── sequences
            ├── 00/           
            │   ├── velodyne/	
            |   |	├── 000000.bin
            |   |	├── 000001.bin
            |   |	└── ...
            │   └── labels/ 
            |       ├── 000000.label
            |       ├── 000001.label
            |       └── ...
            ├── 08/ # for validation
            ├── 11/ # 11-21 for testing
            └── 21/
                └── ...

Pretrained models

Reproducing results

python3 scripts/evaluate_model.py --w [path_to_4D_model]

Training

We leverage the weights of the 3D model MaskPLS with SphereFormer as backbone.

python3 scripts/train_model.py --w [path_to_3D_model]

Citation

@article{marcuzzi2023ral-meem,
  author = {R. Marcuzzi and L. Nunes and L. Wiesmann and E. Marks and J. Behley and C. Stachniss},
  title = {{Mask4D: End-to-End Mask-Based 4D Panoptic Segmentation for LiDAR Sequences}},
  journal = ral,
  year = 2023,
  volume = {8},
  number = {11},
  pages = {7487-7494},
  doi = {10.1109/LRA.2023.3320020},
  url = {https://www.ipb.uni-bonn.de/wp-content/papercite-data/pdf/marcuzzi2023ral-meem.pdf},
}

About

Mask4D: End-to-End Mask-Based 4D Panoptic Segmentation for LiDAR Sequences, RA-L, 2023

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages