Skip to content

Introducing AlloyBERT: a transformer encoder-based model for predicting alloy properties from textual inputs. Leveraging RoBERTa and self-attention mechanisms, it achieves superior performance, surpassing shallow models.

License

Notifications You must be signed in to change notification settings

cakshat/AlloyBERT

Repository files navigation

AlloyBERT

This research presents AlloyBERT, a transformer encoder model tailored for predicting properties like elastic modulus and yield strength of alloys based on textual inputs. All combined

Getting Started

Clone the repository

$ git clone https://github.com/cakshat/AlloyBERT.git
cd AlloyBERT

Datasets

For this research, we utilized two primary datasets to explore the performance of transformer models compared to shallow machine learning models in predicting target property values with text inputs.

  1. Multi Principal Elemental Alloys (MPEA) dataset: This dataset, sourced from Citrine Informatics, contains mechanical properties of several alloys. We focused on predicting the experimental Young’s modulus, and the dataset comprises 1546 entries.
  2. Refractory Alloy Yield Strength (RAYS) dataset: This dataset includes experimental yield strength values for refractory alloys. With 813 entries, it provides alloy composition, testing temperature from previous literature, and data from the MPEA30–32 dataset. The dataset offers average yield strength values obtained from various processing methods.

Both the datasets can be found in the data folder as : cd data/MPEA/MPEA.csv and cd data/ys_clean/ys_clean.csv.

How to use

  1. Update the config.yaml file with desired parameters.
  2. Run python main.py to train the model.
  3. While pretraining make sure to set the configuration to pretrain.
  4. After pretraining, update the path of pretrained model and change mode to finetune.
  5. Our custom trained tokenizer which was used for training can be found in tokenizer folder and can be used if required.

About

Introducing AlloyBERT: a transformer encoder-based model for predicting alloy properties from textual inputs. Leveraging RoBERTa and self-attention mechanisms, it achieves superior performance, surpassing shallow models.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published