Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Set off diagonal elements to zero as described in LAWN3 p18 #105

Merged
merged 1 commit into from
Mar 7, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 18 additions & 9 deletions src/svd.jl
Original file line number Diff line number Diff line change
Expand Up @@ -118,21 +118,30 @@ function svdDemmelKahan!(
end

# Recurrence to estimate smallest singular value from LAWN3 Lemma 1
function estimate_σ⁻(dv::AbstractVector, ev::AbstractVector, n1::Integer, n2::Integer)
λ = abs(dv[n2])
B∞ = λ
for j = (n2-1):-1:n1
λ = abs(dv[j]) * (λ / (λ + abs(ev[j])))
B∞ = min(B∞, λ)
end
function estimate_σ⁻!(dv::AbstractVector, ev::AbstractVector, n1::Integer, n2::Integer, tol::Real)

# (4.3) p 18
μ = abs(dv[n1])
B1 = μ
for j = n1:(n2-1)
μ = abs(dv[j+1]) * (μ / (μ + abs(ev[j])))
if abs(ev[j] / μ) < tol
ev[j] = 0
end
B1 = min(B1, μ)
end

# (4.4) p 18
λ = abs(dv[n2])
B∞ = λ
for j = (n2-1):-1:n1
λ = abs(dv[j]) * (λ / (λ + abs(ev[j])))
if abs(ev[j] / λ) < tol
ev[j] = 0
end
B∞ = min(B∞, λ)
end

return min(B∞, B1)
end

Expand All @@ -154,7 +163,7 @@ function __svd!(
count = 0

# See LAWN3 page 6 and 22
σ⁻ = estimate_σ⁻(d, e, n1, n2)
σ⁻ = estimate_σ⁻!(d, e, n1, n2, tol)
fudge = n
thresh = tol * σ⁻

Expand Down Expand Up @@ -208,7 +217,7 @@ function __svd!(
# current block to determine if it's safe to use shift or if
# the zero shift algorithm is required to maintain high relative
# accuracy
σ⁻ = estimate_σ⁻(d, e, n1, n2)
σ⁻ = estimate_σ⁻!(d, e, n1, n2, tol)
σ⁺ = max(maximum(view(d, n1:n2)), maximum(view(e, n1:(n2-1))))

if fudge * tol * σ⁻ <= eps(σ⁺)
Expand Down
8 changes: 8 additions & 0 deletions test/svd.jl
Original file line number Diff line number Diff line change
Expand Up @@ -115,4 +115,12 @@ using Test, GenericLinearAlgebra, LinearAlgebra, Quaternions, DoubleFloats
)
@test svdvals(A) ≈ svdvals(Complex{Double64}.(A))
end

@testset "Issue 104. Trailing zero in bidiagonal." begin
dv = [-1.8066303423244812, 0.23626846066361504, -1.8244461746384022, 0.3743075843671794, -1.503025651470883, -0.5273978245088017, 6.194053744695789e-75, -1.4816465601202412e-77, -7.05967042009753e-78, -1.8409609384104132e-78, -3.5760859484965067e-78, 1.7012650564461077e-153, -5.106470534144341e-155, 3.6429789846941095e-155, -3.494481025232055e-232, 0.0]
ev = [2.6390728646133144, 1.9554155623906322, 1.9171721320115487, 2.5486042731357257, 1.6188084135207441, -1.2764293576778472, -3.0873284294725004e-77, 1.0815807869027443e-77, -1.0375522364338647e-77, -9.118279619242446e-78, 5.910901980416107e-78, -7.522759136373737e-155, 1.1750163871116314e-154, -2.169544740239464e-155, 2.3352910098001318e-232]
B = Bidiagonal(dv, ev, :U)
F = GenericLinearAlgebra._svd!(copy(B))
@test diag(F.U'*B*F.Vt') ≈ F.S rtol=5e-15
end
end