Test code for "Visual Tracking by TridentAlign and Context Embedding"
- Link to LaSOT dataset
- Raw results available on Google drive
- Ubuntu 18.04
- Python==2.7.17
- numpy==1.16.5
- pytorch==1.3.0
- matplotlib==2.2.4
- opencv==4.1.0.25
- moviepy==1.0.0
- tqdm==4.32.1
- Download network weights from Google drive
- Copy network weight files
ckpt_res18.tar
andckpt_res50.tar
tockpt/
folder - Choose between
TACT-18
andTACT-50
by modifying thecfgs/cfg_test.py
file (default:TACT-50
)
- Download LaSOT dataset from link
- Modify
cfgs/cfg_test.py
file to localLaSOTBenchmark
folder path - Run
python test_tracker.py
- Using
run_track_seq()
function intracker_batch.py
, tracker can run on an arbitrary sequence - Provide the function with following variables
seq_name
: name of the given sequenceseq_path
: path to the given sequenceseq_imlist
: list of image file names of the given sequenceseq_gt
: ground truth box annotations of the given sequence (may only contain annotation for initial frame,[x_min,y_min,width,height]
format)
- Link to raw results on Google drive
- Results for test sets of LaSOT, OxUvA, GOT-10k, TrackingNet
If you find our work useful for your research, please consider citing the following paper:
@article{choi2020tact,
title={Visual tracking by tridentalign and context embedding},
author={Choi, Janghoon and Kwon, Junseok and Lee, Kyoung Mu},
journal={arXiv preprint arXiv:2007.06887},
year={2020}
}