- π§ Deep Learning for EEG Analysis
- π± Artificial intelligence for greenhouses
- π Age of Information (et similia) for network optimization
- π§ Variational Autoencoder (VAE) applied to EEG classification (Post graduation research)
- π§ CNN for EEG classification (Master's thesis)
- π§ Machine learning applied to EEG classification (CSP and FBCSP algorithm) (Master's thesis)
- π Augmented reality in Unity with hand tracking
- π Pytorch hand tracking with Deep Learning
- π 11C-PIB-tracer mathematical modelling (Bachelor's thesis)
- Soft-DTW-Rust: Implementation of the Soft-DTW algorithm in Rust with Python bindings.
- Google-Hash-Code-2019: Python solver for the Google Hash Code 2019
- Fractals generator in Python
- Cellular Automata in Python
- Arctic Circle Theorem visualization in Unity
- Evolution Simulator in Unity
- Solar System Simulation in Unity
- Neovim config (link)
Click to expand!
- [1] A. Zancanaro, G. Cisotto, J.R.Paulo, G. Pires, and U. J. Nunes, βCNN-based approaches for cross-subject classification in motor imagery:From the state-of-the-art to Dynamicnet,β in 2021 IEEE Conferenceon Computational Intelligence in Bioinformatics and ComputationalBiology (CIBCB), 2021, pp. 1β7
- [2] A. Zancanaro, G. Cisotto, L. Badia, "Modeling Value of Information in Remote Sensing from Correlated Sources" in 2022 IEEE Mediterranean Communication and Computer Networking Conference (MedComNet)
- [3] A. Zancanaro, G. Cisotto, L. Badia, "Challenges of the Age of Information Paradigm for Metrology in Cyberphysical Ecosystems" in 2022 IEEE Metrology for Living Environment (MetroLivEnv)
- [4] A. Zancanaro, G. Cisotto, D. Tegegn, L. Badia, S. L. Manzoni, I. Reguzzoni, E. Lotti, I. Zoppis, "Variational Autoencoder for Early Stress Detection in Smart Agriculture: A Pilot Study" in 2022 IEEE Metrology for Agriculture and Forestry
- [5] A. Zancanaro, G. Cisotto, S. L. Manzoni, I. Zoppis. "vEEGNet: learning latent representations to reconstruct EEG raw data via variational autoencoders". In: International Conference on Information and Communication Technologies for Ageing Well and e-Health
- [6] A. Zancanaro, G. Cisotto, S. L. Manzoni, I. Zoppis, "vEEGNet: A new deep learning model to classify and generate EEG" in Proceedings of the 9th International Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AWE 2023, Prague, Czech Republic, April 22-24, 2023 (Vol. 2023, pp. 245-252)
- [7] G. Cisotto, A. Zancanaro, S. L. Manzoni, I. Zoppis, "HvEEGNet: A New Deep Learning Model for High-Fidelity EEG Reconstruction" (under review)
The full list is available on my Google Scholar profile.