Wightman-Axiome

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Die Wightman-Axiome, oder auch Gårding–Wightman-Axiome, sind ein von Arthur Wightman und Lars Gårding in den 1950er[1] Jahren formuliertes Axiomensystem zur mathematischen (axiomatische) Beschreibung von Quantenfeldtheorien. Publiziert wurden die Axiome im Jahre 1964,[2] nachdem der Erfolg der Haag-Ruelle Streutheorie[3][4] deren Bedeutung aufzeigte.

Im Folgenden werden die Wightman-Axiome für ein hermitesches skalares Quantenfeld beschrieben. Die Nummerierung der Axiome basiert auf der von Arthur Wightman und Ray Streater verfassten Monografie "PCT, Spin, Statistik und all das".[5]

Annahme einer relativistischen Quantentheorie

[Bearbeiten | Quelltext bearbeiten]
  • Die Zustände der Theorie werden durch Vektoren in einem separablen komplexen Hilbertraum beschrieben. (Etwas präziser: Zustände werden durch "Strahlen" im Hilbertraum beschrieben, das heißt, dass zwei Vektoren in , die sich nur durch einen Phasenfaktor unterscheiden, identifiziert werden. Die Menge aller so definierter Äquivalenzklassen wird auch als "projektiver Hilbertraum" bezeichnet.)
  • Das relativistische Transformationsgesetz ist durch eine stark-stetige unitäre Darstellung der eigentlichen orthochronen Poincaré-Gruppe gegeben. Die Gruppe besteht aus allen Paaren der Form mit und , wobei die eigentliche orthochrone Lorentz-Gruppe bezeichnet. Die Gruppenverknüpfung ist definiert als Eine unitäre Darstellung der Gruppe ist ein Gruppenhomomorphismus der Form , wobei die Menge aller unitären Operatoren auf bezeichne.
  • Nach dem Satz von Stone existieren 4 kommutierende und selbstadjungierte Operatoren , sodass (hier wurde die Einsteinsche Summenkonvention verwendet), wobei die Exponentialfunktion mittels des Spektralsatzes für unbeschränkte, selbstadjungierte Operatoren wohl-definiert ist. Man fordert nun, dass diese 4 Operatoren die sogenannte "Spektralbedingung" erfüllen, was bedeutet, dass der Operator ein positiver Operator ist, oder etwas abstrakter, dass das zu gehörige Spektralmaß gänzlich im abgeschlossen, positiven Lichtkegel liegt. Die Operatoren entsprechen den Operatoren für den Viererimpuls.
  • Es existiert ein (bis auf einen Phasenfaktor) eindeutig bestimmter Vektor , genannt „Vakuum“, sodass für alle .

Annahme über den Definitionsbereich und die Stetigkeit des Feldes

[Bearbeiten | Quelltext bearbeiten]
  • Ein "Quantenfeld" ist eine operatorwertige temperierte Distribution, das heißt, eine Abbildung , wobei den Raum der Schwartz-Funktionen und die Menge aller (nicht notwendigerweise beschränkten) Operatoren auf bezeichnet, sodass die folgenden Eigenschaften erfüllt sind:
    1. Es existiert ein dichter Unterraum , sodass für alle gilt, dass der Definitionsbereich des Operators und der Definitionsbereich des Operators die Menge enthalten und auf ihr übereinstimmen. ( bezeichnet hier den adjungierten Operator)
    2. und für alle gilt, dass .
    3. Für alle ist die Funktion eine temperierte Distribution.

Transformationsgesetz des Feldes

[Bearbeiten | Quelltext bearbeiten]

Sei nun und wie oben beschrieben. Für alle gilt, dass Des Weiteren fordert man, dass das Quantenfeld für alle , für alle und für alle die folgende Transformationseigenschaft besitzt:

wobei .

Lokalität und Zyklizität des Vakuums

[Bearbeiten | Quelltext bearbeiten]
  • Seien so, dass die Träger raumartig getrennt sind, dann fordert man, dass für alle gilt.
  • Die Menge ist dicht in .

Ein Quintupel , das die obigen Axiome erfüllt, wird als „hermitesche skalare Wightman-Quantenfeldtheorie“ bezeichnet.

Diskussion der Axiome

[Bearbeiten | Quelltext bearbeiten]

Das Quantenfeld wird in den Axiomen als "operatorwertige temperierte Distribution" definiert, wohingegen in der Physik Quantenfelder meist als operatorwertige Funktionen auf der Raumzeit beschrieben werden. Hierzu schrieb Arthur Wightman und Ray Streater in "PCT, Spin, Statistik und all das":[5]

"It was recognized early in the analysis of field measurements for the electromagnetic field in quantum electrodynamics that, in their dependence on a space-time point, the components of fields are in general more singular than ordinary functions. This suggests that only smeared fields be required to yield well-defined operators. For example, in the case of the electric field , is not a well-defined operator, while is."

Übersetzung:

"Es wurde früh in der Analyse von Feldmessungen für das elektromagnetische Feld in der Quantenelektrodynamik erkannt, dass die Komponenten von Feldern in ihrer Abhängigkeit von einem Raum-Zeit-Punkt im Allgemeinen singulärer sind als gewöhnliche Funktionen. Dies legt nahe, dass nur verschmierte Felder geeignet sind, um wohl-definierte Operatoren zu erhalten. Zum Beispiel ist im Falle des elektrischen Feldes kein wohl-definierter Operator, wohingegen einer ist."

Die Wightman-Axiome lassen sich auch auf Felder mit Spin ungleich von 0 verallgemeinern. Hierzu fordert man, dass die Theorie ein -Tupel an operatorwertigen temperierten Distribution enthält. Das zugehörige Transformationsgesetz lautet

für alle Komponenten . bezeichnet dabei eine irreduzible Darstellung der Gruppe , der universellen, einfach-zusammenhängenden Überlagerungsgruppe von . Die Matrix ist die zu gehörige Lorentz-Transformation (siehe auch Darstellungstheorie der Lorentz-Gruppe).

Das Axiom der Lokalität und die Zyklizität des Vakuums müssen wie folgt abgewandelt werden:

  • Beschreibt die Darstellung ein Teilchen mit ganzzahligem Spin, dann gilt für alle mit raumartig getrennten Trägen, dass und . Wird hingegen ein Teilchen mit halbzahligem Spin betrachtet, so lauten die Bedingungen und .
  • Die Zyklizität des Vakuums wird für alle gefordert.

Wightman's Rekonstruktionssatz

[Bearbeiten | Quelltext bearbeiten]

Eine wichtige Folgerung der Wightman-Axiome ist die Tatsache, dass die Erwartungswerte der Theorie gewisse Eigenschaften erfüllen, mit denen sich die Wightman-Axiome vollständig rekonstruieren lassen. Dies soll im folgenden Absatz erläutert werden.

Sei eine hermitesche skalare Wightman-Quantenfeldtheorie. Man bezeichnet eine Funktion mit , welche für durch

definiert ist, als "Wightman-Korrelationsfunktion". Nach einem Satz in der Theorie der Distributionen[6][7], existiert zu eine eindeutig bestimmte temperierte Distribution , sodass

für alle gilt, wobei das Tensorprodukt von Funktionen bezeichnet.

Es lässt sich nun zeigen, dass die folgenden Eigenschaften besitzt:

  1. Positive Definitheit: Es sei und für . Dann gilt , wobei durch für alle definiert ist.
  2. Realität: Für alle gilt, dass .
  3. Relativistische Invarianz: Für alle und für alle gilt, dass , wobei punktweise wie oben definiert ist.
  4. Spektralbedingung: Für alle existiert eine temperierte Distribution , sodass für alle mit der Eigenschaft, dass ihre Fourier-Transformation gänzlich im positiven, abgeschlossenen Lichtkegel enthalten ist, gilt, dass , wobei durch für alle definiert ist.
  5. Lokalität: Seien so, dass die Träger raumartig getrennt sind, dann .
  6. Cluster-Eigenschaft: Ist ein raumartiger Vektor, dann gilt für alle , dass , wobei den Translationsoperator bezeichne, welcher durch definiert ist.

Wightman's Rekonstruktionssatz:

Es sei eine Menge von Funktionen, die die obigen 6 Eigenschaften besitzen. Dann existiert eine hermitesche skalare Wightman-Quantenfeldtheorie , welche die Wightman-Axiome erfüllt, sodass die Wightman-Korrelationsfunktionen genau den Distributionen entsprechen. In anderen Worten, es gilt, dass

.

Ein Beweis dieser Aussage lässt sich zum Beispiel in[5] und[8] finden.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Wightman-Axiome in nlab ncatlab.org
  2. A. S. Wightman, L. Gårding, "Fields as Operator-valued Distributions in Relativistic Quantum Theory," Arkiv f. Fysik, Kungl. Svenska Vetenskapsak. Band 28, 1964, S. 129–189.
  3. R. Haag, "Quantum field theories with opposite particles and asymptotic conditions," Phys. Rev. 112 (1958).
  4. D. Ruelle, "On the asymptotic condition in quantum field theory," Helv. Phys. Acta 35 (1952).
  5. a b c R. F. Streater and A. S. Wightman, PCT, Spin and Statistics and All That, Princeton University Press, Landmarks in Mathematics and Physics, 2000 (1. Aufgabe, New York, Benjamin 1964).
  6. A. Schwarz: Quantum Field Theory and Topology. Springer-Verlag, 1993.
  7. E. de Faria, W. de Melo: Mathematical Aspects of Quantum Field Theory (= Cambridge studies in advanced mathematics 127). Cambridge University Press, Cambridge 2010, S. 120.
  8. S. P. Gudder: Stochastic Methods in Quantum Mechanics. Courier Corporation, 2014.