高等学校化学学报 ›› 2022, Vol. 43 ›› Issue (9): 20220312.doi: 10.7503/cjcu20220312
收稿日期:
2022-05-08
出版日期:
2022-09-10
发布日期:
2022-06-24
通讯作者:
沈少华
E-mail:[email protected]
基金资助:
LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua()
Received:
2022-05-08
Online:
2022-09-10
Published:
2022-06-24
Contact:
SHEN Shaohua
E-mail:[email protected]
Supported by:
摘要:
光催化技术被认为是将太阳能转化为可存储化学能的有效策略. 通过在半导体光催化剂上负载高度分散的金属活性位点(如单原子、 团簇等), 能够显著促进光催化过程中物质和电荷的转移, 提高光催化反应的效率. 光催化过程中真正的活性位点是单原子还是团簇仍存在较大争议. 本文概述了单原子光催化的最新研究进展, 在此基础上对单原子和团簇作为活性位点的竞争与协同作用进行了分析与讨论, 并探论了用于鉴别单原子和团簇光催化活性位点的可靠方法. 最后, 对单原子与团簇协同的光催化在水分解和CO2还原等太阳能-化学能转化领域的未来发展进行了展望.
中图分类号:
TrendMD:
林治, 彭志明, 贺韦清, 沈少华. 单原子与团簇光催化: 竞争与协同. 高等学校化学学报, 2022, 43(9): 20220312.
LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation. Chem. J. Chinese Universities, 2022, 43(9): 20220312.
Photocatalyst | Hydrogen evolution rate | Light source | Sacrificial agent | Ref. |
---|---|---|---|---|
Pt/TiO2 | 52.72 mmol·g-1·h-1 | 300 W Xe lamp λ>400 nm | 20%(volume fraction) CH3OH | [ |
Pt/CdS | 47.41 mmol·g-1·h-1 | 300 W Xe lamp λ>420 nm | 20%(mass fraction) lactic acid | [ |
CdS@CDs/Pt | 45.5 mmol·g-1·h-1 | 300 W Xe lamp | Na2S/Na2SO3 | [ |
Pt/MOF(Al?TCPP) | 129 μmol·g-1·h-1 | 300 W Xe lamp λ>380 nm | 5%(volume fraction) TEOA | [ |
Pt/MOF(HNTM) | 201.9 μmol·g-1·h-1 | 300 W Xe lamp λ>400 nm | 8%(volume fraction) TEOA | [ |
Pt/MOF(MNSs) | 11320 μmol·g-1·h-1 | 300 W Xe lamp λ>420 nm | 0.1 mol/L Ascorbic acid | [ |
Co?CCN/PTI | 3538 μmol·g-1·h-1 | 300 W Xe lamp λ>420 nm | 10%(volume fraction) TEOA | [ |
Pt1/C3N4 | 604.9 μmol·g-1·h-1 | 300 W Xe lamp λ>400 nm | 10%(volume fraction) TEOA | [ |
Pt/TpPa?1?COF | 719 μmol·g-1·h-1 | 300 W Xe lamp λ>380 nm | Ascorbic acid | [ |
Ni/SrTiO3(Al) | 498 μmol·g-1·h-1 | 280 W Xe lamp | — | [ |
Ni/ZnIn2S4 | 4220 μmol·g-1·h-1 | 300 W Xe lamp λ>420 nm | 10%(volume fraction) TEOA | [ |
Ni?S/MOF | 1360 μmol·g-1·h-1 | 300 W Xe lamp λ>380 nm | 20%(volume fraction) TEOA | [ |
Pd1/C3N4 | 6688 μmol·g-1·h-1 | Solar simulator | 10%(volume fraction) TEOA | [ |
Co1?PCN | 216 μmol·g-1·h-1 | 300 W Xe lamp AM 1.5G | 10%(volume fraction) TEOA | [ |
CN?0.2Ni?HO | 354.9 μmol·g-1·h-1 | 300 W Xe lamp | 10%(volume fraction) TEOA | [ |
PCNNi?3 | 26.6 μmol·g-1·h-1 | 300 W Xe lamp λ>420 nm | — | [ |
Co1P?PCN | 410.3 μmol·g-1·h-1 | 300 W Xe lamp λ>300 nm | — | [ |
Table 1 Previously reported single-atom photocatalysts for photocatalytic hydrogen evolution
Photocatalyst | Hydrogen evolution rate | Light source | Sacrificial agent | Ref. |
---|---|---|---|---|
Pt/TiO2 | 52.72 mmol·g-1·h-1 | 300 W Xe lamp λ>400 nm | 20%(volume fraction) CH3OH | [ |
Pt/CdS | 47.41 mmol·g-1·h-1 | 300 W Xe lamp λ>420 nm | 20%(mass fraction) lactic acid | [ |
CdS@CDs/Pt | 45.5 mmol·g-1·h-1 | 300 W Xe lamp | Na2S/Na2SO3 | [ |
Pt/MOF(Al?TCPP) | 129 μmol·g-1·h-1 | 300 W Xe lamp λ>380 nm | 5%(volume fraction) TEOA | [ |
Pt/MOF(HNTM) | 201.9 μmol·g-1·h-1 | 300 W Xe lamp λ>400 nm | 8%(volume fraction) TEOA | [ |
Pt/MOF(MNSs) | 11320 μmol·g-1·h-1 | 300 W Xe lamp λ>420 nm | 0.1 mol/L Ascorbic acid | [ |
Co?CCN/PTI | 3538 μmol·g-1·h-1 | 300 W Xe lamp λ>420 nm | 10%(volume fraction) TEOA | [ |
Pt1/C3N4 | 604.9 μmol·g-1·h-1 | 300 W Xe lamp λ>400 nm | 10%(volume fraction) TEOA | [ |
Pt/TpPa?1?COF | 719 μmol·g-1·h-1 | 300 W Xe lamp λ>380 nm | Ascorbic acid | [ |
Ni/SrTiO3(Al) | 498 μmol·g-1·h-1 | 280 W Xe lamp | — | [ |
Ni/ZnIn2S4 | 4220 μmol·g-1·h-1 | 300 W Xe lamp λ>420 nm | 10%(volume fraction) TEOA | [ |
Ni?S/MOF | 1360 μmol·g-1·h-1 | 300 W Xe lamp λ>380 nm | 20%(volume fraction) TEOA | [ |
Pd1/C3N4 | 6688 μmol·g-1·h-1 | Solar simulator | 10%(volume fraction) TEOA | [ |
Co1?PCN | 216 μmol·g-1·h-1 | 300 W Xe lamp AM 1.5G | 10%(volume fraction) TEOA | [ |
CN?0.2Ni?HO | 354.9 μmol·g-1·h-1 | 300 W Xe lamp | 10%(volume fraction) TEOA | [ |
PCNNi?3 | 26.6 μmol·g-1·h-1 | 300 W Xe lamp λ>420 nm | — | [ |
Co1P?PCN | 410.3 μmol·g-1·h-1 | 300 W Xe lamp λ>300 nm | — | [ |
Fig.2 Schematic illustration of single?atom Pt anchored on TpPa?1?COF through coordination site construction(A), FT?EXAFS spectra of Pt1@TpPa?1 and references(B), calculated free energy diagram for photocatalytic H2 evolution(C), comparison of H2 evolution activity on Pt1@TpPa?1 and references(D)[50]Copyright 2021, American Chemical Society.
Fig.3 Amount of light driven H2 production as a function of illumination time for CdS?Pt samples of diffe?rent average Pt tip sizes(A)[96], catalytic performance of Pt single atoms, clusters, and nanoparticles supported on TiO2 for photocatalytic H2 evolution under UV light(B), X?ray absorption near?edge structure spectra(C) and FT?EXAFS spectra(D) of different samples obtained after in situ reduction treatment in the synchrotron[64](A) Copyright 2022, American Chemical Society; (B—D) Copyright 2019, American Chemical Society.
Fig.4 AC HAADF?STEM image(A) and schematic illustration of photocatalytic conversion processes of Cu0.8Au0.2/TiO2(B), UV?Vis DRS spectra(C) and CH4, C2H4, H2, and CO formation rates of the photocatalysts after 8 h simulated sunlight(AM1.5G) irradiation over the photocatalysts(D)[107]Copyright 2021, American Chemical Society.
Fig.5 In situ FTIR spectra of CO2 and H2O interaction with Cu0.8Au0.2/TiO2(A), Cu/TiO2(B), Au/TiO2(C), and TiO2(D) under the dark and the simulated sunlight, respectively[107]The curves from bottom to top in the figure represent background, adsorption for 30 min, illumination for 2, 4, 8, 12, 24, and 30 min, respectively. Copyright 2021, American Chemical Society.
Fig.6 Scheme of the photocatalytic cell(A), photograph of the cell(B), scheme of the overall reaction setup(C)of operando XAS reactor setup, Pt L3?edge XANES white line evolution throughout the experimental conditions for Pt/P90?C(D), corresponding k3 ?weighted FT?EXAFS moduli. Air, He and EtOH refering to static air atmosphere, pure helium flow, and ethanol/water/helium gas flow, respectively(E)[120]Copyright 2020, American Chemical Society.
1 | Liu W., Zhang H., Li C., Wang X., Liu J., Zhang X., J. Energy Chem., 2020, 47, 333—345 |
2 | Wang L., Huang L., Liang F., Liu S., Wang Y., Zhang H., Chin. J. Catal., 2017, 38(9), 1528—1539 |
3 | Liu L., Corma A., Chem. Rev., 2018, 118(10), 4981—5079 |
4 | Qiao B., Wang A., Yang X., Allard L. F., Jiang Z., Cui Y., Liu J., Li J., Zhang T., Nat. Chem., 2011, 3(8), 634—641 |
5 | Yan X., Dong C. L., Huang Y. C., Jia Y., Zhang L., Shen S., Chen J., Yao X., Small Methods, 2019, 3(9), 1800439 |
6 | Han X., Ling X., Yu D., Xie D., Li L., Peng S., Zhong C., Zhao N., Deng Y., Hu W., Adv. Mater., 2019, 31(49), 1905622 |
7 | Feng J., Gao H., Zheng L., Chen Z., Zeng S., Jiang C., Dong H., Liu L., Zhang S., Zhang X., Nat. Commun., 2020, 11(1), 4341 |
8 | Lu B., Liu Q., Chen S., ACS Catal., 2020, 10(14), 7584—7618 |
9 | Doherty F., Wang H., Yang M., Goldsmith B. R., Catal. Sci. Technol., 2020, 10(17), 5772—5791 |
10 | Xia D., Liu H., Xu B., Wang Y., Liao Y., Huang Y., Ye L., He C., Wong P. K., Qiu R., Appl. Catal. B: Environ., 2019, 245, 177—189 |
11 | Cheng C., Zhang X., Wang M., Wang S., Yang Z., Phys. Chem. Chem. Phys., 2018, 20(5), 3504—3513 |
12 | Krishnan R., Wu S. Y., Chen H. T., Phys. Chem. Chem. Phys., 2019, 21(23), 12201—12208 |
13 | Liu G., Huang Y., Lv H., Wang H., Zeng Y., Yuan M., Meng Q., Wang C., Appl. Catal. B: Environ., 2021, 284, 119683 |
14 | Xing J., Chen J., Li Y., Yuan W., Zhou Y., Zheng L., Wang H., Hu P., Wang Y., Zhao H., Wang Y., Yang H., Chem. Eur. J., 2014, 20(8), 2138—2144 |
15 | Zeng L., Xue C., Nano Res., 2020, 14(4), 934—944 |
16 | Zhou L., Martirez J. M. P., Finzel J., Zhang C., Swearer D. F., Tian S., Robatjazi H., Lou M., Dong L., Henderson L., Christopher P., Carter E. A., Nordlander P., Halas N. J., Nat. Energy, 2020, 5(1), 61—70 |
17 | Wu J., Chen J., Huang Y., Feng K., Deng J., Huang W., Wu Y., Zhong J., Li Y., Sci. Bull., 2019, 64(24), 1875—1880 |
18 | Song L. N., Zhang W., Wang Y., Ge X., Zou L. C., Wang H. F., Wang X. X., Liu Q. C., Li F., Xu J. J., Nat. Commun., 2020, 11(1), 2191 |
19 | Zhao W., Wang J., Yin R., Li B., Huang X., Zhao L., Qian L., J. Colloid Interface Sci., 2020, 564, 28—36 |
20 | Wan X., Liu X., Li Y., Yu R., Zheng L., Yan W., Wang H., Xu M., Shui J., Nat. Catal., 2019, 2(3), 259—268 |
21 | Zhang Q., Guan J., Solar RRL, 2020, 4(9), 2000283 |
22 | Qin R., Liu K., Wu Q., Zheng N., Chem. Rev., 2020, 120(21), 11810—11899 |
23 | Liu D., He Q., Ding S., Song L., Adv. Energy Mater., 2020, 10(32), 2001482 |
24 | Chen Y., Ji S., Sun W., Lei Y., Wang Q., Li A., Chen W., Zhou G., Zhang Z., Wang Y., Zheng L., Zhang Q., Gu L., Han X., Wang D., Li Y., Angew. Chem. Int. Ed., 2020, 59(3), 1295—1301 |
25 | Wu X., Zhang H., Dong J., Qiu M., Kong J., Zhang Y., Li Y., Xu G., Zhang J., Ye J., Nano Energy, 2018, 45, 109—117 |
26 | Qiu S., Shen Y., Wei G., Yao S., Xi W., Shu M., Si R., Zhang M., Zhu J., An C., Appl. Catal. B: Environ., 2019, 259, 118036 |
27 | Fang X., Shang Q., Wang Y., Jiao L., Yao T., Li Y., Zhang Q., Luo Y., Jiang H. L., Adv. Mater., 2018, 30(7), 1705112 |
28 | He T., Chen S., Ni B., Gong Y., Wu Z., Song L., Gu L., Hu W., Wang X., Angew. Chem. Int. Ed., 2018, 57(13), 3493—3498 |
29 | Zuo Q., Liu T., Chen C., Ji Y., Gong X., Mai Y., Zhou Y., Angew. Chem. Int. Ed., 2019, 58(30), 10198—10203 |
30 | Yang C., Zhao Z., Liu Q., Appl. Surf. Sci., 2022, 577, 151916 |
31 | Dong S., Liu W., Liu S., Li F., Hou J., Hao R., Bai X., Zhao H., Liu J., Guo L., Mater. Today Nano, 2022, 17, 100157 |
32 | Zhang C., Qin D., Zhou Y., Qin F., Wang H., Wang W., Yang Y., Zeng G., Appl. Catal. B: Environ., 2022, 303, 120904 |
33 | Zeng Z., Su Y., Quan X., Choi W., Zhang G., Liu N., Kim B., Chen S., Yu H., Zhang S., Nano Energy, 2020, 69, 104409 |
34 | Cha G., Hwang I., Hejazi S., Dobrota A. S., Pasti I. A., Osuagwu B., Kim H., Will J., Yokosawa T., Badura Z., Kment S., Mohajernia S., Mazare A., Skorodumova N. V., Spiecker E., Schmuki P., iScience, 2021, 24(8), 102938 |
35 | Yang C., Cheng Z., Divitini G., Qian C., Hou B., Liao Y., J. Mater. Chem. A, 2021, 9(35), 19894—19900 |
36 | Li Y., Li B., Zhang D., Cheng L., Xiang Q., ACS Nano, 2020, 14(8), 10552—10561 |
37 | Gao C., Chen S., Wang Y., Wang J., Zheng X., Zhu J., Song L., Zhang W., Xiong Y., Adv. Mater., 2018, 30(13), 1704624 |
38 | Kou M., Liu W., Wang Y., Huang J., Chen Y., Zhou Y., Chen Y., Ma M., Lei K., Xie H., Wong P. K., Ye L., Appl. Catal. B: Environ., 2021, 291, 120146 |
39 | Yang Y., Zeng G., Huang D., Zhang C., He D., Zhou C., Wang W., Xiong W., Song B., Yi H., Ye S., Ren X., Small, 2020, 16(29), 2001634 |
40 | Liu J., Zou Y., Cruz D., Savateev A., Antonietti M., Vile G., ACS Appl. Mater. Inter., 2021, 13(22), 25858—25867 |
41 | Xu T., Zheng H., Zhang P., J. Hazard Mater., 2020, 388, 121746 |
42 | Zhang T., Zhang D., Han X., Dong T., Guo X., Song C., Si R., Liu W., Liu Y., Zhao Z., J. Am. Chem. Soc., 2018, 140(49), 16936—16940 |
43 | Wang L., Tang R., Kheradmand A., Jiang Y., Wang H., Yang W., Chen Z., Zhong X., Ringer S. P., Liao X., Liang W., Huang J., Appl. Catal. B: Environ., 2021, 284, 119759 |
44 | Zhou P., Chao Y., Lv F., Wang K., Zhang W., Zhou J., Chen H., Wang L., Li Y., Zhang Q., Gu L., Guo S., ACS Catal., 2020, 10(16), 9109—9114 |
45 | Shen S., Chen J., Wang Y., Dong C. L., Meng F., Zhang Q., Huangfu Y., Lin Z., Huang Y. C., Li Y., Li M., Gu L., Sci. Bull., 2022, 67(5), 520—528 |
46 | Ji S., Qu Y., Wang T., Chen Y., Wang G., Li X., Dong J., Chen Q., Zhang W., Zhang Z., Liang S., Yu R., Wang Y., Wang D., Li Y., Angew. Chem. Int. Ed., 2020, 59(26), 10651—10657 |
47 | Guan X. J., Mao S. S., Shen S. H., ChemNanoMat, 2021, 7(8), 873—880 |
48 | Sui J. F., Liu H., Hu S. J., Sun K., Wan G., Zhou H., Zheng X., Jiang H. L., Adv. Mater., 2022, 34(6), 2109203 |
49 | Li X., Bi W., Zhang L., Tao S., Chu W., Zhang Q., Luo Y., Wu C., Xie Y., Adv. Mater., 2016, 28(12), 2427—2431 |
50 | Dong P., Wang Y., Zhang A., Cheng T., Xi X., Zhang J., ACS Catal., 2021, 11(21), 13266—13279 |
51 | Liu Y., Xu X., Zheng S., Lv S., Li H., Si Z., Wu X., Ran R., Weng D., Kang F., Carbon, 2021, 183, 763—773 |
52 | Shi X., Mao L., Dai C., Yang P., Zhang J., Dong F., Zheng L., Fujitsuka M., Zheng H., J. Mater. Chem. A, 2020, 8(26), 13376—13384 |
53 | Ma X., Liu H., Yang W., Mao G., Zheng L., Jiang H. L., J. Am. Chem. Soc., 2021, 143(31), 12220—12229 |
54 | Cao S., Li H., Tong T., Chen H. C., Yu A., Yu J., Chen H. M., Adv. Funct. Mater., 2018, 28(32), 1802169 |
55 | Cao Y., Chen S., Luo Q., Yan H., Lin Y., Liu W., Cao L., Lu J., Yang J., Yao T., Wei S., Angew. Chem. Int. Ed., 2017, 56(40), 12191—12196 |
56 | Jin X., Wang R., Zhang L., Si R., Shen M., Wang M., Tian J., Shi J., Angew. Chem. Int. Ed., 2020, 59(17), 6827—6831 |
57 | Li Y., Wang Y., Dong C. L., Huang Y. C., Chen J., Zhang Z., Meng F., Zhang Q., Huangfu Y., Zhao D., Gu L., Shen S., Chem. Sci., 2021, 12(10), 3633—3643 |
58 | Liu W., Cao L., Cheng W., Cao Y., Liu X., Zhang W., Mou X., Jin L., Zheng X., Che W., Liu Q., Yao T., Wei S., Angew. Chem. Int. Ed., 2017, 56(32), 9312—9317 |
59 | Liu L., Corma A., Trends Chem., 2020, 2(4), 383—400 |
60 | Dessal C., Len T., Morfin F., Rousset J. L., Aouine M., Afanasiev P., Piccolo L., ACS Catal., 2019, 9(6), 5752—5759 |
61 | Liu L., Zakharov D. N., Arenal R., Concepcion P., Stach E. A., Corma A., Nat. Commun., 2018, 9(1), 574 |
62 | Fernandez E., Liu L., Boronat M., Arenal R., Concepcion P., Corma A., ACS Catal., 2019, 9(12), 11530—11541 |
63 | Wang J., Tan H., Yu S., Zhou K., ACS Catal., 2015, 5(5), 2873—2881 |
64 | Liu L., Meira D. M., Arenal R., Concepcion P., Puga A. V., Corma A., ACS Catal., 2019, 9(12), 10626—10639 |
65 | Wang B., Cai H., Shen S., Small Methods, 2019, 3(9), 1800447 |
66 | Ji S., Chen Y., Wang X., Zhang Z., Wang D., Li Y., Chem. Rev., 2020, 120(21), 11900—11955 |
67 | Qin S., Denisov N., Will J., Kolařík J., Spiecker E., Schmuki P., Solar RRL, 2022, 2101026 |
68 | Dong Z., Zhang L., Gong J., Zhao Q., Chem. Eng. J., 2021, 403, 126383 |
69 | Rong P., Jiang Y. F., Wang Q., Gu M., Jiang X. L., Yu Q., J. Mater. Chem. A, 2022, 10(11), 6231—6241 |
70 | Ong W. J., Tan L. L., Ng Y. H., Yong S. T., Chai S. P., Chem. Rev., 2016, 116(12), 7159—7329 |
71 | Khan M. S., Zhang F., Osada M., Mao S. S., Shen S., Solar RRL, 2019, 4(8), 1900435 |
72 | Ding Y., Lin Z., Deng J., Liu Y., Zhang L., Wang K., Xu S., Cao S., Int. J. Hydrogen Energy, 2022, 47(3), 1568—1578 |
73 | Zhang X., Yuan X., Jiang L., Zhang J., Yu H., Wang H., Zeng G., Chem. Eng. J., 2020, 390, 124475 |
74 | He F., Wang Z., Li Y., Peng S., Liu B., Appl. Catal. B: Environ., 2020, 269, 118828 |
75 | Yang L., Peng Y., Luo X., Dan Y., Ye J., Zhou Y., Zou Z., Chem. Soc. Rev., 2021, 50(3), 2147—2172 |
76 | Zhao D., Dong C. L., Wang B., Chen C., Huang Y. C., Diao Z., Li S., Guo L., Shen S., Adv. Mater., 2019, 31(43), 1903545 |
77 | Wang B., Cai H., Zhao D., Song M., Guo P., Shen S., Li D., Yang S., Appl. Catal. B: Environ., 2019, 244, 486—493 |
78 | Wei F., Liu Y., Zhao H., Ren X., Liu J., Hasan T., Chen L., Li Y., Su B. L., Nanoscale, 2018, 10(9), 4515—4522 |
79 | Lin Z., Wang S., Miao Y., Yuan J., Liu Y., Xu S., Cao S., Int. J. Hydrogen Energy, 2020, 45(11), 6341—6351 |
80 | Zhang Y., Wu L., Zhao X., Zhao Y., Tan H., Zhao X., Ma Y., Zhao Z., Song S., Wang Y., Li Y., Adv. Energy Mater., 2018, 8(25), 1801139 |
81 | Zhao C., Ding C., Han C., Yang X., Xu J., Solar RRL, 2020, 5(2), 2000486 |
82 | Zhu Y., Marianov A., Xu H., Lang C., Jiang Y., ACS Appl. Mater. Inter., 2018, 10(11), 9468—9477 |
83 | Jiang Z., Zhang X., Chen H. S., Hu X., Yang P., ChemCatChem, 2019, 11(18), 4558—4567 |
84 | Wang S., Zhao H., Zhao X., Zhang J., Ao Z., Dong P., He F., Wu H., Xu X., Shi L., Zhao C., Wang S., Sun H., Chem. Eng. J., 2020, 381, 122593 |
85 | Chen X., Wang J., Chai Y., Zhang Z., Zhu Y., Adv. Mater., 2021, 33(7), 2007479 |
86 | Zhao D., Wang Y., Dong C. L., Huang Y. C., Chen J., Xue F., Shen S., Guo L., Nat. Energy, 2021, 6(4), 388—397 |
87 | Zhao D., Wang M., Kong T., Shang Y., Du X., Guo L., Shen S., Mater. Today Chem., 2019, 11, 296—302 |
88 | Xiao X., Gao Y., Zhang L., Zhang J., Zhang Q., Li Q., Bao H., Zhou J., Miao S., Chen N., Wang J., Jiang B., Tian C., Fu H., Adv. Mater., 2020, 32(33), 2003082 |
89 | Ma M., Huang Z., Doronkin D. E., Fa W., Rao Z., Zou Y., Wang R., Zhong Y., Cao Y., Zhang R., Zhou Y., Appl. Catal. B: Environ., 2022, 300, 120695 |
90 | Lin J., Chen Y., Zhou Y., Li L., Qiao B., Wang A., Liu J., Wang X., Zhang T., AIChE Journal, 2017, 63(9), 4003—4012 |
91 | Ding K., Gulec A., Johnson A. M., Schweitzer N. M., Stucky G. D., Marks L. D., Stair P. C., Science, 2015, 350(6257), 189—192 |
92 | Nie L., Mei D., Xiong H., Peng B., Ren Z., Hernandez Xavier Isidro P., DeLaRiva A., Wang M., Engelhard Mark H., Kovarik L., Datye Abhaya K., Wang Y., Science, 2017, 358(6369), 1419—1423 |
93 | Sun M., Ji J., Hu M., Weng M., Zhang Y., Yu H., Tang J., Zheng J., Jiang Z., Pan F., Liang C., Lin Z., ACS Catal., 2019, 9(9), 8213—8223 |
94 | Rossell M. D., Caparrós F. J., Angurell I., Muller G., Llorca J., Seco M., Rossell O., Catal. Sci. Technol., 2016, 6(12), 4081—4085 |
95 | Wei H., Liu X., Wang A., Zhang L., Qiao B., Yang X., Huang Y., Miao S., Liu J., Zhang T., Nat. Commun., 2014, 5, 5634 |
96 | Liu Y., Yang W., Chen Q., Cullen D. A., Xie Z., Lian T., J. Am. Chem. Soc., 2022, 144, 2705—2715 |
97 | Gao S., Yang H., Rao D., Wang N., Li Y., Li J., Rao S., Maouche C., Wu Z., Li B., Zhou Y., Yang J., Chem. Eng. J., 2022, 433, 134460 |
98 | Qiao Y., Yuan P., Hu Y., Zhang J., Mu S., Zhou J., Li H., Xia H., He J., Xu Q., Adv. Mater., 2018, 30(46), 1804504 |
99 | Yu Q., Lian S., Li J., Yu R., Xi S., Wu J., Zhao D., Mai L., Zhou L., J. Mater. Chem. A, 2020, 8(12), 6076—6082 |
100 | Wang Z., Zhu C., Tan H., Liu J., Xu L., Zhang Y., Liu Y., Zou X., Liu Z., Lu X., Adv. Funct. Mater., 2021, 31(45), 2104735 |
101 | An S., Zhang G., Wang T., Zhang W., Li K., Song C., Miller J. T., Miao S., Wang J., Guo X., ACS Nano, 2018, 12(9), 9441—9450 |
102 | Liu M., Lee J., Yang T. C., Zheng F., Zhao J., Yang C. M., Lee L. Y. S., Small Methods, 2021, 5(5), 2001165 |
103 | Lei Y., Yang F., Xie H., Lei Y., Liu X., Si Y., Wang H., J. Mater. Chem. A, 2020, 8(39), 20629—20636 |
104 | Ao X., Zhang W., Li Z., Li J. G., Soule L., Huang X., Chiang W. H., Chen H. M., Wang C., Liu M., Zeng X. C., ACS Nano, 2019, 13(10), 11853—11862 |
105 | Nie Z., Zhang L., Ding X., Cong M., Xu F., Ma L., Guo M., Li M., Zhang L., Adv. Mater., 2022, 34, 2108180 |
106 | Yan B.,He Y., Yang G., J. Mater. Chem. A, 2022, 10, 1899—1908 |
107 | Yu Y., Dong X., Chen P., Geng Q., Wang H., Li J., Zhou Y., Dong F., ACS Nano, 2021, 15(9), 14453—14464 |
108 | Wang T., Tao X., Li X., Zhang K., Liu S., Li B., Small, 2021, 17(2), 2006255 |
109 | Ren X., Li C., Liu J., Li H., Bing L., Bai S., Xue G., Shen Y., Yang Q., ACS Appl. Mater. Inter., 2022, 14(5), 6885—6893 |
110 | Lu X., Tong A., Luo D., Jiang F., Wei J., Huang Y., Jiang Z., Lu Z., Ni Y., J. Mater. Chem. A, 2022, 10(9), 4594—4600 |
111 | Zhang J., Liu C., Zhang B., Small Methods, 2019, 3(9), 1800481 |
112 | Liu Q., Zhang Z., Catal. Sci. Technol., 2019, 9(18), 4821—4834 |
113 | Qiao S., He Q., Zhang P., Zhou Y., Chen S., Song L., Wei S., J. Mater. Chem. A, 2022, 10, 5771—5791 |
114 | Fang L., Seifert S., Winans R. E., Li T., Small Methods, 2021, 5(5), 2001194 |
115 | Xu B., Fu X., You X., Zhao E., Li F., Chen Z., Li Y., Wang X., Yao Y., ACS Catal., 2022, 12, 6958—6967 |
116 | Caudillo F. U., Muñoz B. M. J., Kubacka A., Fernández⁃García M., ChemPhotoChem, 2018, 2(9), 777—785 |
117 | Braun A., Sivula K., Bora D. K., Zhu J., Zhang L., Grätzel M., Guo J., Constable E. C., J. Phys. Chem. C, 2012, 116(32), 16870—16875 |
118 | Ismail A. S. M., Garcia⁃Torregrosa I., Vollenbroek J. C., Folkertsma L., Bomer J. G., Haarman T., Ghiasi M., Schellhorn M., Nachtegaal M., Odijk M., van den Berg A., Weckhuysen B. M., de Groot F. M. F., ACS Catal., 2021, 11(19), 12324—12335 |
119 | Dong C. L., Vayssieres L., Chem. Eur. J., 2018, 24(69), 18356—18373 |
120 | Piccolo L., Afanasiev P., Morfin F., Len T., Dessal C., Rousset J. L., Aouine M., Bourgain F., Aguilar⁃Tapia A., Proux O., Chen Y., Soler L., Llorca J., ACS Catal., 2020, 10, 12696—12705 |
121 | Piccolo L., Catal. Today, 2021, 373, 80—97 |
122 | Lin Z., Wang Y., Peng Z., Huang Y. C., Meng F., Chen J. L., Dong C. L., Zhang Q., Wang R., Zhao D., Chen J., Gu L., Shen S., Adv. Energy Mater., 2022, 12(26), 2200716 |
123 | Li Z., Zhang L., Liu Y., Shao C., Gao Y., Fan F., Wang J., Li J., Yan J., Li R., Li C., Angew. Chem. Int. Ed., 2020, 59(2), 935—942 |
124 | Cao B., Li G., Li H., Appl. Catal. B: Environ., 2016, 194, 42—49 |
125 | Tayyab M., Liu Y., Min S., Muhammad Irfan R., Zhu Q., Zhou L., Lei J., Zhang J., Chinese J. Catal., 2022, 43(4), 1165—1175 |
126 | Jia Q., Zhang S., Jia X., Dong X., Gao Z., Gu Q., Catal. Sci. Technol., 2019, 9(18), 5077—5089 |
127 | Chakraborty J., Nath I., Verpoort F., Chem. Eng. J., 2019, 358, 580—588 |
128 | Hiragond C. B., Powar N. S., Lee J., In S. I., Small, 2022, 18(29), 2201428 |
[1] | 秦永吉, 罗俊. 单原子催化剂在CO2转化中的应用[J]. 高等学校化学学报, 2022, 43(9): 20220300. |
[2] | 滕镇远, 张启涛, 苏陈良. 聚合物单原子光催化剂的载流子分离和表面反应机制[J]. 高等学校化学学报, 2022, 43(9): 20220325. |
[3] | 王茹玥, 魏呵呵, 黄凯, 伍晖. 单原子材料的冷冻合成[J]. 高等学校化学学报, 2022, 43(9): 20220428. |
[4] | 杨静怡, 李庆贺, 乔波涛. 铱单原子和纳米粒子在N2O分解反应中的协同催化[J]. 高等学校化学学报, 2022, 43(9): 20220388. |
[5] | 林高鑫, 王家成. 单原子掺杂二硫化钼析氢催化的进展和展望[J]. 高等学校化学学报, 2022, 43(9): 20220321. |
[6] | 任诗杰, 谯思聪, 刘崇静, 张文华, 宋礼. 铂单原子催化剂同步辐射X射线吸收谱的研究进展[J]. 高等学校化学学报, 2022, 43(9): 20220466. |
[7] | 楚宇逸, 兰畅, 罗二桂, 刘长鹏, 葛君杰, 邢巍. 单原子铈对弱芬顿效应活性位点氧还原稳定性的提升[J]. 高等学校化学学报, 2022, 43(9): 20220294. |
[8] | 夏雾, 任颖异, 刘京, 王锋. 壳聚糖包裹CdSe量子点组装体的水相可见光催化CO2还原[J]. 高等学校化学学报, 2022, 43(7): 20220192. |
[9] | 赵润瑶, 纪桂鹏, 刘志敏. 吡咯氮配位单原子铜催化剂的电催化二氧化碳还原性能[J]. 高等学校化学学报, 2022, 43(7): 20220272. |
[10] | 杨丹, 刘旭, 戴翼虎, 祝艳, 杨艳辉. 金团簇电催化二氧化碳还原反应的研究进展[J]. 高等学校化学学报, 2022, 43(7): 20220198. |
[11] | 赵盈喆, 张建玲. 金属-有机框架基材料在二氧化碳光催化转化中的应用[J]. 高等学校化学学报, 2022, 43(7): 20220223. |
[12] | 邱丽琪, 姚向阳, 何良年. 可见光驱动丰产金属卟啉类配合物催化的二氧化碳选择性还原反应[J]. 高等学校化学学报, 2022, 43(7): 20220064. |
[13] | 龚妍熹, 王建兵, 柴歩瑜, 韩元春, 马云飞, 贾超敏. 钾掺杂g-C3N4薄膜光阳极的制备及光电催化氧化降解水中双氯芬酸钠性能[J]. 高等学校化学学报, 2022, 43(6): 20220005. |
[14] | 王广琦, 毕艺洋, 王嘉博, 石洪飞, 刘群, 张钰. 非贵金属三元复合Ni(PO3)2-Ni2P/CdS NPs异质结的构建及可见光高效催化产氢性能[J]. 高等学校化学学报, 2022, 43(6): 20220050. |
[15] | 宋颖颖, 黄琳, 李庆森, 陈立妙. CuO/BiVO4光催化剂的制备及光催化CO2还原性能[J]. 高等学校化学学报, 2022, 43(6): 20220126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||