Skip to content

The third place solution for detection part of the 3rd International Endoscopy Computer Vision Challenge and Workshop (EndoCV2021)

Notifications You must be signed in to change notification settings

GTYuantt/EndoCV2021_yolov5

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EndoCV2021_yolov5

The third place solution for detection part of the 3rd International Endoscopy Computer Vision Challenge and Workshop (EndoCV2021)

To install the required environment, first run: pip install -r requirements.txt

Then, train the yolov5x-p6 model for polyp detection: (note: we use 2 NVIDIA Tesla V100 32GB GPU for training and one for testing, the yolov5x6.pt file can be downloaded in the website of yolov5:https://github.com/ultralytics/yolov5) python -u -m torch.distributed.launch --nproc_per_node 2 train.py --name [your expriment name] --img 1280 --batch-size 8 --epochs 300 --data trainData_EndoCV2021_yolo_9_1_V2.yaml --multi-scale --weights yolov5x6.pt --cfg yolov5x6.yaml --device 0,1 --hyp hyp.finetune.yaml --sync-bn

For inference, run: python -u endocv2021_test.py --weights [your best .pt checkpoint files] --source [test data] --img-size 1536 --augment --name [your expriment name] --iou-thres 0.6 --save-txt --save-conf

About

The third place solution for detection part of the 3rd International Endoscopy Computer Vision Challenge and Workshop (EndoCV2021)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published