Haochen Wang*, Xiaodan Du*, Jiahao Li*, Raymond A. Yeh†, Greg Shakhnarovich (* indicates equal contribution)
TTI-Chicago, †Purdue University
Abstract: A diffusion model learns to predict a vector field of gradients. We propose to apply chain rule on the learned gradients, and back-propagate the score of a diffusion model through the Jacobian of a differentiable renderer, which we instantiate to be a voxel radiance field. This setup aggregates 2D scores at multiple camera viewpoints into a 3D score, and repurposes a pretrained 2D model for 3D data generation. We identify a technical challenge of distribution mismatch that arises in this application, and propose a novel estimation mechanism to resolve it. We run our algorithm on several off-the-shelf diffusion image generative models, including the recently released Stable Diffusion trained on the large-scale LAION dataset.
Many thanks to dvschultz for the colab, and AmanKishore for the hugging face demo.
- We have added subpixel rendering script for final high quality vis. The jittery videos you might have seen should be significantly better now. Please run
python /path/to/sjc/highres_final_vis.py
in the exp folder after the training is complete. There are a few toggles in the script you can play with, but the default is ok. It takes about 5 minutes / 11GB on an A5000, and the extra time is mainly due to SD Decoder. - If you are running SJC with a DreamBooth fine-tuned model: the model's output distribution is already significantly narrowed. It might help to use a lower guidance scale
--sd.scale 50.0
for example. Intense mode-seeking is one cause for multi-face problem. We have internally tried DreamBooth with view-dependent prompt fine-tuning. But by and large DreamBooth integration is not ready.
- make seeds configurable. So far all seeds are hardcoded to 0.
- add script to reproduce 2D experiments in Fig 4. The Fig might need change once it's tied to seeds. Note that for a simple aligned domain like faces, simple scheduling like using a single σ=1.5 could already generate some nice images. But not so for bedrooms; it's too diverse and annealing seems still needed.
- main paper figures did not use subpix rendering; appendix figures did. Replace the main paper figures to make them consistent.
Since we use Stable Diffusion, we are releasing under their OpenRAIL license. Otherwise we do not identify any components or upstream code that carry restrictive licensing requirements.
In addition to SJC, the repo also contains an implementation of Karras sampler, and a customized, simple voxel nerf. We provide the abstract parent class based on Karras et. al. and include a few types of diffusion model here. See adapt.py.
Install Pytorch according to your CUDA version, for example:
pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116
Install other dependencies by pip install -r requirements.txt
.
Install taming-transformers
manually
git clone --depth 1 [email protected]:CompVis/taming-transformers.git && pip install -e taming-transformers
We have bundled a minimal set of things you need to download (SD v1.5 ckpt, gddpm ckpt for LSUN and FFHQ) in a tar file, made available at our download server here. It is a single file of 12GB, and you can use wget or curl.
Remember to update env.json
to point at the new checkpoint root where you have uncompressed the files.
Make a new directory to run experiments (the script generates many logging files. Do not run at the root of the code repo, else risk contamination.)
mkdir exp
cd exp
Run the following command to generate a new 3D asset. It takes about 25 minutes / 10GB GPU mem on a single A5000 GPU for 10000 steps of optimization.
python /path/to/sjc/run_sjc.py \
--sd.prompt "A zoomed out high quality photo of Temple of Heaven" \
--n_steps 10000 \
--lr 0.05 \
--sd.scale 100.0 \
--emptiness_weight 10000 \
--emptiness_step 0.5 \
--emptiness_multiplier 20.0 \
--depth_weight 0 \
--var_red False
sd.prompt
is the prompt to the stable diffusion model
n_steps
is the number of gradient steps
lr
is the base learning rate of the optimizer
sd.scale
is the guidance scale for stable diffusion
emptiness_weight
is the weighting factor of the emptiness loss
emptiness_step
indicates after emptiness_step * n_steps
update steps, the emptiness_weight
is multiplied by emptiness_multiplier
.
emptiness_multipler
see above
depth_weight
the weighting factor of the center depth loss
var_red
whether to use Eq. 16 vs Eq. 15. For some prompts such as Obama we actually see better results with Eq. 15.
Visualization results are stored in the current directory. In directories named test_*
there are images (under view
) and videos (under view_seq
) rendered at different iterations.
First create a clean directory for your experiment, then run one of the following scripts from that folder:
python /path/to/sjc/run_sjc.py --sd.prompt "Trump figure" --n_steps 30000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0
python /path/to/sjc/run_sjc.py --sd.prompt "Obama figure" --n_steps 30000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0 --var_red False
python /path/to/sjc/run_sjc.py --sd.prompt "Biden figure" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0
python /path/to/sjc/run_sjc.py --sd.prompt "A zoomed out high quality photo of Temple of Heaven" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0
python /path/to/sjc/run_sjc.py --sd.prompt "A high quality photo of a delicious burger" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0
python /path/to/sjc/run_sjc.py --sd.prompt "A high quality photo of a chocolate icecream cone" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 10
python /path/to/sjc/run_sjc.py --sd.prompt "A ficus planted in a pot" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 100
python /path/to/sjc/run_sjc.py --sd.prompt "A zoomed out photo a small castle" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 50
python /path/to/sjc/run_sjc.py --sd.prompt "A zoomed out high quality photo of Sydney Opera House" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0
python /path/to/sjc/run_sjc.py --sd.prompt "a DSLR photo of a rose" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 50
python /path/to/sjc/run_sjc.py --sd.prompt "A high quality photo of a yellow school bus" --n_steps 30000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0 --var_red False
python /path/to/sjc/run_sjc.py --sd.prompt "A wide angle zoomed out photo of Saturn V rocket from distance" --n_steps 30000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0 --var_red False
python /path/to/sjc/run_sjc.py --sd.prompt "A high quality photo of french fries from McDonald's" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 10
python /path/to/sjc/run_sjc.py --sd.prompt "A high quality photo of a toy motorcycle" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0
python /path/to/sjc/run_sjc.py --sd.prompt "A high quality photo of a classic silver muscle car" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0
python /path/to/sjc/run_sjc.py --sd.prompt "A product photo of a toy tank" --n_steps 20000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0
python /path/to/sjc/run_sjc.py --sd.prompt "A high quality photo of a Victorian style wooden chair with velvet upholstery" --n_steps 50000 --lr 0.01 --sd.scale 100.0 --emptiness_weight 7000
python /path/to/sjc/run_sjc.py --sd.prompt "a DSLR photo of a yellow duck" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 10
python /path/to/sjc/run_sjc.py --sd.prompt "A photo of a horse walking" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0
python /path/to/sjc/run_sjc.py --sd.prompt "A wide angle zoomed out photo of a giraffe" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 50
python /path/to/sjc/run_sjc.py --sd.prompt "A photo of a zebra walking" --n_steps 10000 --lr 0.02 --sd.scale 100.0 --emptiness_weight 30000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0 --var_red False
python /path/to/sjc/run_sjc.py --sd.prompt "A product photo of a Canon home printer" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0 --var_red False
python /path/to/sjc/run_sjc.py --sd.prompt "Zelda Link" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0 --var_red False
python /path/to/sjc/run_sjc.py --sd.prompt "A pig" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0
python /path/to/sjc/run_nerf.py
Our bundle contains a tar ball for the lego bulldozer dataset. Untar it and it will work.
python /path/to/sjc/run_img_sampling.py
Use help -h to see the options available. Will expand the details later.
@article{sjc,
title={Score Jacobian Chaining: Lifting Pretrained 2D Diffusion Models for 3D Generation},
author={Wang, Haochen and Du, Xiaodan and Li, Jiahao and Yeh, Raymond A. and Shakhnarovich, Greg},
journal={arXiv preprint arXiv:2212.00774},
year={2022},
}