Skip to content

FeldrinH/Metaheuristics.jl

 
 

Repository files navigation

Metaheuristics

Metaheuristics logo

High performance metaheuristics for global optimization.

Build Status codecov Doc Doc DOI

Installation

Open the Julia (Julia 1.1 or later) REPL and press ] to open the Pkg prompt. To add this package, use the add command:

pkg> add Metaheuristics

Or, equivalently, via the Pkg API:

julia> import Pkg; Pkg.add("Metaheuristics")

Algorithms

Some representative metaheuristics are developed here, including those for single- and multi-objective optimization. Moreover, some constraint handling techniques have been considered in most of the implemented algorithms.

Single-Objective Optimization

  • ECA: Evolutionary Centers Algorithm
  • DE: Differential Evolution
  • PSO: Particle Swarm Optimization
  • ABC: Artificial Bee Colony
  • GSA: Gravitational Search Algorithm
  • SA: Simulated Annealing
  • WOA: Whale Optimization Algorithm
  • MCCGA: Machine-coded Compact Genetic Algorithm
  • GA: Genetic Algorithm

Multi-Objective Optimization

SMS-EMOA in Metaheuristics.jl

  • MOEA/D-DE: Multi-objective Evolutionary Algorithm based on Decomposition
  • NSGA-II: A fast and elitist multi-objective genetic algorithm: NSGA-II
  • NSGA-III: Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach
  • SMS-EMOA: An EMO algorithm using the hypervolume measure as selection criterion
  • SPEA2: Improved Strength Pareto Evolutionary Algorithm
  • CCMO: Coevolutionary Framework for Constrained Multiobjective Optimization

Performance Indicators

  • GD: Generational Distance
  • IGD, IGD+: Inverted Generational Distance (Plus)
  • C-metric: Covering Indicator
  • HV: Hypervolume
  • Δₚ (Delta p): Averaged Hausdorff distance
  • Spacing Indicator
  • and more...

Quick Start

Assume you want to solve the following minimization problem.

Rastrigin Surface

Minimize:

Eq

where Eq, i.e., Eq for Eq. D is the dimension number, assume D=10.

Solution

Firstly, import the Metaheuristics package:

using Metaheuristics

Code the objective function:

f(x) = 10length(x) + sum( x.^2 - 10cos.(2π*x)  )

Instantiate the bounds, note that bounds should be a $2\times 10$ Matrix where the first row corresponds to the lower bounds whilst the second row corresponds to the upper bounds.

D = 10
bounds = [-5ones(D) 5ones(D)]'

Approximate the optimum using the function optimize.

result = optimize(f, bounds)

Optimize returns a State datatype which contains some information about the approximation. For instance, you may use mainly two functions to obtain such approximation.

@show minimum(result)
@show minimizer(result)

Documentation

See the documentation for more details, examples and options.

Contributing

Please, be free to send me your PR, issue or any comment about this package for Julia.

About

High performance metaheuristics for optimization purely coded in Julia.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Julia 100.0%