/ˈiːpɒk ə keɪ aɪ ɑː/
The epocakir package makes clinical coding of patients with kidney disease using clinical practice guidelines easy. The guidelines used are the evidence-based KDIGO guidelines. This package covers acute kidney injury (AKI), anemia, and chronic kidney disease (CKD):
-
aki_staging()
: Classification of AKI staging (aki_stages
) with automatic selection of:aki_bCr()
: AKI based on baseline creatinineaki_SCr()
: AKI based on changes in serum creatinineaki_UO()
: AKI based on urine output
-
anemia()
: Classification of anemia -
Classification of albuminuria (
Albuminuria_stages
)Albuminuria_staging_ACR()
: Albuminuria based on Albumin excretion rateAlbuminuria_staging_AER()
: Albuminuria based on Albumin-to-creatinine ratio
-
eGFR()
: Estimation of glomerular filtration rate with automatic selection of:eGFR_adult_SCr()
: eGFR based on the 2009 CKD-EPI creatinine equationeGFR_adult_SCysC()
: eGFR based on the 2012 CKD-EPI cystatin C equationeGFR_adult_SCr_SCysC()
: eGFR based on the 2012 CKD-EPI creatinine-cystatin C equationeGFR_child_SCr()
: eGFR based on the pediatric creatinine-based equationeGFR_child_SCr_BUN()
: eGFR based on the pediatric creatinine-BUN equationeGFR_child_SCysC()
: eGFR based on the pediatric cystatin C-based equation
-
GFR_staging()
: Staging of GFR (GFR_stages
) -
Multiple utility functions including:
conversion_factors
: Conversion factors used throughout the KDIGO guidelinesas_metric()
: Conversion of a measured value into metric unitsdob2age()
: Calculation of age from a date of birthbinary2factor()
: Conversion of binary data into factors based on a column namecombine_date_time_cols()
: Combining separate date and time columns into a single date and time columncombn_changes
: Generating changes between measurements
You can install the released version from CRAN with:
install.packages("epocakir")
You can install the development version from GitHub with:
# install.packages("remotes")
remotes::install_github("alwinw/epocakir")
library(epocakir)
library(dplyr)
library(units)
Often clinical data must be cleansed and tidied before analysis can
begin. To assist in this, several utility functions have been included.
To explore these, consider a sample clinical dataset clinical_obvs
:
glimpse(clinical_obvs)
#> Rows: 3
#> Columns: 9
#> $ `Patient Number` <chr> "p10001", "p10002", "p10003"
#> $ `Admission Date` <chr> "2020-03-05", "2020-03-06", "2020-03-17"
#> $ `Admission Time` <chr> "14:01:00", "09:10:00", "12:48:00"
#> $ Discharge_date <chr> "2020-03-10", "2020-03-16", "2020-03-18"
#> $ Discharge_time <chr> "16:34:00", "18:51:00", "09:12:00"
#> $ `Date of Birth` <chr> "1956-01-09", "1997-12-04", "1973-05-28"
#> $ Male <lgl> TRUE, FALSE, TRUE
#> $ Height <dbl> 182, 161, 168
#> $ Surgery <lgl> FALSE, FALSE, TRUE
tidy_obvs <- clinical_obvs %>%
combine_date_time_cols() %>%
mutate(
Age = dob2age(`Date of Birth`),
Height = as_metric(height = set_units(as.numeric(Height), "cm"))
) %>%
binary2factor(Male, Surgery)
glimpse(tidy_obvs)
#> Rows: 3
#> Columns: 8
#> $ `Patient Number` <chr> "p10001", "p10002", "p10003"
#> $ `Admission DateTime` <dttm> 2020-03-05 14:01:00, 2020-03-06 09:10:00, 2020-03…
#> $ Discharge_DateTime <dttm> 2020-03-10 16:34:00, 2020-03-16 18:51:00, 2020-0…
#> $ `Date of Birth` <chr> "1956-01-09", "1997-12-04", "1973-05-28"
#> $ Male <ord> Male, Not_Male, Male
#> $ Height [m] 1.82 [m], 1.61 [m], 1.68 [m]
#> $ Surgery <ord> Not_Surgery, Not_Surgery, Surgery
#> $ Age <Duration> 2092780800s (~66.32 years), 770428800s (~24.41 y…
Make sure to use set_units()
from the units
package to convert all
measurements into unit objects for automatic unit conversion in
epocakir.
It is possible to use aki_staging()
to automatically classify the
presence and staging of AKI. If a particular method is required, it is
possible to classify AKI using aki_bCr()
, aki_SCr()
or aki_UO().
head(aki_pt_data)
#> # A tibble: 6 × 7
#> SCr_ bCr_ pt_id_ dttm_ UO_ aki_staging_type aki_
#> [mg/dl] [mg/dl] <chr> <dttm> [ml/kg] <chr> <ord>
#> 1 2 1.5 <NA> NA NA aki_bCr No AKI
#> 2 2.5 1.5 <NA> NA NA aki_bCr AKI Stage 1
#> 3 3 1.5 <NA> NA NA aki_bCr AKI Stage 2
#> 4 3.5 1.5 <NA> NA NA aki_bCr AKI Stage 2
#> 5 4 1.5 <NA> NA NA aki_bCr AKI Stage 3
#> 6 4.5 1.5 <NA> NA NA aki_bCr AKI Stage 3
aki_staging(aki_pt_data,
SCr = "SCr_", bCr = "bCr_", UO = "UO_",
dttm = "dttm_", pt_id = "pt_id_"
)
#> [1] No AKI AKI Stage 1 AKI Stage 2 AKI Stage 2 AKI Stage 3 AKI Stage 3
#> [7] No AKI No AKI AKI Stage 1 No AKI No AKI AKI Stage 1
#> [13] No AKI No AKI No AKI AKI Stage 1 No AKI AKI Stage 2
#> [19] AKI Stage 3 AKI Stage 1 AKI Stage 3 AKI Stage 2 No AKI AKI Stage 1
#> [25] AKI Stage 3 AKI Stage 3 No AKI
#> Levels: No AKI < AKI Stage 1 < AKI Stage 2 < AKI Stage 3
aki_pt_data %>%
mutate(aki = aki_staging(
SCr = SCr_, bCr = bCr_, UO = UO_,
dttm = dttm_, pt_id = pt_id_
)) %>%
select(pt_id_, SCr_:dttm_, aki)
#> # A tibble: 27 × 5
#> pt_id_ SCr_ bCr_ dttm_ aki
#> <chr> [mg/dl] [mg/dl] <dttm> <ord>
#> 1 <NA> 2 1.5 NA No AKI
#> 2 <NA> 2.5 1.5 NA AKI Stage 1
#> 3 <NA> 3 1.5 NA AKI Stage 2
#> 4 <NA> 3.5 1.5 NA AKI Stage 2
#> 5 <NA> 4 1.5 NA AKI Stage 3
#> 6 <NA> 4.5 1.5 NA AKI Stage 3
#> 7 pt1 3.4 NA 2020-10-23 09:00:00 No AKI
#> 8 pt1 3.9 NA 2020-10-25 21:00:00 No AKI
#> 9 pt1 3 NA 2020-10-20 09:00:00 AKI Stage 1
#> 10 pt2 3.4 NA 2020-10-18 22:00:00 No AKI
#> # … with 17 more rows
aki_pt_data %>%
mutate(aki = aki_SCr(
SCr = SCr_, dttm = dttm_, pt_id = pt_id_
)) %>%
select(pt_id_, SCr_:dttm_, aki)
#> # A tibble: 27 × 5
#> pt_id_ SCr_ bCr_ dttm_ aki
#> <chr> [mg/dl] [mg/dl] <dttm> <ord>
#> 1 <NA> 2 1.5 NA No AKI
#> 2 <NA> 2.5 1.5 NA No AKI
#> 3 <NA> 3 1.5 NA No AKI
#> 4 <NA> 3.5 1.5 NA No AKI
#> 5 <NA> 4 1.5 NA No AKI
#> 6 <NA> 4.5 1.5 NA No AKI
#> 7 pt1 3.4 NA 2020-10-23 09:00:00 No AKI
#> 8 pt1 3.9 NA 2020-10-25 21:00:00 No AKI
#> 9 pt1 3 NA 2020-10-20 09:00:00 AKI Stage 1
#> 10 pt2 3.4 NA 2020-10-18 22:00:00 No AKI
#> # … with 17 more rows
Similarly, eGFR()
offers the ability to automatically select the
appropriate formula to estimate the glomerular filtration rate. If a
particular formula is required, then eGFR_adult_SCr
,
eGFR_adult_SCysC
, eGFR_adult_SCr_SCysC
, eGFR_child_SCr
,
eGFR_child_SCr_BUN
, or eGFR_child_SCysC
can be used.
head(eGFR_pt_data)
#> # A tibble: 6 × 10
#> SCr_ SCysC_ Age_ male_ black_ height_ BUN_ eGFR_calc_type_ eGFR_ pediatric_
#> [mg/… [mg/L] [yea… <lgl> <lgl> [m] [mg/… <chr> [mL/… <lgl>
#> 1 0.5 NA 20 FALSE FALSE NA NA eGFR_adult_SCr 139. FALSE
#> 2 NA 0.4 20 FALSE FALSE NA NA eGFR_adult_SCy… 162. FALSE
#> 3 0.5 0.4 20 FALSE FALSE NA NA eGFR_adult_SCr… 167. FALSE
#> 4 0.5 NA 30 FALSE TRUE NA NA eGFR_adult_SCr 150. FALSE
#> 5 NA 0.4 30 FALSE TRUE NA NA eGFR_adult_SCy… 155. FALSE
#> 6 0.5 0.4 30 FALSE TRUE NA NA eGFR_adult_SCr… 171. FALSE
eGFR(eGFR_pt_data,
SCr = "SCr_", SCysC = "SCysC_",
Age = "Age_", height = "height_", BUN = "BUN_",
male = "male_", black = "black_", pediatric = "pediatric_"
)
#> Units: [mL/1.73m2/min]
#> [1] 139.32466 161.68446 166.81886 150.52336 155.33226 171.35616 139.32466
#> [8] 66.77365 96.41798 150.52336 64.15027 99.04045 49.63420 161.68446
#> [15] 97.06854 53.62373 155.33226 99.70870 49.63420 66.77365 56.10368
#> [22] 53.62373 64.15027 57.62964 155.99874 173.48118 178.86404 168.53768
#> [29] 166.66552 183.72895 155.99874 71.64555 103.37985 168.53768 68.83077
#> [36] 106.19167 66.06766 173.48118 116.50660 71.37808 166.66552 119.67546
#> [43] 66.06766 71.64555 67.33849 71.37808 68.83077 69.17003 99.12000
#> [50] 148.21219 165.89761
eGFR_pt_data %>%
dplyr::mutate(eGFR = eGFR(
SCr = SCr_, SCysC = SCysC_,
Age = Age_, height = height_, BUN = BUN_,
male = male_, black = black_, pediatric = pediatric_
)) %>%
select(SCr_:pediatric_, eGFR)
#> # A tibble: 51 × 11
#> SCr_ SCysC_ Age_ male_ black_ height_ BUN_ eGFR_calc_type_ eGFR_
#> [mg/dl] [mg/L] [years] <lgl> <lgl> [m] [mg/dl] <chr> [mL/…
#> 1 0.5 NA 20 FALSE FALSE NA NA eGFR_adult_SCr 139.
#> 2 NA 0.4 20 FALSE FALSE NA NA eGFR_adult_SCysC 162.
#> 3 0.5 0.4 20 FALSE FALSE NA NA eGFR_adult_SCr_SCy… 167.
#> 4 0.5 NA 30 FALSE TRUE NA NA eGFR_adult_SCr 150.
#> 5 NA 0.4 30 FALSE TRUE NA NA eGFR_adult_SCysC 155.
#> 6 0.5 0.4 30 FALSE TRUE NA NA eGFR_adult_SCr_SCy… 171.
#> 7 0.5 NA 20 FALSE FALSE NA NA eGFR_adult_SCr 139.
#> 8 NA 1.2 20 FALSE FALSE NA NA eGFR_adult_SCysC 66.8
#> 9 0.5 1.2 20 FALSE FALSE NA NA eGFR_adult_SCr_SCy… 96.4
#> 10 0.5 NA 30 FALSE TRUE NA NA eGFR_adult_SCr 150.
#> # … with 41 more rows, and 2 more variables: pediatric_ <lgl>,
#> # eGFR [mL/1.73m2/min]
eGFR_pt_data %>%
dplyr::mutate(eGFR = eGFR_adult_SCr(
SCr = SCr_, Age = Age_, male = male_, black = black_
)) %>%
select(SCr_:pediatric_, eGFR)
#> # A tibble: 51 × 11
#> SCr_ SCysC_ Age_ male_ black_ height_ BUN_ eGFR_calc_type_ eGFR_
#> [mg/dl] [mg/L] [years] <lgl> <lgl> [m] [mg/dl] <chr> [mL/…
#> 1 0.5 NA 20 FALSE FALSE NA NA eGFR_adult_SCr 139.
#> 2 NA 0.4 20 FALSE FALSE NA NA eGFR_adult_SCysC 162.
#> 3 0.5 0.4 20 FALSE FALSE NA NA eGFR_adult_SCr_SCy… 167.
#> 4 0.5 NA 30 FALSE TRUE NA NA eGFR_adult_SCr 150.
#> 5 NA 0.4 30 FALSE TRUE NA NA eGFR_adult_SCysC 155.
#> 6 0.5 0.4 30 FALSE TRUE NA NA eGFR_adult_SCr_SCy… 171.
#> 7 0.5 NA 20 FALSE FALSE NA NA eGFR_adult_SCr 139.
#> 8 NA 1.2 20 FALSE FALSE NA NA eGFR_adult_SCysC 66.8
#> 9 0.5 1.2 20 FALSE FALSE NA NA eGFR_adult_SCr_SCy… 96.4
#> 10 0.5 NA 30 FALSE TRUE NA NA eGFR_adult_SCr 150.
#> # … with 41 more rows, and 2 more variables: pediatric_ <lgl>,
#> # eGFR [mL/1.73m2/min]
KDIGO Guidelines - https://kdigo.org/guidelines/
See https://alwinw.github.io/epocakir/reference/index.html for more usage details and package reference.