Skip to content

"Denoising Diffusion Models for Plug-and-Play Image Restoration", Yuanzhi Zhu, Kai Zhang, Jingyun Liang, Jiezhang Cao, Bihan Wen, Radu Timofte, Luc Van Gool.

License

Notifications You must be signed in to change notification settings

Fork-for-Modify/DiffPIR

 
 

Repository files navigation

Denoising Diffusion Models for Plug-and-Play Image Restoration

Yuanzhi Zhu, Kai Zhang, Jingyun Liang, Jiezhang Cao, Bihan Wen, Radu Timofte, Luc Van Gool.

[project page] [paper]

This repository contains the code and data associated with the paper "Denoising Diffusion Models for Plug-and-Play Image Restoration", which was presented at the CVPR workshop NTIRE 2023.

This code is based on the OpenAI Guided Diffusion and DPIR.


Contents

Abstract

Plug-and-play Image Restoration (IR) has been widely recognized as a flexible and interpretable method for solving various inverse problems by utilizing any off-the-shelf denoiser as the implicit image prior. However, most existing methods focus on discriminative Gaussian denoisers. Although diffusion models have shown impressive performance for high-quality image synthesis, their potential to serve as a generative denoiser prior to the plug-and-play IR methods remains to be further explored. While several other attempts have been made to adopt diffusion models for image restoration, they either fail to achieve satisfactory results or typically require an unacceptable number of Neural Function Evaluations (NFEs) during inference. This paper proposes DiffPIR, which integrates the traditional plug-and-play method into the diffusion sampling framework. Compared to plug-and-play IR methods that rely on discriminative Gaussian denoisers, DiffPIR is expected to inherit the generative ability of diffusion models. Experimental results on three representative IR tasks, including super-resolution, image deblurring, and inpainting, demonstrate that DiffPIR achieves state-of-the-art performance on both the FFHQ and ImageNet datasets in terms of reconstruction faithfulness and perceptual quality with no more than 100 NFEs.

Setting Up

Clone and Install

git clone https://github.com/yuanzhi-zhu/DiffPIR.git
cd DiffPIR
pip install -r requirements.txt

for motion blur, please download https://github.com/LeviBorodenko/motionblur to the DiffPIR folder.

Model Download

links to model checkpoints can be found in ./model_zoo/README.md

you can also download with:

bash download.sh

Do not forget to rename "ffhq_10m" to "diffusion_ffhq_m" for code consistency.

Inference Code

python main_ddpir_sisr.py # SR
python main_ddpir_deblur.py # deblur
python main_ddpir_inpainting.py # inpainting

Alternatively:

python main_ddpir.py --opt configs/sr.yaml # SR
python main_ddpir.py --opt configs/deblur.yaml # deblur
python main_ddpir.py --opt configs/inpaint.yaml # inpainting

Brief Introduction

Upon comparison with several earlier iterative image restoration methods, such as USRNet, we found that the diffusion sampling framework offers a more systematic approach to solve data sub-problems and prior sub-problems in an iterative plug and play manner.

Start with the following optimization problem:

$$ \hat{\mathbf{x}} = \mathop{\arg\min}_\mathbf{x} \frac{1}{2\sigma_n^2}|\mathbf{y} - \mathcal{H}(\mathbf{x})|^2 + \lambda \mathcal{P}(\mathbf{x}) $$

In previous works, we can solve this iteratively with:

$$\begin{align} \mathbf{{z}}_{k} &= \mathop{\arg\min}_{\mathbf{z}} \frac{1}{2(\sqrt{\lambda/\mu})^2}\|\mathbf{z}-\mathbf{x}_{k}\|^2 + \mathcal{P}(\mathbf{z}) \\\ \mathbf{{x}}_{k-1} &= \mathop{\arg\min}_{\mathbf{x}} \|\mathbf{y} - \mathcal{H}(\mathbf{x})\|^2 + \mu\sigma_n^2\|\mathbf{x}-\mathbf{{z}}_{k} \|^2 \end{align}$$

In our study, we address the optimization problem stated above with an altered schedule instead:

$$\begin{align} \mathbf{{x}}_{0}^{(t)}&=\mathop{\arg\min}_{\mathbf{z}} {\frac{1}{2\bar{\sigma}_t^2}\|\mathbf{z}-\mathbf{x}_{t}\|^2} + {\mathcal{P}(\mathbf{z})}\\\ \mathbf{\hat{x}}_{0}^{(t)}&=\mathop{\arg\min}_{\mathbf{x}} \|\mathbf{y} - \mathcal{H}(\mathbf{x})\|^2 + \rho_t\|\mathbf{x}-\mathbf{{x}}_{0}^{(t)} \|^2 \\\ \mathbf{x}_{t-1} &\longleftarrow \mathbf{\hat{x}}_{0}^{(t)} \end{align}$$

where the data sub-problem is treated as a denoising issue where diffusion models are utilized as generative denoisers.

Figure 1. Illustration of our plug-and-play sampling method.

To detail further, as demonstrated in Figure 1, at every timestep $t$, we initially estimate $\mathbf{x}^{(t)}_0$ from $\mathbf{x}_{t}$ through denoising, using the off-the-shelf unconditional pre-trained diffusion models. Following this, we address the data sub-problem to acquire an updated $\mathbf{\hat x}^{(t)}_0$ (indicated by the red line).

The overall plug and play sampling algorithm can be summarized as follows:

For a more comprehensive understanding, feel free to check out the related paper or slides.

Results

Quantitative Results

Click to display/hide quantitative results tables
FFHQ/Method($\sigma=0.05$) NFEs $\downarrow$ Deblur (Gaussian)
PSNR $\uparrow$
Deblur (Gaussian)
FID $\downarrow$
Deblur (Gaussian)
LPIPS $\downarrow$
Deblur (motion)
PSNR $\uparrow$
Deblur (motion)
FID $\downarrow$
Deblur (motion)
LPIPS $\downarrow$
SR ($\times 4$)
PSNR $\uparrow$
SR ($\times 4$)
FID $\downarrow$
SR ($\times 4$)
LPIPS $\downarrow$
DiffPIR 100 27.36 59.65 0.236 26.57 65.78 0.255 26.64 65.77 0.260
DPS [1] 1000 25.46 65.57 0.247 23.31 73.31 0.289 25.77 67.01 0.256
DDRM [2] 20 25.93 101.89 0.298 - - - 27.92 89.43 0.265
DPIR [3] $>$20 27.79 123.99 0.450 26.41 146.44 0.467 28.03 133.39 0.456
ImageNet/Method($\sigma=0.05$) NFEs $\downarrow$ Deblur (Gaussian)
PSNR $\uparrow$
Deblur (Gaussian)
FID $\downarrow$
Deblur (Gaussian)
LPIPS $\downarrow$
Deblur (motion)
PSNR $\uparrow$
Deblur (motion)
FID $\downarrow$
Deblur (motion)
LPIPS $\downarrow$
SR ($\times 4$)
PSNR $\uparrow$
SR ($\times 4$)
FID $\downarrow$
SR ($\times 4$)
LPIPS $\downarrow$
DiffPIR 100 22.80 93.36 0.355 24.01 124.63 0.366 23.18 106.32 0.371
DPS [1] 1000 19.58 138.80 0.434 17.75 184.45 0.491 22.16 114.93 0.383
DDRM [2] 20 22.33 160.73 0.427 - - - 23.89 118.55 0.358
DPIR [3] $>$20 23.86 189.92 0.476 23.60 210.31 0.489 23.99 204.83 0.475
FFHQ/Method($\sigma=0.0$) NFEs $\downarrow$ Inpaint (box)
FID $\downarrow$
Inpaint (box)
LPIPS $\downarrow$
Inpaint (random)
PSNR $\uparrow$
Inpaint (random)
FID $\downarrow$
Inpaint (random)
LPIPS $\downarrow$
Deblur (Gaussian)
PSNR $\uparrow$
Deblur (Gaussian)
FID $\downarrow$
Deblur (Gaussian)
LPIPS $\downarrow$
Deblur (motion)
PSNR $\uparrow$
Deblur (motion)
FID $\downarrow$
Deblur (motion)
LPIPS $\downarrow$
SR ($\times 4$)
PSNR $\uparrow$
SR ($\times 4$)
FID $\downarrow$
SR ($\times 4$)
LPIPS $\downarrow$
DiffPIR 20 35.72 0.117 34.03 30.81 0.116 30.74 46.64 0.170 37.03 20.11 0.084 29.17 58.02 0.187
DiffPIR 100 25.64 0.107 36.17 13.68 0.066 31.00 39.27 0.152 37.53 11.54 0.064 29.52 47.80 0.174
DPS [1] 1000 43.49 0.145 34.65 33.14 0.105 27.31 51.23 0.192 26.73 58.63 0.222 27.64 59.06 0.209
DDRM [2] 20 37.05 0.119 31.83 56.60 0.164 28.40 67.99 0.238 - - - 30.09 68.59 0.188
DPIR [3] >20 - - - - - 30.52 96.16 0.350 38.39 27.55 0.233 30.41 96.16 0.362

[1]: Chung et al., "Diffusion Posterior Sampling for General Noisy Inverse Problems", 2022
[2]: Kawar et al., "Denoising Diffusion Restoration Models", 2022
[3]: Zhang et al., "Plug-and-play Image Restoration with Deep Denoiser Prior", 2021

Qualitative Results

Click to display/hide qualitative results images

Citation

If you find this repo helpful, please cite:

@inproceedings{zhu2023denoising, % DiffPIR
      title={Denoising Diffusion Models for Plug-and-Play Image Restoration},
      author={Yuanzhi Zhu and Kai Zhang and Jingyun Liang and Jiezhang Cao and Bihan Wen and Radu Timofte and Luc Van Gool},
      booktitle={IEEE Conference on Computer Vision and Pattern Recognition Workshops (NTIRE)},
      year={2023},
}

Acknowledgments

This work was partly supported by the ETH Zurich General Fund (OK), the Alexander von Humboldt Foundation and the Huawei Fund.

About

"Denoising Diffusion Models for Plug-and-Play Image Restoration", Yuanzhi Zhu, Kai Zhang, Jingyun Liang, Jiezhang Cao, Bihan Wen, Radu Timofte, Luc Van Gool.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.9%
  • Shell 0.1%