- S1-EBD(Entity Boundary Detaction Module
| - biobertNER (code for Flat Supervised NER)
| - dsner (code for DSNER NER)
| - uni (code for unified NER)
- S2-BEM (Biomedical Entity Matching Module)
| - dictionary
| - script (script to run the BEM and DR)
| - testdata (Stores the output data from the EBD model)
| - output(Output results from evaluation scripts for ensemble results)
Downloading huggingface biobert-v1.1 embeding into S1-EBD/embed
Our flat NER module is based on biobert-pytorch, so the requirements should be consistent with that project.
You can download the biomedical NER dataset following this link
(1) EBD
export DMNER_ROOT=/home/test2/DMNER
cd $DMNER_ROOT/DMNER/S1-EBD/biobertNER/NER
sh train_ncbi.sh $GPUID
sh infer_ncbi.sh $GPUID
(2): BEM
Get init dictionary
export DMNER_ROOT=/home/test2/DMNER
cd $DMNER_ROOT/S2-BEM/script
python dict_init_fromgold.py --dname NCBI --etype Disease --droot ${DMNER_ROOT}
Dictionary refinement & Ensemble the results
python all.py --dname NCBI --gpu $GPUID
The EBD backbone of DS-NER is borrowed from MRC. The environment needs to be reconfigured.
The trusted entities and unknown entities used in training come from autoner.
(1) EBD
export DMNER_ROOT=/home/test2/DMNER
cd $DMNER_ROOT/S1-EBD/dsner
sh paral_train_bc5cdr.sh $GPUID
sh infer_bc5cdr.sh $GPUID
(2) BEM Dictionary refinement & Ensemble the results
python all.py --dname BC5CDR --gpu $GPUID
(1) EBD
export DMNER_ROOT=/home/test2/DMNER
cd $DMNER_ROOT/S1-EBD/uni
sh paral_train_uni.sh $GPUID
sh infer_bc5cdr.sh $GPUID
(2) BEM Dictionary refinement & Ensemble the results
python all.py --dname BC5CDR-UNI --gpu $GPUID