Skip to content

L3S/PrototypeSound

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Prototype Learning for Interpretable Respiratory Sound Analysis

arXiv Hugging Face Models License: MIT

This is a Python and PyTorch code for the prototype learning framework in our paper:

Zhao Ren, Thanh Tam Nguyen, and Wolfgang Nejdl. Prototype Learning for Interpretable Respiratory Sound Analysis. In ICASSP 2022. https://arxiv.org/abs/2110.03536

Citation

@inproceedings{ren2022prototype,
  title={Prototype learning for interpretable respiratory sound analysis},
  author={Ren, Zhao and Nguyen, Thanh Tam and Nejdl, Wolfgang},
  booktitle={ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  pages={9087--9091},
  year={2022},
  organization={IEEE}
}

Abstract

The prototype learning framework aims to generate prototypes of audio singnals for a respiratory sound classification task (normal/crackle/wheeze/both).

The experiments are based on the ICBHI 2017 challenge database.

Preprocessing

python3 preprocessing/preprocessing.py

python3 preprocessing/data_split.py

Training and Test

  1. For the basic CNN model without generating prototypes:

sh run.sh

  1. For CNN models with generating prototypes:

sh run_prototype.sh

Note:The variant of 'PROTO_FORM' can be adapted for different prototype learning approaches:

Prototype-1D: PROTO_FORM='vector1d'

Prototype-2D-EleSim-Van: PROTO_FORM='vector2d'

Prototype-2D-EleSim-Att: PROTO_FORM='vector2d_att'

Prototype-2D-AvgSim-Van: PROTO_FORM='vector2d_avgp'

Prototype-2D-MaxSim-Van: PROTO_FORM='vector2d_maxp'

Prototype-2D-MaxSim-Att: PROTO_FORM='vector2d_maxp_att'

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published