PyG re-implementation of NBFNet. Authored by Zhaocheng Zhu and Michael Galkin.
NBFNet is a graph neural network framework inspired by traditional path-based methods. It enjoys the advantages of both traditional path-based methods and modern graph neural networks, including generalization in the inductive setting, interpretability, high model capacity and scalability. This repo implements NBFNet for transductive and inductive knowledge graph reasoning.
This codebase is based on PyTorch and PyTorch-Geometric. It supports training and inference with multiple GPUs or multiple machines.
You may install the dependencies via either conda or pip. Generally, NBFNet works with Python >= 3.7 and PyTorch >= 1.8.0.
conda install pytorch=1.8.0 cudatoolkit=11.1 pyg -c pytorch -c pyg -c conda-forge
conda install ninja easydict pyyaml -c conda-forge
pip install torch==1.8.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html
pip install torch-scatter==2.0.8 torch-sparse==0.6.12 torch-geometric -f https://data.pyg.org/whl/torch-1.8.0+cu111.html
pip install ninja easydict pyyaml
To reproduce the results of NBFNet, use the following command. Alternatively, you
may use --gpus null
to run NBFNet on a CPU. All the datasets will be automatically
downloaded in the code.
python script/run.py -c config/inductive/wn18rr.yaml --gpus [0] --version v1
We provide the hyperparameters for each experiment in configuration files.
All the configuration files can be found in config/*/*.yaml
.
For experiments on inductive relation prediction, you need to additionally specify
the split version with --version v1
.
To run NBFNet with multiple GPUs or multiple machines, use the following commands
python -m torch.distributed.launch --nproc_per_node=4 script/run.py -c config/inductive/wn18rr.yaml --gpus [0,1,2,3]
python -m torch.distributed.launch --nnodes=4 --nproc_per_node=4 script/run.py -c config/inductive/wn18rr.yaml --gpus [0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3]
Once you have models trained on FB15k237, you can visualize the path interpretations with the following line. Please replace the checkpoint with your own path.
python script/visualize.py -c config/transductive/fb15k237_visualize.yaml --checkpoint /path/to/nbfnet/experiment/model_epoch_20.pth
Here are the benchmark results of this re-implementation. All the results are obtained with 4 V100 GPUs (32GB). Note results may be slightly different if the model is trained with 1 GPU and/or a smaller batch size.
Dataset | MR | MRR | HITS@1 | HITS@3 | HITS@10 |
---|---|---|---|---|---|
FB15k-237 | 113 | 0.416 | 0.322 | 0.456 | 0.602 |
WN18RR | 650 | 0.551 | 0.496 | 0.573 | 0.661 |
Dataset | Training Time | Test Time | GPU Memory |
---|---|---|---|
FB15k-237 | 22.8 min / epoch | 64 s | 22.9 GiB |
WN18RR | 12.0 min / epoch | 16 s | 16.1 GiB |
Dataset | HITS@10 (50 sample) | |||
---|---|---|---|---|
v1 | v2 | v3 | v4 | |
FB15k-237 | 0.821 | 0.948 | 0.957 | 0.959 |
WN18RR | 0.954 | 0.903 | 0.909 | 0.888 |
Dataset | v1 | v2 | v3 | v4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Training Time | Test Time | GPU Memory | Training Time | Test Time | GPU Memory | Training Time | Test Time | GPU Memory | Training Time | Test Time | GPU Memory | |
FB15k-237 | 2 s / epoch | < 1 s | 3.51 GiB | 6 s / epoch | < 1 s | 5.02 GiB | 15 s / epoch | < 1 s | 6.56 GiB | 29 s / epoch | < 1 s | 8.10 GiB |
WN18RR | 3 s / epoch | < 1 s | 5.17 GiB | 22 s / epoch | < 1 s | 11.3 GiB | 3 s / epoch | 1 s | 18.7 GiB | 7 s / epoch | 1 s | 6.84 GiB |
If you find this codebase useful in your research, please cite the original paper.
@article{zhu2021neural,
title={Neural bellman-ford networks: A general graph neural network framework for link prediction},
author={Zhu, Zhaocheng and Zhang, Zuobai and Xhonneux, Louis-Pascal and Tang, Jian},
journal={Advances in Neural Information Processing Systems},
volume={34},
year={2021}
}