- 博客(48)
- 收藏
- 关注
原创 Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs Deepak
相关工作现有的方法通过仅关注实体特征或以不相交的方式考虑实体和关系的特征学习KG嵌入,相反,我们提出的图注意力模型从整体上捕获了KG中任何给定实体的n跳领域中的多跳和语义相似的关系。我们的方法1.GAT单个GAT层为:输出层:相对注意力aij是使用softmax函数计算领域中所有值的。连接K个注意力头的多头注意力过程如下:最后一层的输出嵌入是使用平均而不是连接操作来计算的,以实现多头注意力:2.关系很重要提出了一个新的嵌入方法,将关系和相邻节点特征结合到注意机制中。定义了一个注
2022-01-12 21:07:11 1812
原创 tomcat版本更新
目前jdk版本为:jdk 1.8(1.8.0_152)查看tomcat版本打开tomcat文件所在位置,打开bin文件夹D:\apache-tomcat-8.0.46\bin找到version.bat双击打开,发现一闪而过打开version.bat文件在最后加上pause再双击打开,显示当前tomcat版本为更新tomcat打开tomcat下载网页https://tomcat.apache.org/download-10.cgi可以先看看自己...
2021-07-30 09:12:32 913
原创 git版本更新
参考:https://blog.csdn.net/blingsky123/article/details/107493257最初的版本是git -version版本 > 2.16.1 则使用: git update-git-for-windows版本 2.14.2-2.16.1 则使用: git update版本 <2.14.2 请重新下载安装覆盖打开cmd更新:git update运行查看...
2021-07-29 15:16:48 241
原创 node版本删除更新
自己旧电脑的版本是:可以尝试多版本管理:或者直接删除旧版本安装新版本参考:https://blog.csdn.net/weixin_43303455/article/details/1080875761.卸载旧版本查看旧版本位置删除相应nodejs文件下载需要的版本https://nodejs.cn/download/current/2.安装需要版本:一路next在系统变量里:Path用户变量:Path3.修改配置及环境1.首..
2021-07-25 20:03:27 1247
原创 Error: Cannot find module ‘webpack-cli/bin/config-yargs‘
加入"webpack-dev-server":"^3.11.2",报错:Error: Cannot find module 'webpack-cli/bin/config-yargs'"webpack":"^5.41.1","webpack-cli":"^4.7.2"webpack-dev-server版本与webpack,webpack-cli最新版本不匹配只能降低webpack,webpack-cli版本yarn add [email protected]...
2021-07-01 15:07:34 88
原创 yarn add webpack webpack-cli 报错
error [email protected]: The engine "node" is incompatible with this module. Expected version ">=10.17.0". Got "10.13.0"error Found incompatible module.使用:yarn config set ignore-engines true参考:yarn错误The engine "node" is incompatible with this m
2021-06-30 09:42:52 504
原创 为什么选择angular?-学习笔记
使用angular的原因:Angular是一款优秀的前端JS框架,已经被用于Google的多款产品当中。它有一下的特性:良好的应用程序结构; 双向数据绑定; 指令; HTML模版; 可嵌入,注入和测试。优点:模版功能强大丰富,自带了极其丰富的angular指令; 是一个比较完善的前端框架,包含服务,模版,数据双向绑定,模块化,路由,过滤器,依赖注入等所有功能; 自定义指令,自定义指令可以在项目中多次使用; ng模块化比较大胆的引入了Java的一些东西(依赖注入),能够很容易的
2021-05-16 23:17:25 312
原创 Learning Collaborative Agents with Rule Guidance for Knowledge Graph Reasoning-学习笔记
问题和初步问题表述给定一个查询:。KG推理的任务是找到一组对象实体,使得,其中是中缺少的事实三元组。为了与大多数现有作品保持一致,本文只考虑尾部查询。基于符号的方法某些以前的方法是从KG挖掘Horn规则,并通过将这些规则作为基础来预测缺失的事实。 最近的方法AnyBURL(Meilicke et al.,2019)表现出与基于嵌入技术的最先进方法相当的性能。但是,这些方法有局限性。 例如,从不同KG提取的规则可能具有不同的质量,这使得推理者难以选择规则。 图1显示了这种差异。
2021-01-08 10:19:45 1159 2
原创 知识图谱构建-论文笔记
Automatic knowledge graph construction based on relational data of power terminal equipment (Su Zheng,Hao Mukai,Zhang Qiang,Chai Bo,Zhao Ting) 装备保障性验证知识图谱构建方法研究 KnowIME: A System to Construct a Knowledge Graph for Intel...
2021-01-05 15:17:53 1178 2
原创 合并外部知识库-学习资料
1.CN-DBPediahttps://wiki.dbpedia.org/DBpedia – A Large-scale, MultilingualKnowledge Base Extracted from Wikipediahttps://pypi.org/project/pyspotlight/https://kw.fudan.edu.cn/apis/cndbpedia/python 简单操作dbpediahttps://openkg.cn/dataset/cndbpediai
2021-01-05 11:35:55 300
原创 Neo4j-学习资料
Jdk11:链接:https://pan.baidu.com/s/1Lxa2k4hrMRtRfVbF9ku-zQ 提取码:9es4Windows下图数据库neo4j的安装: https://www.jianshu.com/p/dc620ca59d19Neo4j版本:4.1.3下载地址:https://neo4j.com/download-center/#communityAPOC 4.3.0-rc01 : neo4j数据库中合并相同节点Neo4j教程:1.https://www.w...
2021-01-05 11:22:17 178
原创 Knowledge Graph Alignment Network with Gated Multi-Hop Neighborhood Aggregation-学习笔记
在图1中,美国是Wikidata中科比·布莱恩特的一跳(直接)邻居。 但是在DBpedia中,它是两跳邻居。在AliNet中,通过门控机制通过在k跳内对其邻域信息进行控制的聚合来学习实体表示。 在不失一般性的前提下,以下我们展示了汇总一跳和两跳邻域信息(k = 2)的情况。 网络结构如图3所示。请注意,AliNet也可以扩展到更多的跃点。具体来说,每个AliNet层都具有多种功能,可在多个跃点内聚合邻域信息。 为了减少噪声信息,我们进一步采用了一种针对远距离邻域聚集的注意机制,以端到端的..
2021-01-05 11:15:06 686
原创 D2RQ-学习记录
D2RQ下载链接:https://d2rq.org/点击下载d2rq-0.8.1.zip根据mysql下载JDBC driver,我使用的是mysql-connector-java-5.1.44:https://repo1.maven.org/maven2/mysql/mysql-connector-java/5.1.44/mysql-connector-java-5.1.44.jar放到之前解压d2rq-0.8.1压缩包路径的d2rq-0.8.1\lib\db-drivers文件中,替换
2020-10-20 11:03:12 418
原创 Notes on language modeling-COMS W4705: Natural Language Processing-学习笔记
COMS W4705: Natural Language Processing语言模型在广泛的应用中非常有用,最明显的也许是语音识别和机器翻译。 在语音识别中,语言模型与为不同单词的发音建模的声学模型相结合:一种思考的方法是,声学模型会生成大量候选句子以及概率;然后使用语言模型根据这些可能性成为该语言中的句子的可能性对这些可能性重新排序。 语言模型中使用最为广泛的模型叫做Markov模型。Trigram语言模型,这是一类重要的语言模型,直接建立在Markov模型的思想上。 Bias-Varianc
2020-10-15 09:16:50 154
原创 人工智能之知识图谱-学习笔记
知识图谱研究报告-电子版-20191120在大数据环境下,从互联网开放环境的大数据中获得知识,用这些知识提供智能服务互联网/行业,同时通过互联网可以获得更多的知识。这是一个迭代的相互增强过程,可以实现从互联网信息服务到智能知识服务的跃迁。 王海勋被引用量最高的论文是 2003 年在 KDD 会议上发表的“Mining concept-drifting data streams using ensemble classifiers”。这篇论文提出了一个使用加权集合分类器挖掘概念漂移数据流的一般框架,经过
2020-10-13 11:00:35 471
原创 Titanic: Machine Learning from Disaster-kaggle入门赛-学习笔记
Titanic: Machine Learning from Disaster对实验用的数据的认识,数据中的特殊点/离群点的分析和处理,特征工程(feature engineering)很重要。 注意模型融合(model ensemble)。
2020-10-13 11:00:24 186
原创 HHT变换基本理论-学习笔记
HHT变换基本理论希尔伯特黄变换(HHT变换)是1998年由NordenEHuang等人提出的一种信号分析方法。是一种能够有效分析线性/非线性,平稳/非平稳信号的时频分析方法。核心是经验模态分解(简称EMD)和希尔伯特变换(简称HT),前者是信号分解(或者信号变换)方法,后者是信号分析(谱分析)方法。 时频分析方法的提出主要是为了对非线性非平稳信号进行有效的信号分析,从而得到信号在局部时间上的频率信息,即频率随时间的变化情况。 短时傅立叶变换公式表示:在时间轴上移动窗函数,就能够对信号x(t)连续的
2020-10-13 11:00:13 2638
原创 Rule-Guided Compositional Representation Learning on Knowledge Graphs-学习笔记
Rule-Guided Compositional Representation Learning on Knowledge Graphs1.表示学习知识图谱(KG)是将KG的实体和关系嵌入到低维连续向量空间中。2.可以使用Horn规则在语义级别上组合路径和关联关系,以提高学习路径上KG嵌入的精度,并增强表示学习的可解释性。3.DPTransE共同构建了KG的潜在特征和图形特征之间的交互,以提供精确而有区别的嵌入。4.路径增强模型:由于多跳路径可以提供KG中看似未连接的实体之间的关系,因此K
2020-10-13 11:00:02 990
原创 A comparative study of various methods of bearing faults diagnosis using the CWRU data.-学习笔记
A comparative study of various methods of bearing faults diagnosis using the case Western Reserve University data.Fault Diagnosis Methods:1.Temporal AnalysisRMS:root mean square,根均方(RMS或RMS)被定义为平方根的的均方(该算术平均值的的方形的一组数字的)。crest factor:波峰因数是波形的参..
2020-10-13 10:59:41 627
原创 Exploiting the Syntax-Model Consistency for Neural Relation Extraction-学习笔记
Exploiting the Syntax-Model Consistency for Neural Relation Extraction1.论文中,首先使用深度学习模型中单词的表示向量来计算每个单词的另一个重要性得分(称为基于模型的重要性得分)。这些基于模型的重要性评分有望量化单词所贡献的语义信息,从而成功预测输入实体所提及的关系。之后,建议通过强制基于模型的重要性分数与语法对应项一致(即通过KL散度),将基于语法的重要性分数注入到RE的深度学习模型中。一致性实施的动机是提升重要性分数,作为
2020-10-13 10:59:29 488
原创 Pattern Discovery and Anomaly Detection via Knowledge Graph-学习笔记
Pattern Discovery and Anomaly Detection via Knowledge Graph知识图谱使用实体及其关系对信息进行建模。 实体提取:使用统计模型或基于语言语法的技术。 关系提取:使用将实体与关系关联的正则表达式,或基于训练数据建立分类器。 关系消除和实体解析:Openle往往会为同一组实体产生租户关系(SPO三元组)和标识噪声,有必要消除冗余三元组并解决身份,不确定性,以开发可扩展且可信的知识图。 论文中开发了一个领域特定的知识图谱,其事实由从Twitter
2020-10-13 10:59:21 308 1
原创 TransRHS: A Representation Learning Method for Knowledge Graphs with RHS-学习笔记
TransRHS: A Representation Learning Method for Knowledge Graphs with Relation Hierarchical StructurePPT一种具有关系层次结构的知识图谱的表示学习方法。知识表示学习是面向知识图谱中实体(或概念)和关系的表示学习。通过将实体或关系投影到低维稠密向量(嵌入表示),实现对实体和关系的语义信息的表示,高效地计算实体、关系及其之间的复杂语义关联。RHS关系层次结构(RHS)由关系之间的名为sub
2020-10-13 10:59:11 670
原创 装备保障性验证知识图谱构建方法研究-学习笔记
装备保障性验证知识图谱构建方法研究领域知识图谱构建在逻辑层面,知识图谱通常可以划分为数据层和模式层两个层次。数据层主要是将领域中的多源异构数据转换为三元组的形式,通过一系列三元组表达领域知识或者常识知识,比如用(实体1,关系,实体2)、(实体、属性,属性值)这样的三元 组来表达事实,从而实现对知识进行存储。模式层是在数据层的基础上构建的,领域知识图谱构建过程通常通过构建领域本体(Ontology)来规范数据层。本体规范了领域核心结构,具有较强的结构层次,有效减少冗余。由于垂直领域知识图谱
2020-10-13 10:59:01 923
原创 KnowIME: A System to Construct a Knowledge Graph for Intelligent Manufacturing Equipment-学习笔记
KnowIME: A System to Construct a Knowledge Graph for Intelligent Manufacturing Equipment构建智能制造设备知识图谱的系统系统架构显示了构建KnowIME信息系统的架构图。智能制造设备的非结构化数据(例如文本,图像)和结构化数据(例如数值数据)是从互联网,百度百科以及相关的智能制造网站获得的。数据与关系数据一起保存到Redis数据库中。从多个来源(例如数据库和Hadoop File System)
2020-10-13 10:58:45 369 2
原创 Rolling element bearing diagnostics using the Case Western Reserve University data-学习笔记
Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study.论文通过将三种已建立的诊断技术应用于整个CWRU数据集来提供这样的基准。所有方法都使用平方包络频谱(即平方包络的频谱)作为最终诊断工具,但是在获取包络信号之前使用了不同的预处理步骤。 滚动轴承的局部故障会在加速度信号中产生一系列宽带脉冲响应,因为轴承组件会反复出现故障。轴承诊断的关键是,通过幅度解调获
2020-10-12 17:09:04 3424 4
原创 数控设备故障知识图谱的构建与应用-学习笔记
数控设备故障知识图谱的构建与应用针对某个数控设备故障案例事件来说,其各个故障影响因素与案例事件本身构成复杂的网络关系,而同属于一个故障现象的同类事件集组成了庞大的知识网络体系。 本文结合数控设备故障领域的数据特点,采用“自顶向下”与“自底向上”相结合的知识图谱构建技术、数据驱动的增量式本体建模方法和基于模式的知识映射机制来组织丰富知识库,并完成数控设备故障知识图谱的构建与应用。 数控设备故障知识图谱是指由组成故障案例的知识实体和这些知识实体之间的关联关系所构成的用以描述整类事件的知识语义网络。 数
2020-10-12 16:41:32 2441
原创 Error detection in Knowledge Graphs: Path Ranking, Embeddings or both?-学习笔记
Error detection in Knowledge Graphs: Path Ranking, Embeddings or both?错误的三元组本质上是对象s与对象o(两者均为E)之间的错误边缘,关系r∈R将它们连接在一起。 PaTyBRED:PRA启发式算法,使用路径作为特征,将路径定义为关系r1→r2→...→rn的序列。 TransE:给定三元组(s,r,o)是正确的,则主题s和关系r可以与对象o连接,且误差很小,这意味着s + r≈o。递归地最小化使用上述能量函数和负采样进行训练的成
2020-10-12 16:38:58 931
原创 Electric device abnormal detection based on IoT and knowledge graph-学习笔记
Electric device abnormal detection based on IoT and knowledge graph物联网(Internet of Things)或物联网(IoT)技术近年来发展迅速,预计在未来5G时代,无线网络将普及到每一台设备。 借助这些物联网传感器,可以从温度实时获取电气设备的环境数据和运行状态。 考虑到电力系统的复杂性,需要用知识图谱来综合与异常检测相关的各种因素。 电气设备物联网传感器数据异常检测是一项复杂而具有挑战性的任务,它涉及到系统内外的诸多因素。
2020-10-12 16:25:34 139
原创 把知识变成图谱一共需要花几步?89页全网最全清华知识图谱报告-学习笔记
把知识变成图谱一共需要花几步?89页全网最全清华知识图谱报告知识图谱是人工智能的重要分支技术,它在2012年由谷歌提出,成为建立大规模知识的杀手锏应用,在搜索、自然语言处理、智能助手、电子商务等领域发挥着重要作用。 知识图谱的分类方式很多,例如可以通过知识种类、构建方法等划分。从领域上来说,知识图谱通常分为两种:通用知识图谱、特定领域知识图谱。 智能问答系统被看作是未来信息服务的颠覆性技术之一,亦被认为是机器具备语言理解能力的主要验证手段之一。 通用知识图谱可以形象地看成一个面向通用领域的“结构化
2020-10-12 16:15:21 337
原创 SAFE: Similarity-Aware Multi-Modal Fake News Detection-学习笔记
SAFE: Similarity-Aware Multi-Modal Fake News Detection假新闻检测方法通常可以分为(I)基于内容的方法和(II)基于社交上下文的方法。 PolitiFact(politifact.com)是美国著名的非盈利性的政治陈述和报告真相检查网站。 GossipCop(gossipcop.com)是一个网站,用于检查杂志和报纸上发布的名人报道和娱乐故事。 LIWC是一个广泛接受的心理语言词典。给定一个新闻故事,LIWC可以对文本中的单词进行计数,这些单词属于
2020-10-12 16:10:25 2064 3
原创 Outlier Detection for Improved Data Quality and Diversity in Dialog Systems-学习笔记
Outlier Detection for Improved Data Quality and Diversity in Dialog Systems论文按如下方式检测数据集中的异常值: 1.生成每个实例的矢量表示。 2.平均向量以获得均值表示。 3.计算每个实例与平均值的距离。 4.按距离升序排列。 5.(删除列表,仅将前k%作为离群值。) 最后一步用括号括起来,因为在实践中使用动态阈值方法,允许...
2020-10-12 15:19:01 472
原创 LSCP: Locally Selective Combination in Parallel Outlier Ensembles-学习笔记
LSCP: Locally Selective Combination in Parallel Outlier EnsemblesLSCP框架: 1.训练多个基础异常检测器(Base Detector Generation); 2.生成伪标签用于评估(Pseudo Ground Truth); 3.对于每个测试点生成局部空间,也就是近邻(Local Region Definition); 4.模型选择与合并(Model Selecti...
2020-10-12 15:17:00 1297
原创 Reasoning about Entailment with Neural Attention-学习笔记
Reasoning about Entailment with Neural Attention LSTM可以学习丰富的语句表示,这些语句适合于确定文本含义。LSTM神经网络很适用于文本蕴含类的任务。 针对识别文本蕴含(RTE)任务提出了一个带有注意力的神经网络。文中的模型能够处理以前提为条件的假设来推理词与词,短语与短语之间的蕴含关系。 文中的整个模型的框架:使用两个LSTMs(A)识别文本蕴涵,一个在premise上,一个在hypothesis上,以及注意仅基于最后输出向量(h9,B)或逐字注意
2020-10-12 15:04:49 223
原创 Enhanced LSTM for Natural Language Inference-学习笔记
Enhanced LSTM for Natural Language Inference自然语言推理(NLI: natural language inference)问题:即判断能否从一个前提p中推导出假设h,简单来说,就是判断给定两个句子的三种关系:蕴含、矛盾或无关。 论文中的自然语言推理网络由以下部分组成:输入编码(Input Encoding ),局部推理模型(Local Inference Modeling ),和推理合成(inference composition)。 若有两个句子a=(a
2020-10-12 15:01:53 320
原创 GloVe: Global Vectors for Word Representation-学习笔记
GloVe: Global Vectors for Word RepresentationGloVe是一种用于获取单词向量表示的无监督学习算法。 用于最近邻居评估的相似性度量产生一个量化两个词的相关性的单个标量。 两个词向量之间的向量差是一组更大的判别数的自然而简单的候选者。 GloVe的设计目的是使这样的矢量差尽可能多地捕获两个单词并列所指定的含义。 尽管TextCNN能够在很多任务里面能有不错的表现,但CNN有个最大问题是固定 filter_size 的视野,一方面无法建模更长的序列信息,另一
2020-10-11 20:23:10 360
原创 Sequence Classification with LSTM Recurrent Neural Networks in Python with Keras-学习笔记
Sequence Classification with LSTM Recurrent Neural Networks in Python with Keras序列分类是一种预测建模问题,其中在空间或时间上具有一些输入序列,而任务是预测序列的类别。 LSTM(Long Short Term Memory networks)可以解决传统RNN的长期依赖(long-term dependencies)问题。它对传统RNN的隐层进行了结构上的改进。 Word Embedding是在高维空间中将单词编码为实
2020-10-11 20:17:47 230
原创 机器学习(Machine Learning)- 吴恩达(Andrew Ng)-学习笔记
P1-P23新闻事件分类的例子,就是那个谷歌新闻的例子,可以用一个聚类算法来聚类这些文章到一起,所以是无监督学习。细分市场的例子,可以当作无监督学习问题,因为只是拿到算法数据,再让算法去自动地发现细分市场。 Octave,是免费的开源软件,使用一个像 Octave 或 Matlab的工具,许多学习算法变得只有几行代码就可实现。 代价函数也被称作平方误差函数,有时也被称为平方误差代价函数。误差平方代价函数,对于大多数问题,特别是回归问题,都是一个合理的选择。(导师更正:理论是,任何非负函数都可以作代价
2020-10-11 20:12:34 398
转载 对dropout的理解详细版
对dropout的理解详细版训练的时候需要dropout,测试的时候直接去掉。 dropout可以比较有效地减轻过拟合的发生,一定程度上达到了正则化的效果。消除减弱了神经元节点间的联合适应性,增强了泛化能力。 Dropout策略在卷积隐藏层中使用较少。 如果你既不想在训练的时候,对x进行放大,也不愿意在测试的时候,对权重进行缩小(乘以概率p)。那么你可以测试n次,这n次都采用了dropout,然后对预测结果取平均值,这样当n趋近于无穷大的时候,就是我们需要的结果了。 需要测试的时候将输出结果乘以
2020-10-11 17:12:49 330
原创 Convolutional Neural Networks for Sentence Classification-学习笔记
Convolutional Neural Networks for Sentence Classification在自然语言处理中,深度学习方法的大部分工作都涉及通过神经语言模型学习单词向量表示。 卷积神经网络(CNN)利用应用了卷积滤镜的图层局部特征。 无监督的神经语言模型是一种在不存在的情况下提高性能的常用方法一个大型监督训练集。 将其他随机源 - CV-fold作为符号,未知单词向量的初始化,CNN参数的初始化 - 通过使它们在每个数据集内保持一致来实现。 预先训练好的矢量是良好的“通用.
2020-10-11 17:08:50 177
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人