Aller au contenu

Bernd Fischer

Un article de Wikipédia, l'encyclopédie libre.

Bernd Fischer, né le à Bad Endbach dans le Land de Hesse, mort le [1] est un mathématicien allemand.

Il est principalement connu pour son théorème de caractérisation des groupes de transpositions, qu'il démontra en 1970[2].

Il obtint son Ph.D. en 1963 à l'université Johann Wolfgang Goethe de Francfort-sur-le-Main sous la direction de Reinhold Baer. Son thème de travail était Distributive Quasigruppen endlicher Ordnung[3] (Quasigroupes distributifs d'ordre fini). Son travail reste pour l'heure non publié ce qui explique le relatif manque d'informations à son sujet. Il a dirigé entre autres la thèse de Bernd Stellmacher[3].

Énoncé du théorème

[modifier | modifier le code]

Soit G un groupe de 3-transpositions (en) fini et D une classe de conjugaison de G tels que le centre de G soit réduit au groupe trivial et que le groupe dérivé de G soit simple. Alors l'une des six caractérisations suivantes de G est vraie :

  1. G≃Sn, groupe symétrique d'indice n et D est l'ensemble des transpositions de G.
  2. G≃Sp2n(2), groupe symplectique de dimension 2n sur le corps à deux éléments et D est l'ensemble des transvections de G.
  3. G≃PSUn(2), groupe spécial unitaire projectif (en) de dimension n sur le corps à deux éléments et D est l'ensemble des transvections de G.
  4. G≃O2n(2), un groupe orthogonal de dimension 2n sur le corps à deux éléments et D est l'ensemble des transvections de G.
  5. G≃un sous-groupe d'indice 2 d'un groupe orthogonal de dimension n sur le corps à trois éléments, engendré par une classe de conjugaison de réflexions D.
  6. G≃M22, M23 ou M24 et D est définie de manière unique comme une classe d'involutions de G.

Autres découvertes

[modifier | modifier le code]

Les groupes mentionnés dans la caractérisation 5 furent découverts par Fischer lors de l'élaboration de son théorème. Les deux premiers sont des groupes simples sporadiques tandis que le dernier, bien que non simple (et a fortiori non sporadique), possède un sous-groupe simple. Ils sont connus sous le nom de groupes de Fischer mais sont également des groupes de Mathieu : on les note Fi22, Fi23 et Fi24 ou bien M22, M23 et M24 (Fischer utilisait cette deuxième appellation).

Fischer est également à l'origine de la découverte du groupe Bébé Monstre et avait conjecturé l'existence du groupe Monstre en 1973 avant qu'elle ne soit avérée neuf ans plus tard.

Références

[modifier | modifier le code]
  1. (de) Universität trauert um Professor Bernd Fischer
  2. (en) Michael Aschbacher, 3-Transposition Groups, CUP, 1996 (ISBN 978-0-521-57196-8). Contient la première démonstration complète publiée du théorème de Fischer.
  3. a et b (en) « Bernd Fischer », sur le site du Mathematics Genealogy Project

Liens externes

[modifier | modifier le code]