Skip to content

NgesBrian/lime-sdk

 
 

Repository files navigation

lime-sdk cooker

LibreMesh software development kit uses the LEDE SDK and ImageBuilder to generate (cook) LibreMesh packages and firmware. If you want to create your own LibreMesh flavor because you need some specific configuration or you just want to have control over your binaries, the cooker is your friend!

Basic usage example for cooking a firmware for TpLink 4300:

./cooker -c ar71xx/generic --flavor=lime_default --profile=tl-wdr4300-v1

Preparing the local environment

Before using lime-sdk, make sure your Linux system has the required dependencies installed. You might follow these instructions (look for Examples of Package Installations) https://lede-project.org/docs/guide-developer/install-buildsystem

Targets, profiles and flavors

LibreMesh can be used on many different devices (target and profile) and can be packed in many different ways (flavors), depending on your needs. To this end, it is important to choose the right options for building your firmware.

To generate a firmware, the -c option must be used (cook). But it requires to specify at least the target and subtarget of your router and optionally (recommended) the profile and flavor.

./cooker -c <target/subtarget> --profile=<profile name> --flavor=<flavor name>

For instance, this will work for a TpLink WDR4300:

./cooker -c ar71xx/generic --profile=tl-wdr4300-v1 --flavor=lime_default

Target

Target references to the router architecture, usually depends on the manufactor and the set of chips used for building the hardware. Therefore, you must know the target and subtarget before using cooker. As we use LEDE, this information can be found here https://lede-project.org/toh/start. The most common targets are currently ar71xx/generic (Atheros) and ramips/mt7620 (Ramips). Once we know the target, we must find the specific profile.

To see the list of available targets execute:

./cooker --targets

Profile

The profile is the specific brand/model of the router. Each target has a list of hardware profiles than can be choosed. Cooker build all profiles from a target by default, but it is better if your find and choose the specific profile.

To see the list of available profiles for a specific target execute:

./cooker --profiles=<target/subtarget>

For instance:

./cooker --profiles=ar71xx/generic

Flavor

LibreMesh is a modular system, so it can be cooked on many different ways. There are some predefined that we call flavor, however anyone can create its own set of packets and options (for instance the default flavors include bmx6 and batman-adv as routing protocols, but you might create other kinds of setup).

One of the most important things regarding the flavor is the internal flash size of your router. This must be taken into account when choosing a flavor.

Currently there are three main flavors:

  • lime_default: the recommended for routers with more than 4MB of flash. It includes all required and optional software.
  • lime_mini: the recommended for routers of 4MB, made for end-users, includes a minimal web interface, but new software cannot be installed (opkg is not available).
  • lime_zero: for advanced users, it does not include web interface, just the basic software to mesh the network but it does include opkg, so new software can be installed.

Building and cooking

These are two different steps. Building means to compile and prepare all the required packages for LibreMesh. To cook means taking the packages (depending on the flavor) and generating the firmware ready to install on your device.

The standard steps to generate a firmware would be: firstly build and secondly cook, like this:

./cooker -b ar71xx/generic

./cooker -c ar71xx/generic --profile=tl-wdr4300-v1 --flavor=lime_default

However, cooker is smart enough to detect the missing steps and transparently execute them. If we choose to cook before building, it will automatically build before cooking. Therefore, for debugging purposes it is better to execute the steps separately.

On the other hand, if you do not want to build locally (since it requires some special software installed on your Linux machine), you can just cook using the online precompiled binaries.

Building locally or fetch remote?

Cooker can locally build the LibreMesh packages or fetch the remote precompiled ones. For most users there is no real need for building, since using the remote ones might be a better (and fast) option. To remotelly fetch the packages the special option --remote must be used when cooking, like this:

./cooker -c ar71xx/generic --profile=tl-wdr4300-v1 --flavor=lime_default --remote

Communities

It is not required to create and/or use a community profile. But if you are constantly cooking LibreMesh for your network and you need a specific configuration, you might want to spend some time creating a community profile. This will make things easier and better coordinated for your community.

A community is mainly a set of files you want to include in the output firmware. For instance, if you want to pre-configure the WiFi SSID, mode or channels, you might want to include a specific /etc/config/lime-defaults file as shown in this article http:https://libremesh.org/docs/config.html.

Also /etc/shadow for setting an initial root password or /etc/uci-defaults/ one-time executed scripts might be useful for your setup.

The default way to create or use a community is to use this Git repository https://github.com/libremesh/network-profiles (ask for writing access in the users mailing list). The directory structure of the Git repository is:

/<community name>/<device profile name>/<files and directories>

Both community and device profile names can be any of your choice (must exist!) , since they are only used for identifying it. When executing a cook order, you can specify the community profile like this:

./cooker -c ar71xx/generic --profile=tl-wdr4300-v1 --flavor=lime_default --community=CommunityName/ProfileName

Advanced help

Usage: ./cooker [-f [--force]] [-d <target> [--sdk|ib|force]] [-i <target> [--sdk-file=<file>|ib-file=<file>]] 
                [-b <target> [--no-update|no-link-ib|remote] [--profile=<profile>] [--flavor=<flavor>]]
                [--download-all|build-all|update-feeds] [--targets|flavors|communities|profiles=<target>] 
                [-c <target> [--profile=<profile>] [--flavor=<flavor>] [--community=<name/profile>]] [--help]

    --help                     : show full help with examples
    --download-all             : download all SDK and ImageBuilders
    --build-all	               : build SDK for all available tagets
    --cook-all	               : cook firmwares for all available targets (TBD)
    --targets                  : list all officialy supported targets
    --profiles=<target>        : list available hardware profiles for a specific target
    --flavors                  : list available LibreMesh flavors for cooking
    --communities              : list available community profiles
    --update-feeds             : update previously downloaded feeds (only works for Git feeds)
    -f                         : download feeds based on feeds.conf.default file. Feeds will be shared among all targets
       --force                 : force reinstall of feeds (remove old if exist)
    -d <target>                : download SDK and ImageBuilder for specific target
       --sdk                   : download only SDK
       --ib                    : download only ImageBuilder
       --force                 : force reinstall of SDK and/or ImageBuilder (remove old if exist)
    -i <target>                : install local/custom SDK or ImageBuilder
       --sdk-file=<file>       : specify SDK file to unpack
       --ib-file=<file>        : specify ImageBuilder file to unpack
    -b <target>                : build SDK for specific target and link it to the ImageBuilder
       --no-link-ib            : do not download and link ImageBuilder when building the SDK
       --no-update             : do not update feeds when building SDK
    -c <target>                : cook the firmware for specific target. Can be used with next options
       --profile=<profile>     : use <profile> when cooking firmware (default is all available target profiles)
       --flavor=<flavor>       : use <flavor> when cooking firmware (default lime_default)
       --remote                : instead of building local SDK packages. Use only remote repositories for cooking
       --community=<name/prof> : specify which network community and profile device to use (if any)


Examples:

 - Build packages using the SDK and cook the firmware for target tl-wdr3500-v1 and flavor generic (all in one command)

    ./cooker -c ar71xx/generic --flavor=lime_default --profile=tl-wdr3500-v1

 - Cook the firmware without compiling the SDK but using only remote precompiled binaries

    ./cooker -c ar71xx/generic --remote --flavor=lime_basic --profile=tl-wdr3500-v1

 - Build SDK and cook ar71xx target with all available profiles (step by step)

    ./cooker -d ar71xx/generic                        # download SDK and IB 
    ./cooker -f                                       # download and prepare feeds
    ./cooker -b ar71xx/generic                        # build the SDK and link it to IB
    ./cooker -c ar71xx/generic --flavor=lime_default  # cook the firmware

 - If you want to use an existing community network profile, specify it when cooking (in addition to the device profile)

    ./cooker -c ar71xx/generic --flavor=lime_default --community=quintanalibre.org.ar/comun --profile=tl-wdr3500-v1

 - PKG can be used to add extra packages when cooking. Also J to parallelize and V to verbose

    PKG="luci-app-3g iperf" J=4 V=s ./cooker -c ar71xx/generic

Using development branch

If you want to get the last LEDE source because it includes some new feature or it supports some new hardware, you can use the lime-sdk branch named develop. However as LEDE source is changing daily, we cannot assure the correct working of the firmware. It is recommended to start with a new Git clone instead of reuse an existing one. Once the lime-sdk source is cloned, change the branch: git checkout develop

Add your own feed repository

If you want to compile and/or cook your own feed package repository, you can follow one of the following methods.

For a permanent build environment

If it is a permanent change on your cooker setup, better add your repository (or modify the existing ones) to the feeds file

cp feeds.conf.default feeds.conf.default.local
vim feeds.conf.default.local

Edit and save the new created file feeds.conf.default.local and force the reinstall of the feeds

./cooker -f --force

Crete and add to the SDK config file the new packages you want to include (if any)

cp libremesh.sdk.config libremesh.sdk.config.local
echo "CONFIG_PACKAGE_myNewPackage=m" >> libremesh.sdk.config.local

Add your new flavor (or modify the existing ones)

cp flavors.conf flavors.conf.local
vim flavors.conf.local

Finally build and cook as usual but adding also your new packages

./cooker -b ar71xx/generic
./cooker -c ar71xx/generic --profile=tl-wdr4300-v1 --flavor=lime_new_flavor
For a casual cooking on a existing feed repository

Download the standard feeds (if not previously downloaded)

./cooker -f

Modify the source code of the existing feed

cd feeds/libremesh
git checkout feature/somethingToTest

Build the code and cook as usual

./cooker -b ar71xx/generic
export PKG="someNewPackage?"
./cooker -c ar71xx/generic --profile=tl-wdr4300-v1 --flavor=lime_default

Forking lime-sdk for your community

If you like to manage your own set of flavors, options and/or repositories, you might fork the lime-sdk code to your own Git repository. To preserve the compatibility with the official source (so merges can be easily done), none of the original files must be modified.

To this end, cooker will look first for the files named .local and will use them instead. Therefore make a copy of options and flavors.

cp options.conf options.conf.local
cp flavors.conf flavors.conf.local

Modify them as your own wish and add them to the Git repository.

git add *.local
git commit -m 'Add local options and flavors'
git push

Time to time, if you want to update the code with the official one you might add a new remote and perform a merge.

git remote add official https://github.com/libremesh/lime-sdk.git
git fetch official
git merge official/master
git push origin/master

About

LibreMesh software development kit

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

 
 
 

Languages

  • Shell 100.0%