skip to main content
research-article

Terrain-adaptive locomotion skills using deep reinforcement learning

Published: 11 July 2016 Publication History

Abstract

Reinforcement learning offers a promising methodology for developing skills for simulated characters, but typically requires working with sparse hand-crafted features. Building on recent progress in deep reinforcement learning (DeepRL), we introduce a mixture of actor-critic experts (MACE) approach that learns terrain-adaptive dynamic locomotion skills using high-dimensional state and terrain descriptions as input, and parameterized leaps or steps as output actions. MACE learns more quickly than a single actor-critic approach and results in actor-critic experts that exhibit specialization. Additional elements of our solution that contribute towards efficient learning include Boltzmann exploration and the use of initial actor biases to encourage specialization. Results are demonstrated for multiple planar characters and terrain classes.

Supplementary Material

ZIP File (a81-peng-supp.zip)
Supplemental files.
MP4 File (a81.mp4)

References

[1]
Assael, J.-A. M., Wahlström, N., Schön, T. B., and Deisenroth, M. P. 2015. Data-efficient learning of feedback policies from image pixels using deep dynamical models. arXiv preprint arXiv:1510.02173.
[2]
Bullet, 2015. Bullet physics library, Dec. https://bulletphysics.org.
[3]
Calinon, S., Kormushev, P., and Caldwell, D. G. 2013. Compliant skills acquisition and multi-optima policy search with em-based reinforcement learning. Robotics and Autonomous Systems 61, 4, 369--379.
[4]
Coros, S., Beaudoin, P., Yin, K. K., and van de Panne, M. 2008. Synthesis of constrained walking skills. ACM Trans. Graph. 27, 5, Article 113.
[5]
Coros, S., Beaudoin, P., and van de Panne, M. 2009. Robust task-based control policies for physics-based characters. ACM Transctions on Graphics 28, 5, Article 170.
[6]
Coros, S., Beaudoin, P., and van de Panne, M. 2010. Generalized biped walking control. ACM Transctions on Graphics 29, 4, Article 130.
[7]
Coros, S., Karpathy, A., Jones, B., Reveret, L., and van de Panne, M. 2011. Locomotion skills for simulated quadrupeds. ACM Transactions on Graphics 30, 4, Article 59.
[8]
da Silva, M., Abe, Y., and Popović, J. 2008. Interactive simulation of stylized human locomotion. ACM Trans. Graph. 27, 3, Article 82.
[9]
da Silva, M., Durand, F., and Popović, J. 2009. Linear bellman combination for control of character animation. ACM Trans. Graph. 28, 3, Article 82.
[10]
Doya, K., Samejima, K., Katagiri, K.-i., and Kawato, M. 2002. Multiple model-based reinforcement learning. Neural computation 14, 6, 1347--1369.
[11]
Faloutsos, P., van de Panne, M., and Terzopoulos, D. 2001. Composable controllers for physics-based character animation. In Proceedings of SIGGRAPH 2001, 251--260.
[12]
Featherstone, R. 2014. Rigid body dynamics algorithms. Springer.
[13]
Geijtenbeek, T., and Pronost, N. 2012. Interactive character animation using simulated physics: A state-of-the-art review. In Computer Graphics Forum, vol. 31, Wiley Online Library, 2492--2515.
[14]
Grzeszczuk, R., Terzopoulos, D., and Hinton, G. 1998. Neuroanimator: Fast neural network emulation and control of physics-based models. In Proc. ACM SIGGRAPH, ACM, 9--20.
[15]
Hansen, N. 2006. The cma evolution strategy: A comparing review. In Towards a New Evolutionary Computation, 75--102.
[16]
Haruno, M., Wolpert, D. H., and Kawato, M. 2001. Mosaic model for sensorimotor learning and control. Neural computation 13, 10, 2201--2220.
[17]
Hausknecht, M., and Stone, P. 2015. Deep reinforcement learning in parameterized action space. arXiv preprint arXiv:1511.04143.
[18]
Heess, N., Wayne, G., Silver, D., Lillicrap, T., Erez, T., and Tassa, Y. 2015. Learning continuous control policies by stochastic value gradients. In Advances in Neural Information Processing Systems, 2926--2934.
[19]
Hester, T., and Stone, P. 2013. Texplore: real-time sample-efficient reinforcement learning for robots. Machine Learning 90, 3, 385--429.
[20]
Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O'Brien, J. F. 1995. Animating human athletics. In Proceedings of SIGGRAPH 1995, 71--78.
[21]
Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. 1991. Adaptive mixtures of local experts. Neural computation 3, 1, 79--87.
[22]
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., and Darrell, T. 2014. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the ACM International Conference on Multimedia, ACM, New York, NY, USA, MM '14, 675--678.
[23]
Laszlo, J., van de Panne, M., and Fiume, E. 1996. Limit cycle control and its application to the animation of balancing and walking. In Proc. ACM SIGGRAPH, 155--162.
[24]
Lee, J., and Lee, K. H. 2006. Precomputing avatar behavior from human motion data. Graphical Models 68, 2, 158--174.
[25]
Lee, Y., Lee, S. J., and Popović, Z. 2009. Compact character controllers. ACM Transctions on Graphics 28, 5, Article 169.
[26]
Lee, Y., Wampler, K., Bernstein, G., Popović, J., and Popović, Z. 2010. Motion fields for interactive character locomotion. ACM Transctions on Graphics 29, 6, Article 138.
[27]
Lee, Y., Kim, S., and Lee, J. 2010. Data-driven biped control. ACM Transctions on Graphics 29, 4, Article 129.
[28]
Levine, S., and Abbeel, P. 2014. Learning neural network policies with guided policy search under unknown dynamics. In Advances in Neural Information Processing Systems 27. 1071--1079.
[29]
Levine, S., and Koltun, V. 2014. Learning complex neural network policies with trajectory optimization. In Proceedings of the 31st International Conference on Machine Learning (ICML-14), 829--837.
[30]
Levine, S., Wang, J. M., Haraux, A., Popović, Z., and Koltun, V. 2012. Continuous character control with low-dimensional embeddings. ACM Transactions on Graphics (TOG) 31, 4, 28.
[31]
Levine, S., Finn, C., Darrell, T., and Abbeel, P. 2015. End-to-end training of deep visuomotor policies. arXiv preprint arXiv:1504.00702.
[32]
Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D. 2015. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971.
[33]
Liu, L., Yin, K., va n d e Panne, M., and Guo, B. 2012. Terrain runner: control, parameterization, composition, and planning for highly dynamic motions. ACM Trans. Graph. 31, 6, 154.
[34]
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. 2015. Human-level control through deep reinforcement learning. Nature 518, 7540, 529--533.
[35]
Mordatch, I., and Todorov, E. 2014. Combining the benefits of function approximation and trajectory optimization. In Robotics: Science and Systems (RSS).
[36]
Mordatch, I., de Lasa, M., and Hertzmann, A. 2010. Robust physics-based locomotion using low-dimensional planning. ACM Trans. Graph. 29, 4, Article 71.
[37]
Mordatch, I., Lowrey, K., Andrew, G., Popovic, Z., and Todorov, E. V. 2015. Interactive control of diverse complex characters with neural networks. In Advances in Neural Information Processing Systems, 3114--3122.
[38]
Muico, U., Lee, Y., Popović, J., and Popović, Z. 2009. Contact-aware nonlinear control of dynamic characters. ACM Trans. Graph. 28, 3, Article 81.
[39]
Muico, U., Popović, J., and Popović, Z. 2011. Composite control of physically simulated characters. ACM Trans. Graph. 30, 3, Article 16.
[40]
Nair, A., Srinivasan, P., Blackwell, S., Alcicek, C., Fearon, R., De Maria, A., Panneershelvam, V., Suley-man, M., Beattie, C., Petersen, S., et al. 2015. Massively parallel methods for deep reinforcement learning. arXiv preprint arXiv:1507.04296.
[41]
Parisotto, E., Ba, J. L., and Salakhutdinov, R. 2015. Actor-mimic: Deep multitask and transfer reinforcement learning. arXiv preprint arXiv:1511.06342.
[42]
Pastor, P., Kalakrishnan, M., Righetti, L., and Schaal, S. 2012. Towards associative skill memories. In Humanoid Robots (Humanoids), 2012 12th IEEE-RAS International Conference on, IEEE, 309--315.
[43]
Peng, X. B., Berseth, G., and van de Panne, M. 2015. Dynamic terrain traversal skills using reinforcement learning. ACM Transactions on Graphics 34, 4.
[44]
Rusu, A. A., Colmenarejo, S. G., Gulcehre, C., Desjardins, G., Kirkpatrick, J., Pascanu, R., Mnih, V., Kavukcuoglu, K., and Hadsell, R. 2015. Policy distillation. arXiv preprint arXiv:1511.06295.
[45]
Schaul, T., Quan, J., Antonoglou, I., and Silver, D. 2015. Prioritized experience replay. arXiv preprint arXiv:1511.05952.
[46]
Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and Abbeel, P. 2015. Trust region policy optimization. CoRR abs/1502.05477.
[47]
Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. 2014. Deterministic policy gradient algorithms. In ICML.
[48]
Sok, K. W., Kim, M., and Lee, J. 2007. Simulating biped behaviors from human motion data. ACM Trans. Graph. 26, 3, Article 107.
[49]
Stadie, B. C., Levine, S., and Abbeel, P. 2015. Incentiviz-ing exploration in reinforcement learning with deep predictive models. arXiv preprint arXiv:1507.00814.
[50]
Tan, J., Liu, K., and Turk, G. 2011. Stable proportional-derivative controllers. Computer Graphics and Applications, IEEE 31, 4, 34--44.
[51]
Tan, J., Gu, Y., Liu, C. K., and Turk, G. 2014. Learning bicycle stunts. ACM Transactions on Graphics (TOG) 33, 4, 50.
[52]
Treuille, A., Lee, Y., and Popović, Z. 2007. Near-optimal character animation with continuous control. ACM Transactions on Graphics (TOG) 26, 3, Article 7.
[53]
Uchibe, E., and Doya, K. 2004. Competitive-cooperative-concurrent reinforcement learning with importance sampling. In Proc. of International Conference on Simulation of Adaptive Behavior: From Animals and Animats, 287--296.
[54]
van der Maaten, L., and Hinton, G. E. 2008. Visualizing high-dimensional data using t-sne. Journal of Machine Learning Research 9, 2579--2605.
[55]
Van Hasselt, H., and Wiering, M. A. 2007. Reinforcement learning in continuous action spaces. In Approximate Dynamic Programming and Reinforcement Learning, 2007. ADPRL 2007. IEEE International Symposium on, IEEE, 272--279.
[56]
Van Hasselt, H., Guez, A., and Silver, D. 2015. Deep reinforcement learning with double q-learning. arXiv preprint arXiv:1509.06461.
[57]
Van Hasselt, H. 2012. Reinforcement learning in continuous state and action spaces. In Reinforcement Learning. Springer, 207--251.
[58]
Wang, J. M., Fleet, D. J., and Hertzmann, A. 2009. Optimizing walking controllers. ACM Transctions on Graphics 28, 5, Article 168.
[59]
Wiering, M., and Van Hasselt, H. 2008. Ensemble algorithms in reinforcement learning. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 38, 4, 930--936.
[60]
Ye, Y., and Liu, C. K. 2010. Optimal feedback control for character animation using an abstract model. ACM Trans. Graph. 29, 4, Article 74.
[61]
Yin, K., Loken, K., and van de Panne, M. 2007. Simbicon: Simple biped locomotion control. ACM Transctions on Graphics 26, 3, Article 105.
[62]
Yin, K., Coros, S., Beaudoin, P., and van de Panne, M. 2008. Continuation methods for adapting simulated skills. ACM Transctions on Graphics 27, 3, Article 81.

Cited By

View all
  • (2025)Synergistic Terrain-Adaptive Morphing and Trajectory Tracking in a Transformable-Wheeled RobotIEEE Robotics and Automation Letters10.1109/LRA.2024.352487610:2(1656-1663)Online publication date: Feb-2025
  • (2024)TelTransProceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence10.1609/aaai.v38i21.30331(22927-22933)Online publication date: 20-Feb-2024
  • (2024)Learned Multi-aperture Color-coded Optics for Snapshot Hyperspectral ImagingACM Transactions on Graphics10.1145/368797643:6(1-11)Online publication date: 19-Dec-2024
  • Show More Cited By

Index Terms

  1. Terrain-adaptive locomotion skills using deep reinforcement learning

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 35, Issue 4
    July 2016
    1396 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2897824
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 11 July 2016
    Published in TOG Volume 35, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. physics-based characters
    2. reinforcement learning

    Qualifiers

    • Research-article

    Funding Sources

    • NSERC

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)193
    • Downloads (Last 6 weeks)31
    Reflects downloads up to 17 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)Synergistic Terrain-Adaptive Morphing and Trajectory Tracking in a Transformable-Wheeled RobotIEEE Robotics and Automation Letters10.1109/LRA.2024.352487610:2(1656-1663)Online publication date: Feb-2025
    • (2024)TelTransProceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence10.1609/aaai.v38i21.30331(22927-22933)Online publication date: 20-Feb-2024
    • (2024)Learned Multi-aperture Color-coded Optics for Snapshot Hyperspectral ImagingACM Transactions on Graphics10.1145/368797643:6(1-11)Online publication date: 19-Dec-2024
    • (2024)PIMT: Physics-Based Interactive Motion Transition for Hybrid Character AnimationProceedings of the 32nd ACM International Conference on Multimedia10.1145/3664647.3681582(10497-10505)Online publication date: 28-Oct-2024
    • (2024)Controllable Procedural Generation of LandscapesProceedings of the 32nd ACM International Conference on Multimedia10.1145/3664647.3681129(6394-6403)Online publication date: 28-Oct-2024
    • (2024)Enhancing the Adaptability of Hexapod Robots via Multi-Agent Reinforcement Learning and Value Function Decomposition2024 WRC Symposium on Advanced Robotics and Automation (WRC SARA)10.1109/WRCSARA64167.2024.10685805(1-8)Online publication date: 23-Aug-2024
    • (2024)PlanNet: A Generative Model for Component-Based Plan SynthesisIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.327520030:8(4739-4751)Online publication date: 1-Aug-2024
    • (2024)Minimalist and High-Quality Panoramic Imaging With PSF-Aware TransformersIEEE Transactions on Image Processing10.1109/TIP.2024.344137033(4568-4583)Online publication date: 16-Aug-2024
    • (2024)Robotic Control in Adversarial and Sparse Reward Environments: A Robust Goal-Conditioned Reinforcement Learning ApproachIEEE Transactions on Artificial Intelligence10.1109/TAI.2023.32376655:1(244-253)Online publication date: Jan-2024
    • (2024)Projected Task-Specific Layers for Multi-Task Reinforcement Learning2024 IEEE International Conference on Robotics and Automation (ICRA)10.1109/ICRA57147.2024.10610483(2887-2893)Online publication date: 13-May-2024
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media