Skip to content

yangjianxin1/CLIP-Chinese

Repository files navigation

CLIP-Chinese:中文多模态对比学习CLIP预训练模型

项目描述

微信公众号【YeungNLP】文章:CLIP-Chinese:中文多模态对比学习预训练模型 ,文章内可获取140w中文图文对预训练数据,以及中文CLIP预训练权重。

CLIP是由OpenAI提出的一种多模态对比学习方法,原模型使用了4亿个图文对进行对比学习训练,在下游的各种任务上均取得了不错的效果,并且在Zero-Shot任务上效果也令人惊艳。 模型论文可参考CLIP论文:Learning Transferable Visual Models From Natural Language Supervision

由于原生的CLIP模型是基于英文语料训练的,无法在中文任务中使用,本项目便是为了解决该问题。 本项目的主要工作如下:

  • 编写Vit+Bert结构的CLIP模型,下面将其称为BertCLIP模型,以及预训练的pipeline。
  • 基于LiT-tuning(Locked-image Text tuning)的方法,使用140万中文文本数据,对BertCLIP模型进行预训练。
  • 在图文相似度、文本相似度、图图相似度等任务上,验证预训练模型的有效性。
  • 分享140w中文图文对数据,分享预训练模型权重。

预模型权重分享

预训练权重使用方式详见下文

预训练模型 预训练模型名称 模型地址
BertCLIP的整体权重 YeungNLP/clip-vit-bert-chinese-1M https://huggingface.co/YeungNLP/clip-vit-bert-chinese-1M
Bert的权重 YeungNLP/bert-from-clip-chinese-1M https://huggingface.co/YeungNLP/bert-from-clip-chinese-1M

运行环境

python==3.8、transformers==4.18.0、torch==1.12.0

项目结构

  • data:存放训练数据
    • images:存放训练图片
  • images:存放一些测试的图片
  • module:一些模块
    • argument.py:定制一些训练配置参数
    • configuration.py:模型配置config
    • datacollator.py
    • dataset.py
    • model.py:模型结构
  • train_args:训练参数的配置文件
  • download_image.py:下载图片的脚本
  • filter_data.py:过滤训练数据的脚本
  • train_clip.py:模型训练脚本
  • predict_similarity.py:计算图文相似度、文本相似度、图图相似度的脚本

模型介绍与训练细节

笔者编写了一个基于Vit+Bert结构的BertCLIP模型,模型结构与原生CLIP大同小异,如下图所示。

model

预训练时,Vit与Bert分别加载不同的预训练权重,进行初始化。其中Vit的权重使用openai的clip模型进行初始化, 而Bert的权重使用mengzi中文预训练权重进行初始化。

在训练的时候,使用LiT-tuning(Locked-image Text tuning)的策略,也就是将Vit的权重进行冻结,对模型的其他参数进行训练。使用140w的中文图文对,过滤掉一些坏图, batch size=768,warmup step为1000步,学习率为5e-5,使用cosine衰减策略,训练50个epoch,大概73100个step,最终训练loss降到0.23左右。 model

使用方法

Quick Start

使用如下脚本,就可成功加载笔者分享的预训练权重,对图片和文本进行预处理,并且得到模型的输出

from transformers import CLIPProcessor
from component.model import BertCLIPModel
from PIL import Image
import requests

model_name_or_path = 'YeungNLP/clip-vit-bert-chinese-1M'
# 加载预训练模型权重
model = BertCLIPModel.from_pretrained(model_name_or_path)
CLIPProcessor.tokenizer_class = 'BertTokenizerFast'
# 初始化processor
processor = CLIPProcessor.from_pretrained(model_name_or_path)
# 预处理输入
url = "https://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(text=["一只小狗在摇尾巴", "一只小猪在吃饭"], images=image, return_tensors="pt", padding=True)
inputs.pop('token_type_ids')    # 输入中不包含token_type_ids

outputs = model(**inputs)

# 对于每张图片,计算其与所有文本的相似度
logits_per_image = outputs.logits_per_image  # image-text的相似度得分
probs = logits_per_image.softmax(dim=1)  # 对分数进行归一化

# 对于每个文本,计算其与所有图片的相似度
logits_per_text = outputs.logits_per_text  # text-image的相似度得分
probs = logits_per_text.softmax(dim=1)  # 对分数进行归一化

# 获得文本编码
text_embeds = outputs.text_embeds
# 获得图像编码
image_embeds = outputs.image_embeds

单独加载图像编码器,进行下游任务

from PIL import Image
import requests
from transformers import CLIPProcessor, CLIPVisionModel

model_name_or_path = 'YeungNLP/clip-vit-bert-chinese-1M'
model = CLIPVisionModel.from_pretrained(model_name_or_path)
CLIPProcessor.tokenizer_class = 'BertTokenizerFast'
processor = CLIPProcessor.from_pretrained(model_name_or_path)

url = "https://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

inputs = processor(images=image, return_tensors="pt")

outputs = model(**inputs)
last_hidden_state = outputs.last_hidden_state
pooled_output = outputs.pooler_output 

单独加载文本编码器,进行下游任务

from component.model import BertCLIPTextModel
from transformers import BertTokenizerFast

model_name_or_path = 'YeungNLP/clip-vit-bert-chinese-1M'
model = BertCLIPTextModel.from_pretrained(model_name_or_path)
tokenizer = BertTokenizerFast.from_pretrained(model_name_or_path)

inputs = tokenizer(["一只小狗在摇尾巴", "一只小猪在吃饭"], padding=True, return_tensors="pt")
inputs.pop('token_type_ids')  # 输入中不包含token_type_ids

outputs = model(**inputs)
last_hidden_state = outputs.last_hidden_state
pooled_output = outputs.pooler_output

作者把训练好的Bert模型权重也单独拎出来,可以直接使用BertModel直接加载,进行下游任务

from transformers import BertTokenizer, BertModel

model_name_or_path = 'YeungNLP/bert-from-clip-chinese-1M'
tokenizer = BertTokenizer.from_pretrained(model_name_or_path)
model = BertModel.from_pretrained(model_name_or_path)

获取训练数据

可以直接使用作者分享的140w的中文训练数据,数据可从公众号文章中获取。也可以使用自己的训练数据。训练数据为csv文件,格式如下,其中filename表示图片下载后的文件名。

text,url,filename
欧美夏季ebay连衣裙 气质圆领通勤绑带收腰连衣裙 zc3730,"https://gimg2.baidu.com/image_search/src=http%3A%2F%2Fcbu01.alicdn.com%2Fimg%2Fibank%2F2020%2F527%2F038%2F17187830725_1528924397.220x220.jpg&refer=http%3A%2F%2Fcbu01.alicdn.com&app=2002&size=f9999,10000&q=a80&n=0&g=0n&fmt=jpeg?sec=1632524815&t=d66159b43fb0335c11898f9764847ea7",test-0.jpg
"曾是名不见经传的王平,为何能够取代魏延,成为蜀汉",https://pic.rmb.bdstatic.com/19539b3b1a7e1daee93b0f3d99b8e795.png,test-1.jpg
女童黄色连衣裙,"https://gimg2.baidu.com/image_search/src=http%3A%2F%2Fa.vpimg2.com%2Fupload%2Fmerchandise%2F227958%2FLYQ-S314186413-3.jpg&refer=http%3A%2F%2Fa.vpimg2.com&app=2002&size=f9999,10000&q=a80&n=0&g=0n&fmt=jpeg?sec=1632501843&t=b0a3b843f9ecebd71fe6f27643c17486",test-2.jpg

下载图片

执行download_image.py脚本,可以直接多线程下载图片,只需要指定线程数、训练文件,以及图片保存路径即可。

配置训练参数

在train_args/train_clip.json中按需配置训练参数,参数说明如下:

  • output_dir:训练输出路径
  • clip_pretrain_path:clip模型的预训练权重
  • bert_pretrain_path:bert模型的预训练权重
  • load_from_bert_clip:是否使用BertCLIP的模型权重对模型进行初始化。若为False,则需要同时指定clip_pretrain_path与bert_pretrain_path,模型的Vit与Bert的权重分别加载自不同的预训练权重。若为True,则整个BertCLIP模型直接使用clip_pretrain_path的预训练权重进行初始化。
  • image_path:存放图片的目录
  • train_file:训练集
  • test_file:测试集,如果为None,则不进行预测
  • num_train_epochs:训练轮次
  • max_steps:训练的最大步数,会覆盖num_train_epochs的效果
  • per_device_train_batch_size:训练的batch size
  • per_device_eval_batch_size:推理的batch size
  • learning_rate:学习率
  • max_seq_length:文本的最大长度
  • logging_steps:多少步打印一次训练日志
  • save_steps:多少步保存一次checkpoint
  • save_total_limit:最多保存多少个checkpoint
  • lr_scheduler_type:学习率的变化策略
  • warmup_steps:warmup的步数,会覆盖warmup_ratio的效果
  • warmup_ratio:warmup的比例
  • gradient_accumulation_steps:梯度累计的步数
  • optim:优化器
  • seed:随机种子
  • fp16:是否使用混合精度进行训练,最好设为True,可以使用更大的batch size,并且加快训练速度
  • no_cuda:是否不使用GPU
  • dataloader_num_workers:使用多少个线程加载训练数据,根据自己的机器情况,尽量设大一些,否则训练瓶颈会卡在读图片上

开始训练

注:如果需要在YeungNLP/clip-vit-bert-chinese-1M权重的基础上做继续预训练,需要将令load_from_bert_clip=True,clip_pretrain_path="YeungNLP/clip-vit-bert-chinese-1M"。

CUDA_VISIBLE_DEVICES=0 python train_clip.py --train_args_file train_args/train_clip.json

后台运行:
CUDA_VISIBLE_DEVICES=0 nohup python train_clip.py --train_args_file train_args/train_clip.json &

相似度计算

作者实现了图文相似度、文本相似度、图图相似度的计算脚本,在predict_similarity.py文件中

效果展示

图文相似度计算

在计算图文相似的时候,首先计算两两图文向量之间的点乘相似度。对于每张图,将其与所有文本的相似度进行softmax归一化,得到最终的分数。

图片 候选文本的相似度
model [('一辆公交车停在路边', 1.0), ('清澈的湖水,蓝蓝的天空,茂密的树木', 5.12310229794366e-08), ('秋天跑车唯美图片桌面壁纸', 8.085075942076969e-10), ('冬日里,一只老虎在雪地玩耍', 4.903254538501933e-11), ('一只小狗', 7.86001212033094e-12), ('一只可爱的小猫', 1.0248470908719165e-12), ('可爱的小鸡', 6.081324679940714e-13), ('一群可爱的小黄鸡在篮子里', 4.469586525434992e-14), ('一只老虎在河边喝水', 3.782940198479535e-15), ('一只公鸡在打鸣', 9.850900002943315e-16)]
model [('一只可爱的小猫', 0.9998341798782349), ('一只小狗', 0.00011115620145574212), ('冬日里,一只老虎在雪地玩耍', 3.2785530493129045e-05), ('可爱的小鸡', 1.3479968401952647e-05), ('一只公鸡在打鸣', 5.406232048699167e-06), ('一只老虎在河边喝水', 1.8825736560756923e-06), ('秋天跑车唯美图片桌面壁纸', 7.272767561516957e-07), ('一群可爱的小黄鸡在篮子里', 3.3080158345910604e-07), ('清澈的湖水,蓝蓝的天空,茂密的树木', 2.4945970622525238e-08), ('一辆公交车停在路边', 3.1998936920324406e-13)]
model [('清澈的湖水,蓝蓝的天空,茂密的树木', 0.9990612864494324), ('秋天跑车唯美图片桌面壁纸', 0.0009054617257788777), ('一只公鸡在打鸣', 3.1990679417504e-05), ('一只老虎在河边喝水', 7.763640610392031e-07), ('一只可爱的小猫', 2.097889790775298e-07), ('冬日里,一只老虎在雪地玩耍', 1.320097595680636e-07), ('一只小狗', 3.0081434232442916e-08), ('一群可爱的小黄鸡在篮子里', 2.7587644169102532e-08), ('一辆公交车停在路边', 1.4087997435296984e-08), ('可爱的小鸡', 2.3810455343498127e-11)]
model [('冬日里,一只老虎在雪地玩耍', 0.9999402761459351), ('一只老虎在河边喝水', 5.974959640298039e-05), ('一只可爱的小猫', 1.1624400997334305e-08), ('一只小狗', 1.0728960254946518e-11), ('秋天跑车唯美图片桌面壁纸', 2.6702420656554704e-12), ('一只公鸡在打鸣', 1.529327337511377e-13), ('清澈的湖水,蓝蓝的天空,茂密的树木', 4.067204540281373e-14), ('可爱的小鸡', 5.289698732746477e-15), ('一辆公交车停在路边', 6.407785717133061e-17), ('一群可爱的小黄鸡在篮子里', 5.284812596720461e-17)]
model [('一只老虎在河边喝水', 0.9969038367271423), ('冬日里,一只老虎在雪地玩耍', 0.0030961050651967525), ('一只可爱的小猫', 6.944087971305635e-09), ('一只小狗', 3.5471511838913727e-10), ('清澈的湖水,蓝蓝的天空,茂密的树木', 1.8006697521943948e-10), ('一只公鸡在打鸣', 3.4972351403705915e-11), ('可爱的小鸡', 3.3940988040936926e-12), ('一群可爱的小黄鸡在篮子里', 2.376999638786792e-12), ('一辆公交车停在路边', 2.276026318370067e-13), ('秋天跑车唯美图片桌面壁纸', 2.0756604714091548e-13)]
model [('秋天跑车唯美图片桌面壁纸', 1.0), ('冬日里,一只老虎在雪地玩耍', 9.960791913510292e-11), ('一只公鸡在打鸣', 1.591680606760626e-11), ('一只可爱的小猫', 4.712048893434906e-12), ('一只老虎在河边喝水', 5.603533045558939e-13), ('可爱的小鸡', 9.460436448983922e-14), ('一辆公交车停在路边', 9.048587345985432e-14), ('一只小狗', 5.001745647162641e-15), ('一群可爱的小黄鸡在篮子里', 1.828375462031742e-15), ('清澈的湖水,蓝蓝的天空,茂密的树木', 7.682980915206854e-18)]
model [('一只公鸡在打鸣', 0.9975091218948364), ('可爱的小鸡', 0.0022025061771273613), ('一群可爱的小黄鸡在篮子里', 0.00028838840080425143), ('秋天跑车唯美图片桌面壁纸', 6.824043552455805e-09), ('一只老虎在河边喝水', 4.110817908298259e-09), ('一只小狗', 2.337234850102732e-09), ('一只可爱的小猫', 1.6396863866674494e-09), ('清澈的湖水,蓝蓝的天空,茂密的树木', 2.0205015438534701e-10), ('冬日里,一只老虎在雪地玩耍', 4.627530997280971e-11), ('一辆公交车停在路边', 2.0185879335242463e-13)]
model [('一群可爱的小黄鸡在篮子里', 0.8838089108467102), ('可爱的小鸡', 0.07804790884256363), ('一只公鸡在打鸣', 0.03811056911945343), ('一只小狗', 3.069013109779917e-05), ('一只可爱的小猫', 1.8627710005603149e-06), ('清澈的湖水,蓝蓝的天空,茂密的树木', 3.4984658725534246e-08), ('秋天跑车唯美图片桌面壁纸', 1.3271076459986375e-09), ('一只老虎在河边喝水', 1.7967190235612662e-11), ('冬日里,一只老虎在雪地玩耍', 6.9594542802253745e-12), ('一辆公交车停在路边', 1.7240564512588548e-14)]
model [('一只小狗', 0.9999330043792725), ('一只可爱的小猫', 6.655451579717919e-05), ('可爱的小鸡', 3.337503642342199e-07), ('秋天跑车唯美图片桌面壁纸', 1.249009784487498e-07), ('冬日里,一只老虎在雪地玩耍', 1.2343871702569231e-08), ('清澈的湖水,蓝蓝的天空,茂密的树木', 3.481111399139536e-09), ('一只公鸡在打鸣', 2.925292993949391e-11), ('一辆公交车停在路边', 1.3085215203045841e-11), ('一只老虎在河边喝水', 2.5823388566381666e-12), ('一群可爱的小黄鸡在篮子里', 1.0345113437768005e-12)]

文本相似度计算

在计算文本相似度的时候,首先计算两两文本之间的点乘相似度。对于每个文本,将其与自身的相似度置为-10000(否则对于每个文本,其与自身的相似度永远为最大), 然后将其与所有文本的相似度进行softmax归一化,得到最终的分数。

文本 候选文本的相似度
桑巴军团 [('巴西', 0.6179894804954529), ('佩奇', 0.37836360931396484), ('足球场', 0.0035378895699977875), ('日耳曼战车', 0.00010510809806874022), ('绿茵', 2.4702653718122747e-06), ('德国', 1.4552163065673085e-06), ('一个圆圆的月亮高高挂在天空', 1.4657725699862567e-08), ('北国风光,千里冰封,万里雪飘,银装素裹', 8.691507069613635e-09), ('大猫在飞速狂奔,捕杀猎物', 1.1898879659355543e-09), ('雪花漫天飞舞,狂风怒号,天地之间白茫茫一片', 3.0943728135390813e-10), ('小猪', 2.8596228163202397e-10), ('天街小雨润如酥,草色摇看近却无', 2.0656101828997464e-10), ('一只老虎在草原上追捕一只小鹿', 4.377333912009007e-11), ('夜幕中的白玉盘升起,星光灿烂', 1.956253908863559e-11), ('月光洒在沙滩上,就像铺上了一层白皑皑的雪。燕山上,月亮像钩子一般', 5.170562328987716e-12), ('大漠沙如雪,燕山月似钩', 4.7753528562011205e-12), ('长安街上细密的春雨润滑如酥,远望草色连成一片,近看却又显得稀疏', 3.951113825596548e-16), ('桑巴军团', 0.0)]
日耳曼战车 [('德国', 0.9601516723632812), ('足球场', 0.0380559079349041), ('桑巴军团', 0.0007087080157361925), ('佩奇', 0.0005535364616662264), ('绿茵', 0.00036988715874031186), ('大猫在飞速狂奔,捕杀猎物', 0.00015183206414803863), ('一只老虎在草原上追捕一只小鹿', 8.405648259213194e-06), ('巴西', 1.0465098654321991e-07), ('北国风光,千里冰封,万里雪飘,银装素裹', 4.625822391801648e-09), ('夜幕中的白玉盘升起,星光灿烂', 1.3382804864292552e-09), ('小猪', 5.867449304197692e-10), ('一个圆圆的月亮高高挂在天空', 6.638854049834109e-11), ('雪花漫天飞舞,狂风怒号,天地之间白茫茫一片', 2.6341435976906524e-11), ('天街小雨润如酥,草色摇看近却无', 2.48930927954083e-11), ('月光洒在沙滩上,就像铺上了一层白皑皑的雪。燕山上,月亮像钩子一般', 1.732185575531453e-11), ('大漠沙如雪,燕山月似钩', 3.200957565414192e-13), ('长安街上细密的春雨润滑如酥,远望草色连成一片,近看却又显得稀疏', 3.148795785744285e-13), ('日耳曼战车', 0.0)]
一个圆圆的月亮高高挂在天空 [('夜幕中的白玉盘升起,星光灿烂', 0.7875770330429077), ('大漠沙如雪,燕山月似钩', 0.19447773694992065), ('月光洒在沙滩上,就像铺上了一层白皑皑的雪。燕山上,月亮像钩子一般', 0.017945053055882454), ('天街小雨润如酥,草色摇看近却无', 1.723899032413101e-07), ('北国风光,千里冰封,万里雪飘,银装素裹', 2.9736675344338437e-08), ('绿茵', 4.084741433985073e-09), ('雪花漫天飞舞,狂风怒号,天地之间白茫茫一片', 1.6437875505204147e-09), ('佩奇', 5.808487579805899e-10), ('德国', 2.9951585656107227e-10), ('桑巴军团', 1.1388523457611655e-10), ('小猪', 4.8488959375481144e-11), ('大猫在飞速狂奔,捕杀猎物', 2.1691641538534867e-11), ('足球场', 3.278335285530898e-12), ('一只老虎在草原上追捕一只小鹿', 1.7711488742647163e-12), ('长安街上细密的春雨润滑如酥,远望草色连成一片,近看却又显得稀疏', 1.8018553771433077e-13), ('日耳曼战车', 7.650024141719544e-14), ('巴西', 1.2753736123292427e-14), ('一个圆圆的月亮高高挂在天空', 0.0)]
小猪 [('佩奇', 0.9999858140945435), ('天街小雨润如酥,草色摇看近却无', 1.3750308426097035e-05), ('绿茵', 2.648558847795357e-07), ('北国风光,千里冰封,万里雪飘,银装素裹', 1.0770643399382607e-07), ('足球场', 6.4896809703896e-08), ('一只老虎在草原上追捕一只小鹿', 1.265229077063168e-08), ('雪花漫天飞舞,狂风怒号,天地之间白茫茫一片', 4.490777971710713e-09), ('夜幕中的白玉盘升起,星光灿烂', 3.1008255962916564e-09), ('巴西', 2.9627589270830867e-09), ('一个圆圆的月亮高高挂在天空', 1.0077703116451175e-09), ('长安街上细密的春雨润滑如酥,远望草色连成一片,近看却又显得稀疏', 3.178841634365881e-10), ('大猫在飞速狂奔,捕杀猎物', 2.389905495725486e-10), ('德国', 1.0391849880608817e-10), ('桑巴军团', 4.6177273810288355e-11), ('日耳曼战车', 1.4051987004548572e-11), ('月光洒在沙滩上,就像铺上了一层白皑皑的雪。燕山上,月亮像钩子一般', 6.461968953637084e-14), ('大漠沙如雪,燕山月似钩', 1.0214997115320576e-15), ('小猪', 0.0)]
足球场 [('绿茵', 0.999913215637207), ('日耳曼战车', 4.463562436285429e-05), ('桑巴军团', 2.7979182050330564e-05), ('佩奇', 1.4129162082099356e-05), ('北国风光,千里冰封,万里雪飘,银装素裹', 1.4699661043948709e-08), ('天街小雨润如酥,草色摇看近却无', 3.888342092750463e-09), ('小猪', 3.1782971809946048e-09), ('雪花漫天飞舞,狂风怒号,天地之间白茫茫一片', 3.047165020308995e-10), ('巴西', 2.8028558640702528e-11), ('夜幕中的白玉盘升起,星光灿烂', 2.1283181814157892e-11), ('德国', 1.7147439718145918e-11), ('大猫在飞速狂奔,捕杀猎物', 3.996368340419831e-12), ('一个圆圆的月亮高高挂在天空', 3.3369006342820473e-12), ('一只老虎在草原上追捕一只小鹿', 1.9575203816842718e-13), ('长安街上细密的春雨润滑如酥,远望草色连成一片,近看却又显得稀疏', 1.5908632308085473e-14), ('大漠沙如雪,燕山月似钩', 1.2009468177814333e-15), ('月光洒在沙滩上,就像铺上了一层白皑皑的雪。燕山上,月亮像钩子一般', 1.0192180694699505e-16), ('足球场', 0.0)]
雪花漫天飞舞,狂风怒号,天地之间白茫茫一片 [('北国风光,千里冰封,万里雪飘,银装素裹', 1.0), ('天街小雨润如酥,草色摇看近却无', 3.117766895349705e-12), ('一个圆圆的月亮高高挂在天空', 3.364900724592626e-14), ('大猫在飞速狂奔,捕杀猎物', 1.6608293380978786e-14), ('足球场', 6.128196976024243e-15), ('小猪', 4.423127276497862e-15), ('夜幕中的白玉盘升起,星光灿烂', 1.571655234070251e-15), ('长安街上细密的春雨润滑如酥,远望草色连成一片,近看却又显得稀疏', 2.2122742988916772e-16), ('大漠沙如雪,燕山月似钩', 1.76497022842987e-16), ('佩奇', 1.389188296545236e-16), ('桑巴军团', 4.921529099193707e-17), ('巴西', 1.3619025032692556e-17), ('绿茵', 7.592168064477108e-18), ('日耳曼战车', 6.21349124828395e-19), ('德国', 5.029247784564751e-19), ('月光洒在沙滩上,就像铺上了一层白皑皑的雪。燕山上,月亮像钩子一般', 2.3105380141441713e-19), ('一只老虎在草原上追捕一只小鹿', 2.065503593757295e-19), ('雪花漫天飞舞,狂风怒号,天地之间白茫茫一片', 0.0)]
大漠沙如雪,燕山月似钩 [('月光洒在沙滩上,就像铺上了一层白皑皑的雪。燕山上,月亮像钩子一般', 0.9999990463256836), ('夜幕中的白玉盘升起,星光灿烂', 8.503350841237989e-07), ('北国风光,千里冰封,万里雪飘,银装素裹', 6.838811117404475e-08), ('雪花漫天飞舞,狂风怒号,天地之间白茫茫一片', 1.222678347456707e-10), ('天街小雨润如酥,草色摇看近却无', 1.3596265606430347e-11), ('佩奇', 8.439372247912025e-13), ('桑巴军团', 5.26145750232021e-13), ('lol', 2.938053988467415e-13), ('英雄联盟', 4.792821074370811e-14), ('德国', 3.41292274931744e-14), ('足球场', 1.6731451971509562e-14), ('巴西', 1.5801006607741447e-14), ('绿茵', 1.5472469632555816e-14), ('日耳曼战车', 5.230573715445759e-15), ('一只老虎在草原上追捕一只小鹿', 1.527517829496487e-15), ('小猪', 6.969782548515633e-16), ('长安街上细密的春雨润滑如酥,远望草色连成一片,近看却又显得稀疏', 6.336404662481165e-17), ('大猫在飞速狂奔,捕杀猎物', 3.555133268119002e-17), ('大漠沙如雪,燕山月似钩', 0.0)]
天街小雨润如酥,草色摇看近却无 [('长安街上细密的春雨润滑如酥,远望草色连成一片,近看却又显得稀疏', 0.9994089603424072), ('夜幕中的白玉盘升起,星光灿烂', 0.0003134367580059916), ('北国风光,千里冰封,万里雪飘,银装素裹', 0.0002538462576922029), ('小猪', 1.5032141163828783e-05), ('一个圆圆的月亮高高挂在天空', 3.916868081432767e-06), ('雪花漫天飞舞,狂风怒号,天地之间白茫茫一片', 3.4605425298650516e-06), ('绿茵', 9.778947287486517e-07), ('大猫在飞速狂奔,捕杀猎物', 1.992641358583569e-07), ('足球场', 8.67964047301939e-08), ('一只老虎在草原上追捕一只小鹿', 9.750069196456934e-09), ('佩奇', 5.847227146915657e-09), ('德国', 9.09259750825342e-11), ('桑巴军团', 3.646501156584492e-11), ('巴西', 2.7616209666292413e-11), ('大漠沙如雪,燕山月似钩', 2.1784638329358508e-11), ('日耳曼战车', 6.517418982970868e-13), ('月光洒在沙滩上,就像铺上了一层白皑皑的雪。燕山上,月亮像钩子一般', 3.130157401722358e-14), ('天街小雨润如酥,草色摇看近却无', 0.0)]
一只老虎在草原上追捕一只小鹿 [('大猫在飞速狂奔,捕杀猎物', 0.9999905824661255), ('日耳曼战车', 8.540602721041068e-06), ('小猪', 5.367821813706541e-07), ('天街小雨润如酥,草色摇看近却无', 3.7838006505808153e-07), ('佩奇', 9.640578113589982e-09), ('一个圆圆的月亮高高挂在天空', 1.5617185322724936e-09), ('绿茵', 1.2935598148189342e-09), ('桑巴军团', 2.998873926962631e-10), ('足球场', 1.6957589499266845e-10), ('北国风光,千里冰封,万里雪飘,银装素裹', 1.6597206248247787e-11), ('德国', 1.4758482630439218e-11), ('夜幕中的白玉盘升起,星光灿烂', 8.974962266428133e-12), ('雪花漫天飞舞,狂风怒号,天地之间白茫茫一片', 8.89707058027156e-12), ('长安街上细密的春雨润滑如酥,远望草色连成一片,近看却又显得稀疏', 1.3045043560991343e-12), ('大漠沙如雪,燕山月似钩', 9.498044711842013e-14), ('巴西', 7.571923638224551e-14), ('月光洒在沙滩上,就像铺上了一层白皑皑的雪。燕山上,月亮像钩子一般', 5.642470591102474e-15), ('一只老虎在草原上追捕一只小鹿', 0.0)]
英雄联盟 [('lol', 1.0), ('绿茵', 8.241636929531447e-16), ('足球场', 5.327819702000563e-17), ('桑巴军团', 1.4594147724981305e-17), ('小猪', 5.374621539699783e-19), ('德国', 1.2981428736465124e-19), ('北国风光,千里冰封,万里雪飘,银装素裹', 1.0041148040720617e-19), ('佩奇', 1.3570826911534407e-20), ('一只老虎在草原上追捕一只小鹿', 8.53713238494233e-21), ('夜幕中的白玉盘升起,星光灿烂', 5.394499158339701e-21), ('巴西', 1.3131330665565925e-21), ('天街小雨润如酥,草色摇看近却无', 1.1178349363340949e-21), ('日耳曼战车', 7.541350209812422e-22), ('雪花漫天飞舞,狂风怒号,天地之间白茫茫一片', 5.246146658079659e-22), ('长安街上细密的春雨润滑如酥,远望草色连成一片,近看却又显得稀疏', 1.330888747811307e-22), ('大漠沙如雪,燕山月似钩', 1.0396770843343703e-22), ('月光洒在沙滩上,就像铺上了一层白皑皑的雪。燕山上,月亮像钩子一般', 4.255491910806315e-25), ('大猫在飞速狂奔,捕杀猎物', 2.597710579245674e-25), ('英雄联盟', 0.0)]

图片相似度计算

与文本相似度的计算方式一致。为便于展示,仅选出top1的图片及其相似度分数。

注:由于在训练BertCLIP时,将图像编码器的权重冻结,所以该部分的能力,主要归功于OpenAI的clip预训练权重。

图片 top1图片 top1图片分数
model model 1.0
model model 0.9999992847442627
model model 0.9951345324516296
model model 0.9999798536300659
model model 1.0

About

中文CLIP预训练模型

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages