Skip to content

GuiBarradas/rasa-ptbr-boilerplate

 
 

Repository files navigation

Rasa Boilerplate

badge_build

For English version: README-en

O boilerplate nasceu como uma abstração genérica do projeto Tais. Hoje, tem o objetivo de tornar mais fácil a criação de um chatbot Rasa. Com a evolução do framework, atualmente o foco do boilerplate é uma documentação em código viva.

Aqui você pode encontrar um chatbot totalmente em Português Brasiliero que vai te auxiliar com exemplos de diálogo, código e uso de funcionalidades do Rasa.

Arquitetura

A arquitetura do boilerplate pode ser divida em 2 partes principais:

  • Criar

Processo que transforma arquivos de configuração .yml em um modelo treinado que contẽm a inteligência do chatbot.

arquitetura_boilerplate-v3-criar

  • Prover

O usuário interage com a Boilerplate via Telegram, que manda as mensagens para o Rasa NLU através de conectores, onde ele identifica a intent, e responde pelo Rasa Core, de acordo com as stories e actions.

As models utilizadas para a conversação foram geradas pelo módulo trainer e depois transferidas para o bot, estes modelos podem ser versionados e evoluídos entre bots.

arquitetura_boilerplate-v3-prover

Tutorial

Primeiramente, clone o repositório para sua máquina local usando o comando:

git clone https://github.com/lappis-unb/rasa-ptbr-boilerplate.git

Para ter seu chatbot Rasa funcionando, certifique-se de estar dentro da pasta do projeto e então execute no terminal o seguinte comando:

make init

Esse comando irá construir a infraestrutura necessária (subir containers com as dependências, treinar o chatbot e iniciar o chat no modo shell) para possibilitar a interação com o chatbot.

Depois que tudo for instalado, você verá a seguinte mensagem e pode começar a interagir com o bot:

Bot loaded. Type a message and press enter (use '/stop' to exit):
Your input ->

Para fechar a interação com o bot é só digitar ctrl+c.

Comandos

  • O comando de treinamento é usado para criar os modelos necessários na conversação do bot. Para treinar o seu chatbot execute o comando:
make train
  • Para executar o bot no terminal execute:
make shell

Configuração Telegram

Após realizar o tutorial de exportação de todas variávies de ambiente necessárias, é possível realizar a execução do bot no telegram corretamente.

Antes de seguir adiante. Importante: As variáveis de ambiente são necessárias para o correto funcionamento do bot, por isso não esqueça de exportá-las.

Depois execute o bot no telegram:

make telegram

Analytics

Para a visualização dos dados da interação entre o usuário e o chatbot nós utilizamos uma parte da Stack do Elastic, composta pelo ElasticSearch e o Kibana. Com isso, utilizamos um broker para fazer a gerência de mensagens. Então conseguimos adicionar mensagens ao ElasticSearch independente do tipo de mensageiro que estamos utilizando.

  • Para uma configuração rápida execute o seguinte comando:
make build-analytics

Espere até os serviço do ElasticSearch estar pronto, e execute o comando abaixo para configurar os índices:

make config-elastic

Espere até os serviço do Kibana estar pronto, e execute o comando abaixo para configurar os dashboards:

make config-kibana

O comando acima precisa ser executado apenas 1 vez e já vai deixar toda a infra de analytics pronta para o uso.

Acesse o kibana na url locahost:5601

Caso você deseje entender o processo de configuração da stack de analytics, veja a explicação completa de analytics.

Adicionando componentes customizados de treinamento

O Rasa permite a adição de módulos customizados no seu pipeline de processamento, aprenda mais AQUI.

Existe aqui um exemplo de componente customizado que implementa Análise de Sentimentos.

Para utilizá-lo basta introduzir o componente components.sentiment_analyzer.SentimentAnalyzer ao arquivo bot/config.yml. Como no exemplo:

language : "pt"

pipeline:
  - name: WhitespaceTokenizer
  - name: "components.sentiment_analyzer.SentimentAnalyzer"                                                                                        - name: RegexFeaturizer

Depois, como no exemplo do arquivo bot/components/labels.yml, adicione frases que correspondam à uma label(classificação ou sentimento).

Por último basta treinar o bot novamente, e a informação será armazenada na entidade sentiment caso o componente identifique um valor para essa entidade.

Notebooks - Análise de dados

Setup

Levante o container notebooks

make notebooks

Acesse o notebook em localhost:8888

Documentação

A documentação do projeto pode ser executada localmente utilizando o GitBook. Para instalar o gitbook via npm, é preciso ter instalado no computador Node.js e npm.

npm install -g gitbook gitbook-cli
  • Depois de instalado, na pasta raíz do projeto, execute:
gitbook build .
  • E para rodar localmente execute:
gitbook serve .
  • Acesse:
https://localhost:4000/

Contribuição: Para contribuir com a documentação do projeto leia como contribuir para a documentação

Como conseguir ajuda

Parte da documentação técnica do framework da Tais está disponível na wiki do repositório. Caso não encontre sua resposta, abra uma issue com a tag duvida que tentaremos responder o mais rápido possível.

Em caso de dúvidas em relação ao Rasa, veja o grupo Telegram Rasa Stack Brasil, estamos lá também para ajudar.

Veja mais informações de contato em nosso site: https://lappis.rocks.

Licença

Todo o framework do boilerplate é desenvolvido sob a licença GPL3

Veja a lista de dependências de licenças aqui

About

Um template para criar um FAQ chatbot usando Rasa, Rocket.chat, elastic search

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 71.6%
  • Makefile 18.2%
  • HTML 8.6%
  • Dockerfile 1.6%