💗 .NET Wrapper for PaddleInference
C API, include PaddleOCR 📖, PaddleDetection 🎯, Rotation Detector 🔄, support Windows(x64) 💻, NVIDIA Cuda 10.2+ based GPU 🎮 and Linux(Ubuntu-22.04 x64) 🐧, currently contained following main components:
- PaddleOCR 📖 support 14 OCR languages model download on-demand, allow rotated text angle detection, 180 degree text detection, also support table recognition 📊.
- PaddleDetection 🎯 support PPYolo detection model and PicoDet model 🏹.
- RotationDetection 🔄 use Baidu's official
text_image_orientation_infer
model to detect text picture's rotation angle(0, 90, 180, 270
).
Please checkout this page 📄.
Note: Linux does not need a native binding NuGet
package like windows(Sdcb.PaddleInference.runtime.win64.mkl
), instead, you can/should based from a Dockerfile 🐳 to development:
Since GPU package are too large(>1.5GB), I cannot publish a NuGet package to nuget.org, there is a limitation of 250MB when upload to Github, there is some related issues to this:
However, you're good to build your own GPU nuget package using 01-build-native.linq
🛠️.
Here is the GPU package that I compiled (not from Baidu official) 🛠️:
NuGet Package 💼 | Version 📌 | Description 📚 |
---|---|---|
Sdcb.RotationDetector | RotationDetector library(based on Sdcb.PaddleInference) ⚙️ |
NuGet Package 💼 | Version 📌 | Description 📚 |
---|---|---|
Sdcb.PaddleDetection | PaddleDetection library(based on Sdcb.PaddleInference) ⚙️ |
- PaddleOCR: PaddleOCR 📖
- PaddleDetection: PaddleDetection 🔍
-
Please ensure the latest Visual C++ Redistributable was installed in
Windows
(typically it should automatically installed if you haveVisual Studio
installed) 🛠️ Otherwise, it will fail with the following error (Windows only):DllNotFoundException: Unable to load DLL 'paddle_inference_c' or one of its dependencies (0x8007007E)
If it's Unable to load DLL OpenCvSharpExtern.dll or one of its dependencies, then most likely the Media Foundation is not installed in the Windows Server 2012 R2 machine:
-
Many old CPUs do not support AVX instructions, please ensure your CPU supports AVX, or download the x64-noavx-openblas DLLs and disable Mkldnn:
PaddleDevice.Openblas()
🚀 -
If you're using Win7-x64, and your CPU does support AVX2, then you might also need to extract the following 3 DLLs into
C:\Windows\System32
folder to make it run: 💾- api-ms-win-core-libraryloader-l1-2-0.dll
- api-ms-win-core-processtopology-obsolete-l1-1-0.dll
- API-MS-Win-Eventing-Provider-L1-1-0.dll
You can download these 3 DLLs here: win7-x64-onnxruntime-missing-dlls.zip ⬇️
Enable GPU support can significantly improve the throughput and lower the CPU usage. 🚀
Steps to use GPU in Windows:
- (for Windows) Install the package:
Sdcb.PaddleInference.runtime.win64.cuda*
instead ofSdcb.PaddleInference.runtime.win64.mkl
, do not install both. 📦 - Install CUDA from NVIDIA, and configure environment variables to
PATH
orLD_LIBRARY_PATH
(Linux) 🔧 - Install cuDNN from NVIDIA, and configure environment variables to
PATH
orLD_LIBRARY_PATH
(Linux) 🛠️ - Install TensorRT from NVIDIA, and configure environment variables to
PATH
orLD_LIBRARY_PATH
(Linux) ⚙️
You can refer to this blog page for GPU in Windows: 关于PaddleSharp GPU使用 常见问题记录 📝
If you're using Linux, you need to compile your own OpenCvSharp4 environment following the docker build scripts and the CUDA/cuDNN/TensorRT configuration tasks. 🐧
After these steps are completed, you can try specifying PaddleDevice.Gpu()
in the paddle device configuration parameter, then enjoy the performance boost! 🎉
To use TensorRT, just specify PaddleDevice.Gpu().And(PaddleDevice.TensorRt("shape-info.txt"))
instead of PaddleDevice.Gpu()
to make it work. 💡
Please be aware, this shape info text file **.txt
is bound to your model. Different models have different shape info, so if you're using a complex model like Sdcb.PaddleOCR
, you should use different shapes for different models like this:
using PaddleOcrAll all = new(model,
PaddleDevice.Gpu().And(PaddleDevice.TensorRt("det.txt")),
PaddleDevice.Gpu().And(PaddleDevice.TensorRt("cls.txt")),
PaddleDevice.Gpu().And(PaddleDevice.TensorRt("rec.txt")))
{
Enable180Classification = true,
AllowRotateDetection = true,
};
In this case:
DetectionModel
will usedet.txt
🔍180DegreeClassificationModel
will usecls.txt
🔃RecognitionModel
will userec.txt
🔡
NOTE 📝:
The first round of TensorRT
running will generate a shape info **.txt
file in this folder: %AppData%\Sdcb.PaddleInference\TensorRtCache
. It will take around 100 seconds to finish TensorRT cache generation. After that, it should be faster than the general GPU
. 🚀
In this case, if something strange happens (for example, you mistakenly create the same shape-info.txt
file for different models), you can delete this folder to generate TensorRT cache again: %AppData%\Sdcb.PaddleInference\TensorRtCache
. 🗑️
- 深圳-钱文松
- iNeuOS工业互联网操作系统:https://www.ineuos.net
QQ group of C#/.NET computer vision technical communication (C#/.NET计算机视觉技术交流群): 579060605