This is a Caffe implementation of Google's MobileNets (v1 and v2). For details, please read the following papers:
- [v1] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
- [v2] Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation
We provide pretrained MobileNet models on ImageNet, which achieve slightly better accuracy rates than the original ones reported in the paper.
The top-1/5 accuracy rates by using single center crop (crop size: 224x224, image size: 256xN):
Network | Top-1 | Top-5 | sha256sum | Architecture |
---|---|---|---|---|
MobileNet v1 | 70.81 | 89.85 | 8d6edcd3 (16.2 MB) | netscope, netron |
MobileNet v2 | 71.90 | 90.49 | a3124ce7 (13.5 MB) | netscope, netron |
Evaluate MobileNet v1:
python eval_image.py --proto mobilenet_deploy.prototxt --model mobilenet.caffemodel --image ./cat.jpg
Expected Outputs:
0.42 - 'n02123159 tiger cat'
0.08 - 'n02119022 red fox, Vulpes vulpes'
0.07 - 'n02119789 kit fox, Vulpes macrotis'
0.06 - 'n02113023 Pembroke, Pembroke Welsh corgi'
0.06 - 'n02123045 tabby, tabby cat'
Evaluate MobileNet v2:
python eval_image.py --proto mobilenet_v2_deploy.prototxt --model mobilenet_v2.caffemodel --image ./cat.jpg
Expected Outputs:
0.26 - 'n02123159 tiger cat'
0.22 - 'n02124075 Egyptian cat'
0.15 - 'n02123045 tabby, tabby cat'
0.04 - 'n02119022 red fox, Vulpes vulpes'
0.02 - 'n02326432 hare'
Modify deploy.prototxt
and save it as your train.prototxt
as follows:
Remove the first 5 input
/input_dim
lines, and add Image Data
layer in the beginning like this:
layer {
name: "data"
type: "ImageData"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
scale: 0.017
mirror: true
crop_size: 224
mean_value: [103.94, 116.78, 123.68]
}
image_data_param {
source: "your_list_train_txt"
batch_size: 32 # your batch size
new_height: 256
new_width: 256
root_folder: "your_path_to_training_data_folder"
}
}
Remove the last prob
layer, and add Loss
and Accuracy
layers in the end like this:
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc7"
bottom: "label"
top: "loss"
}
layer {
name: "top1/acc"
type: "Accuracy"
bottom: "fc7"
bottom: "label"
top: "top1/acc"
include {
phase: TEST
}
}
layer {
name: "top5/acc"
type: "Accuracy"
bottom: "fc7"
bottom: "label"
top: "top5/acc"
include {
phase: TEST
}
accuracy_param {
top_k: 5
}
}
MobileNet in this repo has been used in the following projects, we recommend you to take a look:
- The MobileNet neural network using Apple's new CoreML framework hollance/MobileNet-CoreML
- Mobile-deep-learning baidu/mobile-deep-learning
- Receptive Field Block Net for Accurate and Fast Object Detection ruinmessi/RFBNet
- Depthwise Convolutional Layer yonghenglh6/DepthwiseConvolution
- MobileNet-MXNet KeyKy/mobilenet-mxnet
- Caffe2-MobileNet camel007/caffe2-mobilenet
- Add pretrained MobileNet v2 models (including deploy.prototxt and weights)
- Hold pretrained weights in this repo
- Add sha256sum code for pretrained weights
- Add some code snippets for single image evaluation
- Uncomment engine: CAFFE used in
mobilenet_deploy.prototxt
- Add params (
lr_mult
anddecay_mult
) forScale
layers ofmobilenet_deploy.prototxt
- Add
prob
layer formobilenet_deploy.prototxt