Skip to content

gabeur/mmt

Repository files navigation

MMT: Multi-modal Transformer for Video Retrieval

architecture

Intro

This repository provides the code for training our video retrieval cross-modal architecture. Our approach is described in the paper "Multi-modal Transformer for Video Retrieval" [arXiv, webpage]

Our proposed Multi-Modal Transformer (MMT) aggregates sequences of multi-modal features (e.g. appearance, motion, audio, OCR, etc.) from a video. It then embeds the aggregated multi-modal feature to a shared space with text for retrieval. It achieves state-of-the-art performance on MSRVTT, ActivityNet and LSMDC datasets.

Installing

git clone https://github.com/gabeur/mmt.git

Requirements

  • Python 3.7
  • Pytorch 1.4.0
  • Transformers 3.1.0
  • Numpy 1.18.1
cd mmt
# Install the requirements
pip install -r requirements.txt

ECCV paper

In order to reproduce the results of our ECCV 2020 Spotlight paper, please first download the video features from this page by running the following commands:

# Create and move to mmt/data directory
mkdir data
cd data
# Download the video features
wget https://pascal.inrialpes.fr/data2/vgabeur/video-features/MSRVTT.tar.gz
wget https://pascal.inrialpes.fr/data2/vgabeur/video-features/activity-net.tar.gz
wget https://pascal.inrialpes.fr/data2/vgabeur/video-features/LSMDC.tar.gz
# Extract the video features
tar -xvf MSRVTT.tar.gz
tar -xvf activity-net.tar.gz
tar -xvf LSMDC.tar.gz

Download the checkpoints:

# Create and move to mmt/data/checkpoints directory
mkdir checkpoints
cd checkpoints
# Download checkpoints
wget https://pascal.inrialpes.fr/data2/vgabeur/mmt/data/checkpoints/HowTo100M_full_train.pth
wget https://pascal.inrialpes.fr/data2/vgabeur/mmt/data/checkpoints/MSRVTT_jsfusion_trainval.pth
wget https://pascal.inrialpes.fr/data2/vgabeur/mmt/data/checkpoints/prtrn_MSRVTT_jsfusion_trainval.pth

You can then run the following scripts:

MSRVTT

Training from scratch

Training + evaluation:

python -m train --config configs_pub/eccv20/MSRVTT_jsfusion_trainval.json

Evaluation from checkpoint:

python -m train --config configs_pub/eccv20/MSRVTT_jsfusion_trainval.json --only_eval --load_checkpoint data/checkpoints/MSRVTT_jsfusion_trainval.pth

Expected results:

MSRVTT_jsfusion_test:
t2v_metrics/R1/final_eval: 24.1
t2v_metrics/R5/final_eval: 56.4
t2v_metrics/R10/final_eval: 69.6
t2v_metrics/R50/final_eval: 90.4
t2v_metrics/MedR/final_eval: 4.0
t2v_metrics/MeanR/final_eval: 25.797
t2v_metrics/geometric_mean_R1-R5-R10/final_eval: 45.56539387310681
v2t_metrics/R1/final_eval: 25.9
v2t_metrics/R5/final_eval: 58.1
v2t_metrics/R10/final_eval: 69.3
v2t_metrics/R50/final_eval: 90.8
v2t_metrics/MedR/final_eval: 4.0
v2t_metrics/MeanR/final_eval: 22.852
v2t_metrics/geometric_mean_R1-R5-R10/final_eval: 47.06915231647284

Finetuning from a HowTo100M pretrained model:

Training + evaluation:

python -m train --config configs_pub/eccv20/prtrn_MSRVTT_jsfusion_trainval.json --load_checkpoint data/checkpoints/HowTo100M_full_train.pth

Evaluation from checkpoint:

python -m train --config configs_pub/eccv20/prtrn_MSRVTT_jsfusion_trainval.json --only_eval --load_checkpoint data/checkpoints/prtrn_MSRVTT_jsfusion_trainval.pth

Expected results:

MSRVTT_jsfusion_test:
t2v_metrics/R1/final_eval: 25.8
t2v_metrics/R5/final_eval: 57.2
t2v_metrics/R10/final_eval: 69.3
t2v_metrics/R50/final_eval: 90.7
t2v_metrics/MedR/final_eval: 4.0
t2v_metrics/MeanR/final_eval: 22.355
t2v_metrics/geometric_mean_R1-R5-R10/final_eval: 46.76450299746546
v2t_metrics/R1/final_eval: 26.1
v2t_metrics/R5/final_eval: 57.8
v2t_metrics/R10/final_eval: 68.5
v2t_metrics/R50/final_eval: 90.6
v2t_metrics/MedR/final_eval: 4.0
v2t_metrics/MeanR/final_eval: 20.056
v2t_metrics/geometric_mean_R1-R5-R10/final_eval: 46.92665942024404

ActivityNet

Training from scratch

python -m train --config configs_pub/eccv20/ActivityNet_val1_trainval.json

LSMDC

Training from scratch

python -m train --config configs_pub/eccv20/LSMDC_full_trainval.json

References

If you find this code useful or use the "s3d"(motion) video features, please consider citing:

@inproceedings{gabeur2020mmt,
    TITLE = {{Multi-modal Transformer for Video Retrieval}},
    AUTHOR = {Gabeur, Valentin and Sun, Chen and Alahari, Karteek and Schmid, Cordelia},
    BOOKTITLE = {{European Conference on Computer Vision (ECCV)}},
    YEAR = {2020}
}

The features "face", "ocr", "rgb"(appearance), "scene" and "speech" were extracted by the authors of Collaborative Experts. If you use those features, please consider citing:

@inproceedings{Liu2019a,
    author = {Liu, Y. and Albanie, S. and Nagrani, A. and Zisserman, A.},
    booktitle = {British Machine Vision Conference},
    title = {Use What You Have: Video retrieval using representations from collaborative experts},
    date = {2019}
}

Acknowledgements

Our code is structured following the template proposed by @victoresque. Our code is based on the implementation of Collaborative Experts, Transformers and Mixture of Embedding Experts. We thank Maksim Dzabraev for discovering bugs in our implementation and notifying us of the issues (See the issues section for more detail).