Skip to content
/ CSP Public

Colloid Stability Profile (CSP) estimates colloid particle size and flocculation behavior based on colloid conditions.

Notifications You must be signed in to change notification settings

JackNDiab/CSP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 

Repository files navigation

CSP

Colloid Stability Profile (CSP) estimates colloid particle size and flocculation behavior based on colloid conditions.

Program that takes user inputs for the composition, temperature, salt content, planetary body, and solution pH. All user inputs can be integers or floats. Non-integer inputs will display a key for the input variable. User will be prompted to choose a confidence interval for calculation. estimates. An interval of 80 is reccomended.

  • Note: All estimates and calculations are strictly emperically based! This is meant to be a simple tool for rough size range estimates of some common collids.

References:

(1) Angelico, R.; Ceglie, A.; He, J. Z.; Liu, Y. R.; Palumbo, G.; Colombo, C. Particle Size, Charge and Colloidal Stability of Humic Acids Coprecipitated with Ferrihydrite. Chemosphere 2014, 99, 239–247. https://doi.org/10.1016/j.chemosphere.2013.10.092.

(2) Ghernaout, D. Brownian Motion and Coagulation Process. Am. J. Environ. Prot. 2015, 4 (5), 1. https://doi.org/10.11648/j.ajeps.s.2015040501.11.

(3) Matusiak, J.; Grządka, E. Stability of Colloidal Systems - a Review of the Stability Measurements Methods. Ann. Univ. Mariae Curie-Sklodowska, Sect. AA – Chem. 2017, 72 (1), 33. https://doi.org/10.17951/aa.2017.72.1.33.

(4) Kovalchuk, N. M.; Starov, V. M. Aggregation in Colloidal Suspensions: Effect of Colloidal Forces and Hydrodynamic Interactions. Adv. Colloid Interface Sci. 2012, 179–182, 99–106. https://doi.org/10.1016/j.cis.2011.05.009.

(5) Schoonen, M. A. A. Calculation of the Point of Zero Charge of Metal Oxides between 0 and 350°C. Geochim. Cosmochim. Acta 1994, 58 (13), 2845–2851. https://doi.org/10.1016/0016-7037(94)90118-X.

(6) Milonjić, S. K.; Čerović, L. S.; Čokeša, D. M.; Zec, S. The Influence of Cationic Impurities in Silica on Its Crystallization and Point of Zero Charge. J. Colloid Interface Sci. 2007, 309 (1), 155–159. https://doi.org/10.1016/j.jcis.2006.12.033.

(7) Sheng, K.; Ge, H.; Huang, X.; Zhang, Y.; Song, Y.; Ge, F.; Zhao, Y.; Meng, X. Formation and Inhibition of Calcium Carbonate Crystals under Cathodic Polarization Conditions. Crystals 2020, 10 (4). https://doi.org/10.3390/cryst10040275.

(8) Shnoudeh, A. J.; Hamad, I.; Abdo, R. W.; Qadumii, L.; Jaber, A. Y.; Salim, H.; Alkelany, S. Z. Applications of Metal Nanoparticles; 2019.

(9) Dong, L. Dielectric Properties of Colloidal Suspensions; 2009.

(10) Berg, J. M.; Romoser, A.; Banerjee, N.; Zebda, R.; Sayes, C. M. The Relationship between PH and Zeta Potential of ∼ 30 Nm Metal Oxide Nanoparticle Suspensions Relevant to in Vitro Toxicological Evaluations. Nanotoxicology 2009, 3 (4), 276–283. https://doi.org/10.3109/17435390903276941.

(11) Feng, X.; Buck, E. C.; Mertz, C.; Bates, J. K.; Cunnane, J. C.; Chaiko, D. J. Characteristics of Colloids Generated During the Corrosion of Nuclear Waste Glasses in Groundwater; Argonne, 1993; Vol. 66–67. https://doi.org/10.1524/ract.1994.6667.special-issue.197.

(12) Lu, P. J.; Zaccarelli, E.; Ciulla, F.; Schofield, A. B.; Sciortino, F.; Weitz, D. A. Gelation of Particles with Short-Range Attraction. Nature 2008, 453 (7194), 499–503. https://doi.org/10.1038/nature06931.

(13) Buzzaccaro, S.; Tripodi, A.; Rusconi, R.; Vigolo, D.; Piazza, R. Kinetics of Sedimentation in Colloidal Suspensions. J. Phys. Condens. Matter 2008, 20 (49). https://doi.org/10.1088/0953-8984/20/49/494219.

(14) Noguera, C.; Fritz, B.; Clément, A. Precipitation Mechanism of Amorphous Silica Nanoparticles: A Simulation Approach. J. Colloid Interface Sci. 2015, 448, 553–563. https://doi.org/10.1016/j.jcis.2015.02.050.

(15) Mascolo, M. C.; Pei, Y.; Ring, T. A. Room Temperature Co-Precipitation Synthesis of Magnetite Nanoparticles in a Large Ph Window with Different Bases. Materials (Basel). 2013, 6 (12), 5549–5567. https://doi.org/10.3390/ma6125549.

(16) Mann, S. Self-Assembly and Transformation of Hybrid Nano-Objects and Nanostructures under Equilibrium and Non-Equilibrium Conditions. Nat. Mater. 2009, 8 (10), 781–792. https://doi.org/10.1038/nmat2496.

(17) Hsu, H. W.; Postberg, F.; Sekine, Y.; Shibuya, T.; Kempf, S.; Horányi, M.; Juhász, A.; Altobelli, N.; Suzuki, K.; Masaki, Y.; Kuwatani, T.; Tachibana, S.; Sirono, S. I.; Moragas-Klostermeyer, G.; Srama, R. Ongoing Hydrothermal Activities within Enceladus. Nature 2015, 519 (7542), 207–210. https://doi.org/10.1038/nature14262.

(18) Baumgartner, J.; Bertinetti, L.; Widdrat, M.; Hirt, A. M.; Faivre, D. Formation of Magnetite Nanoparticles at Low Temperature: From Superparamagnetic to Stable Single Domain Particles. PLoS One 2013, 8 (3), 1–6. https://doi.org/10.1371/journal.pone.0057070.

(19) ARYAL, R.; CHONG, M. N.; GERNJAK, W. Influence of PH on Organic and Inorganic Colloids in Stormwater. J. Water Environ. Technol. 2012, 10 (3), 267–276. https://doi.org/10.2965/jwet.2012.267.

(20) Vayssières, L.; Chanéac, C.; Tronc, E.; Jolivet, J. P. Size Tailoring of Magnetite Particles Formed by Aqueous Precipitation: An Example of Thermodynamic Stability of Nanometric Oxide Particles. J. Colloid Interface Sci. 1998, 205 (2), 205–212. https://doi.org/10.1006/jcis.1998.5614.

(21) Tobler, D. J.; Benning, L. G. In Situ and Time Resolved Nucleation and Growth of Silica Nanoparticles Forming under Simulated Geothermal Conditions. Geochim. Cosmochim. Acta 2013, 114, 156–168. https://doi.org/10.1016/j.gca.2013.03.045.

(22) Mroczek, E.; Grahm, D.; Siega, C.; Bacon, L. Mroczek 2017 - Silica Scaling in Cooled Silica Saturated Geothermal Water - Comparison between Wairakei and Ohaaki Geothermal Fields, New Zealand.Pdf.

(23) You, Z.; Bedrikovetsky, P.; Badalyan, A.; Hand, M. Particle Mobilization in Porous Media: Temperature Effects on Competing Electrostatic and Drag Forces. Geophys. Res. Lett. 2015, 42 (8), 2852–2860. https://doi.org/10.1002/2015GL063986.

(24) Bolze, J.; Peng, B.; Dingenouts, N.; Panine, P.; Narayanan, T.; Ballauff, M. Formation and Growth of Amorphous Colloidal CaCO3 Precursor Particles as Detected by Time-Resolved SAXS. Langmuir 2002, 18 (22), 8364–8369. https://doi.org/10.1021/la025918d.

(25) Isa, E. D. M.; Ahmad, H.; Rahman, M. B. A. Optimization of Synthesis Parameters of Mesoporous Silica Nanoparticles Based on Ionic Liquid by Experimental Design and Its Application as a Drug Delivery Agent. J. Nanomater. 2019, 2019. https://doi.org/10.1155/2019/4982054.

(26) Golchoobi, A.; Khosravi, A.; Modarress, H.; Ahmadzadeh, A. Effect of Charge, Size and Temperature on Stability of Charged Colloidal Nano Particles. Chinese J. Chem. Phys. 2012, 25 (5), 617–624. https://doi.org/10.1088/1674-0068/25/05/617-624.

(27) Khodaee, P.; Najmoddin, N.; Shahrad, S. The Effect of Ethanol and Temperature on the Structural Properties of Mesoporous Silica Synthesized by the Sol-Gel Method. 2018 25th Iran. Conf. Biomed. Eng. 2018 3rd Int. Iran. Conf. Biomed. Eng. ICBME 2018 2018, 1 (1), 10–17. https://doi.org/10.1109/ICBME.2018.8703594.

(28) Babchin, A. J.; Schramm, L. L. Osmotic Repulsion Force Due to Adsorbed Surfactants. Colloids Surfaces B Biointerfaces 2012, 91 (1), 137–143. https://doi.org/10.1016/j.colsurfb.2011.10.050.

(29) Zainal, N. A.; Shukor, S. R. A.; Wab, H. A. A.; Razak, K. A. Study on the Effect of Synthesis Parameters of Silica Nanoparticles Entrapped with Rifampicin. Chem. Eng. Trans. 2013, 32, 2245–2250. https://doi.org/10.3303/CET1332375.

About

Colloid Stability Profile (CSP) estimates colloid particle size and flocculation behavior based on colloid conditions.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages