Skip to content

Numerical analysis toolbox, including interpolation, fitting, numerical integration, iterative solution of linear/nonlinear equations, solution of ordinary differential equations.

Notifications You must be signed in to change notification settings

EZ4BYG/Num_Func

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

47 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NumFunc

Contents: Numerical analysis toolbox and iterative solution toolbox for linear/nonlinear equations

Time: 2019.04.06

Update1: Programs about some common interpolation and fitting

  • Lagrange interpolation: 2-points, 3-points, n-points; Runge's phenomenon —— lagra_2points.m, largra_3points.m, lagra_npoints.m and Runge.m
  • Newton interpolation: 2-points, 3-points, n-points —— New_2points.m, New_3points.m and New_npoints.m
  • Piecewise-linear Lagrangian interpolation —— fenduan_linear.m
  • Unary nonlinear fitting —— nonlinear_fitting.m
  • More detailed interpretation about Interpolation: https://www.jianshu.com/p/add2e938271c
  • More detailed interpretation about Fitting: https://www.jianshu.com/p/41caace02f39

Time:2019.04.07

Update2: Programs about Numerical intergration

  • Lagrangian quadrature(basic): Trapezoidal formula, Simpson formula, Newton-Coates formula —— trapezoid.m, simpson.m and newton_cotes.m
  • Lagrangian quadrature(intermediate): Composite trapezoid formula, Composite Simpson formula —— f_trapezoid.m and f_simpson.m
  • Lagrangian quadrature(advanced): Composite trapezoidal encryption formula, Romberg quadrature formula —— jm_f_trapezoid.m and romberg_js.m
  • Gauss quadrature: Gauss-Legendre, Gauss-Laguerre, Gauss-Hermite —— gauss_legendre2.m, gauss_laguerre.m, gauss_hermite.m
  • You can see more detailed interpretation from my blog: https://www.jianshu.com/p/c6fdfe11e6bc

Time:2019.04.15

Update3:Programs about iterative solution for linear equations

  • Original iteration methods: Jacobi iteration, Gauss-Seidel iteration, super-relaxation iteration —— jacobian_iteration.m, seidel_iteration.m, relaxation_iteration.m
  • Universal iteration method after preprocessing(Recommand!):pre-Gauss-Seidel iteration, pre-super-relaxation iteration —— pre_seidel.m, pre_relaxation.m
  • Matrix diagonal maximization preprocessing: This is not a panacea, but it can improve the convergence probability of iterative methods! —— diagonal_maximization.m
  • Reference: Jacobi和Gauss-Seidel迭代法的预处理
  • You can see more detailed interpretation from my blog: https://www.jianshu.com/p/e14d9e910984

Time:2019.04.16

Update4: Using the least square approximate solution to solve overdetermined incompatible linear equations

Time:2019.04.27

Update5: Using generalized plus inverse matrix to solve linear equations

  • The full-rank decomposition of any matrix —— FRD.M
  • The linear equation has no solution(Condition1): using the generalized plus inverse to find *all least squares solutions and unique minimal-norm least squares solution —— wujie.m
  • The linear equation has infinite solutions(Condition2): using the generalized plus inverse to find general solutions and unique minimal-norm solution —— wuqiongjie.m
  • The linear equation has only one solution(Condition3): using the generalized plus inverse to find out the unique solution —— weiyijie.m
  • You can see more detailed interpretation from my blog: https://www.jianshu.com/p/8777e5d11a03

Time:2019.05.05

Update6: The solution methods of the nonlinear equations. The programs are in the Nonlinear_Equations folder.

  • Original Newton method + pre-Gauss-Seidel iteration —— niudun.m and pre_seidel.m
  • Modified Newton method —— xzniudun.m
  • Quasi-Newton Method(single rank inverse Broyden Ⅰ) —— nbroyden1.m
  • Quasi-Newton Method(single rank inverse Broyden Ⅱ) —— nbroyden2.m
  • Quasi-Newton Method(rank-two BFS) —— BFS.m
  • You can see more detailed interpretation from my blog: https://www.jianshu.com/p/4e2d6a45aa67

数值分析和方程求解

内容:数值分析相关程序包括插值、拟合、数值积分;方程求解包括线性方程组迭代求解、非线性方程(组)求解、常微分方程数值解

时间:2019.04.06

更新1:多项式插值相关程序;最小二乘一元非线性拟合程序。

  • 拉格朗日插值:2点、3点、n点拉格朗日插值、龙格现象(文件名:lagra_2points.m、largra_3points.m、lagra_npoints.m、Runge.m);
  • 牛顿插值:2点、3点、n点牛顿插值(文件名:New_2points.m、New_3points.m、New_npoints.m);
  • 分段线性拉格朗日插值(文件名:fenduan_linear.m);
  • 一元非线性拟合(文件名:nonlinear_fitting.m)。
  • 插值说明参考这里拟合说明参考这里

时间:2019.04.07

更新2:数值积分相关程序。

  • 拉格朗日型积分(基础款):梯形公式、辛普森公式、牛顿-科茨公式(文件名:trapezoid.m、simpson.m、newton_cotes.m);
  • 拉格朗日型积分(进阶款):复化梯形公式、复化辛普森公式(文件名:f_trapezoid.m、f_simpson.m);
  • 拉格朗日型积分(高级款):复化梯形加密公式、龙贝格公式(文件名:jm_f_trapezoid.m、romberg_js.m);
  • 高斯型积分公式:高斯-勒让德、高斯-拉盖尔、高斯-埃尔米特;包括插值节点和系数的求取,以及实例(文件名:gauss_legendre2.m、gauss_laguerre.m、gauss_hermite.m)。
  • 相关说明参考这里

时间:2019.04.15

更新3:线性方程组迭代求解相关程序。

  • 未预处理原始迭代方法:雅克比迭代、高斯-赛德尔迭代、(超)松弛迭代(文件名:jacobian_iteration.m、seidel_iteration.m、relaxation_iteration.m);
  • 预处理万能迭代方法(推荐√):预处理后万能高斯-赛德尔迭代、预处理后万能(超)松弛迭代(文件名:pre_seidel.m、pre_relaxation.m)。
  • 对角最大化预处理:非万能,但还是可以提高迭代收敛的几率,值得参考(文件名: diagonal_maximization.m)
  • 预处理参考文献:《Jacobi和Gauss-Seidel迭代法的预处理》
  • 相关说明参考这里

时间:2019.04.16

更新4:超定不相容线性方程组最小二乘近似解

时间:2019.04.27

更新5:广义加号逆矩阵求解线性方程组

  • 任意矩阵的满秩分解(文件名:FRD.m);
  • 线性方程组无解:广义加号逆求全部最小二乘解和唯一极小范数最小二乘解(文件名:wujie.m);
  • 线性方程组无穷解:广义加号逆求通解唯一极小范数解(文件名:wuqiongjie.m);
  • 线性方程组唯一解:广义加号逆求唯一解(文件名:weiyijie.m);
  • 相关说明参考这里

时间:2019.05.05

更新6:非线性方法组的求解方法,详见文件夹Nonlinear_Equations

  • 原始牛顿法(文件名:niudun.m),辅助求解线性方法组的万能高斯-赛德尔迭代函数(pre_seidel.m);
  • 修正牛顿法(文件名:xzniudun.m);
  • 拟牛顿法_逆Broyden秩1法(nbroyden1.m);
  • 拟牛顿法_逆Broyden秩1第二方法(nbroyden2.m);
  • 拟牛顿法_BFS秩2法(BFS.m);
  • 相关说明参考这里

About

Numerical analysis toolbox, including interpolation, fitting, numerical integration, iterative solution of linear/nonlinear equations, solution of ordinary differential equations.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages