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Abstract
Software-based fault isolation (SFI) is a longstanding tech-
nique that allows isolation of one or more processes from
each other with minimal or no use of hardware protection
mechanisms. The demand for SFI systems has been increas-
ing due to the advent of cloud and serverless computing,
which require systems to run untrusted code with low la-
tency and low context switch times. SFI systems must opti-
mize for a combination of performance, trusted code base
(TCB) size, scalability, and implementation complexity. With
the rise of ARM64 in both cloud and personal computers, we
revisit classic SFI in the context of ARM64 and present a new
multi-sandbox SFI scheme that is practical to implement,
efficient, and maintains a small TCB. Our technique, called
Lightweight Fault Isolation (LFI), supports tens of thousands
of 4GiB sandboxes in a single address space and does full
software isolation of loads, stores, and jumps with a run-
time overhead of 7% on the compatible subset of the SPEC
2017 benchmark suite. In addition to providing low runtime
and code size overheads compared to existing multi-sandbox
systems, LFI is implemented independently of existing com-
piler toolchains, has a small static verifier to reduce TCB
size, is hardened against basic Spectre attacks, and has broad
software support, including for language mechanisms like
exceptions and ISA features such as SIMD.
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1 Introduction
Process isolation is a fundamental part of computer systems
security. Most systems make use of hardware protection for
isolation. While hardware protection is flexible and can be
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used to isolate arbitrary code, changing protection domains
is expensive. For example, a context switch between two
Linux processes on modern high-performance processors
can cost thousands of cycles — orders of magnitude more
than the time needed to save/restore register state. Even
optimized implementations like those in microkernels cost
hundreds of cycles.
These costs can be significant in cloud settings, which

must run thousands of short-lived untrusted programs with
low latency [37, 54], and in settings such as microkernels
with frequent IPC between isolated processes [22].

In addition, hardware protection is often unavailable to
userspace because it is reserved for the kernel. Instead, user
applications typically use one of three possible approaches
for sandboxing: virtualization, containerization, or software
sandboxing. Software sandboxing systems use either classic
software-based fault isolation (SFI) [58, 61], or language-
based isolation [20, 30]. While virtualization and container-
ization incur minimal CPU overhead, the cost of context
switches and system calls are high. Conversely, software
sandboxing allows multiple isolation domains within the
same address space, so context switches are very fast, but
existing multi-sandbox software systems incur overheads
of 20% or more on typical CPU-bound benchmarks [15, 40,
61]. As a result, some SFI systems only sandbox stores and
jumps — not loads — for more reasonable overheads of 5-10%
[29, 40, 61], or use hybrid hardware-software mechanisms
[17, 29, 59, 66]. Other systems, such as Google Native Client
(NaCl) [52], achieve low overheads but significantly restrict
scalability (number of sandboxes) to do so.

This work presents Lightweight Fault Isolation (LFI): the
first SFI system that supports tens of thousands of sandboxes
in a single address space (around 65,000 by default) while
also providing full software-based isolation of loads, stores,
and jumps with a low overhead of 7%, as measured on a
subset of SPEC 2017. LFI combines fast context switches
with low CPU overheads that are comparable with hardware-
assisted virtualization. LFI also benefits from the use of a
machine code verifier, which improves the system’s security
by reducing the size of the trusted code base (TCB).
Past difficulties with SFI have led to an industry move

away from machine code verification approaches. Across
various projects, these difficulties with classic SFI included
the need to modify compiler backends and assemblers, the
irregularity of CISC ISAs like x86, and the lack of complete
and up-to-date machine-readable ISA specifications.

https://doi.org/10.1145/3620665.3640408
https://doi.org/10.1145/3620665.3640408


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Zachary Yedidia

Instead, language-based approaches are now typically
used instead of SFI. One example isWebAssembly [20].While
WebAssembly was initially designed for sandboxing in web
browsers, it also powers low-latency edge computing plat-
forms from Fastly [23], and Cloudflare [60], and is the indus-
try standard for software sandboxing. In a language-based
sandbox, an untrusted program is accepted in the form of
a safe language. The language’s type checker validates the
program, and then a compiler transforms it into machine
code. If the type checker and compiler are sound then the
machine code is safe to run.

However, since compilers are complex and difficult to im-
plement correctly, this approach must grapple with a trade-
off between performance and security. High-performance
implementations use LLVM, which is not designed to be
secure against malicious inputs: it is over 2 million lines of
code, with hundreds of known miscompilation bugs, and
uses quadratic-time algorithms that can result in slow com-
pilation (problematic for a secure JIT compiler). Instead, a
smaller compiler backend such as Cranelift can be used — it
is 200,000 lines of code, uses linear-time algorithms, and has
no currently known security-critical miscompilation bugs.
However, Cranelift generates code that is significantly slower
than LLVM-generated code.
In constrast, by verifying the machine code after compi-

lation in a single linear pass, SFI can provide high perfor-
mance while maintaining a TCB that is smaller than those
of language-based approaches.

Recent changes in the software industry make classic SFI
more practical. RISC architectures, such as ARM and RISC-V,
have been increasing in popularity and are more amenable
to classic SFI. ARM64 in particular has recently started to see
wide adoption, with Apple switching all desktop products
to use ARM64, and Amazon deploying Graviton 3 widely,
providing competitive performance to x86 at a cheaper cost
[32]. Increasingly large virtual address spaces [4, 26] also
make it practical to support many sandboxes in a single
address space.
With these changes in mind, we have developed LFI, the

first SFI scheme for the ARM64 architecture, and leverage sev-
eral architecture-specific optimizations to achieve average
runtime and code size overheads of 6% and 13% respectively
on SPEC 2017 benchmarks [13]. Our results demonstrate
a significant improvement over WebAssembly, the primary
available software sandboxing approach with similar capabil-
ities. The scheme supports up to 216 sandboxes in the 48-bit
usermode address space and performs full isolation via soft-
ware guards, allowing for very fast context switches between
isolation domains. We implement LFI without modifying a
compiler toolchain by operating on assembly text produced
by off-the-shelf compilers. This keeps our implementation
simple and independent from massive software projects.

2 ARM64 Overview
The ARM64 ISA [5], also called AArch64, is a 64-bit ISA
designed over the last two decades and released as part of
ARMv8. Recently, it has begun to reachmainstream adoption:
all Apple products from mobile phones to high-end desktops
now use ARM processors, and all major cloud providers
support ARM instances that are often cheaper than their x86
counterparts and competitively performant. In this section
we provide a brief introduction to ARM64 and discuss details
about the ISA that are important to the SFI scheme we use.
We only discuss the base ARMv8.0-A AArch64 ISA.

Instructions in ARM64 are all 4 bytes — there is no com-
pressed encoding. Each instruction performs operations on
registers. There are 31 general-purpose 64-bit registers (num-
bered x0 to x30), a zero register (xzr), and a stack pointer
(sp). ARM64 is a load-store architecture, meaning that in-
structions either perform ALU operations between registers,
or move values from registers to memory or vice versa. ALU
operations may operate on the 64-bit registers, or the bottom
32 bits of each corresponding 64-bit register (referred to as
w0-w30, wzr, wsp). When writing to a register with the 32-bit
name, the bottom 32 bits are written and the top 32 bits are
zeroed.

Memory operations in ARM64 center around the ldr (load
into register) and str (store from register) instructions. Sev-
eral other load/store instructions exist, for example for load-
ing/storing pairs of registers, or for implementing atomic
operations. The memory instructions are of special impor-
tance to SFI, because these are instructions that could access
data outside of a sandbox. Loads and stores may use several
different addressing modes, used to determine the address
at which to load or store. These addressing modes are listed
in Table 1. The more complex addressing modes are only
available to basic load/store instructions. It is important to
note that immediates in addressing modes are encoded with
no more than 15 bits, meaning that such immediates cannot
exceed 215 bytes (32KiB).
The base ARM64 ISA also supports floating point and

SIMD instructions. Floating point and SIMD instructions
share a register file of 32 128-bit registers (numbered v0
to v31). There are SIMD load/store instructions, but they
use the standard addressing modes and integer registers for
address generation. Vector scatter/gather instructions, which
only exist in ARM64’s SVE extension, are not supported by
LFI and are disallowed by the static verifier.
ARM64 has three indirect branch instructions, listed in

Table 2. These instructions are also important for SFI since an
indirect branch could be used to begin executing code outside
a sandbox. Together with loads/stores, these instructions
comprise all instructions that could be used to escape from
a sandbox. Due to encoding, direct branches can only target
locations that are at most 128MiB away.
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Addressing Mode Generated address
[xN] addr = xN
[xN, #i] addr = xN + i
[xN, #i]! addr = xN + i; xN += i
[xN], #i addr = xN; xN += i
[xN, xM, lsl #i] addr = xN + xM « i
[xN, wM, uxtw #i] addr = xN + zx(wM) « i
[xN, wM, sxtw #i] addr = xN + sx(wM) « i

Table 1. Addressing modes for basic load/store instructions.
Specialized load/store instructions only support subsets of
these addressingmodes. Due to encoding, immediates cannot
exceed 32KiB in size.

Instruction Effect
br xN PC = xN
blr xN x30 = PC + 4; PC = xN
ret xN PC = xN

Table 2. Indirect branch instructions.

3 Basic SFI Scheme
A fundamental part of an SFI system is the “guard” instruc-
tion, which guarantees that addresses are within the sandbox.
One formulation of the ARM64 add instruction can be used
to construct a guard:
add xA, xB, wC, uxtw

The uxtw modifier specifies that the wC 32-bit register
should be zero-extended to 64 bits before it is added to xB,
and the result is then stored in xA. If xB’s bottom 32 bits
are all zeroes, this has the effect of combining xB’s top 32
bits with xC’s bottom 32 bits, while ignoring the existing top
32 bits in xC. This is particularly important for SFI, since it
allows us to take a value in xC and directly replace its top 32
bits with a constant stored in the top 32 bits of xB.

We can store each sandbox in an aligned 4GiB region, and
put the base address of the region in xB. Since 232 is 4GiB and
the base address is aligned to 4GiB, xB will contain all zeroes
in its bottom 32 bits. Then, for some address stored in xC,
no matter what it contains, the add instruction from above
will force xC’s top 32 bits to be equal to the top 32 bits of the
base address — forcing it to be an address within the bounds
of the 4GiB sandbox. The resulting “fixed” address will be
stored in xA. If xC already contained an address within the
sandbox, the instruction will just perform a move from xC
to xA, but if not the instruction will generate an in-bounds
address in xA. This forms the basic guard instruction for
our SFI implementation because it always produces a valid
address.
Next, we make use of reserved registers for sandbox in-

tegrity. LFI reserves five general-purpose registers for the
system:

• x21: contains the base address of the sandbox region.
• x18: always contains a valid sandbox address.
• x22: always contains a 32-bit value.
• x23: always contains a valid sandbox address.
• x24: always contains a valid sandbox address.

Only the first two of these registers must be reserved to
implement the sandbox. The remaining three are used for
optimizations because we found the impact of reserving up
to five registers to be minimal. The particular choices of
reserved registers are not especially important, but we try
to reserve roughly equal numbers of callee- and caller-saved
registers.

Some special registers also have invariants:
• x30 (return address/link register): always contains a
valid jump target within the sandbox.

• sp: always contains a valid address within the sandbox.
These reserved registers allow us to perform safe memory

accesses. For example, since x18 is guaranteed to always
contain a valid address within the sandbox, loading from the
address it contains is always safe.
The add guard instruction can then be used in tandem

with a reserved register to transform an arbitrary unsafe
instruction (memory access or indirect branch) into a safe
one. For example, a load such as ldr x0, [x1] becomes:
add x18, x21, w1, uxtw
ldr x0, [x18]

The first instruction performs a safe move from x1 into
x18, preserving the invariant that x18 always contains a
valid address no matter what x1 contains. Since x18 is a
reserved register that must always contain an address that is
within the sandbox bounds, it is safe to load from its value. It
is safe to execute both instructions separately (a direct jump
to the load would be safe), but the combination of the two
preserves the semantics of the original ldr x0, [x1].
We treat the sandbox as one 4GiB region without using

SFI to isolate code and data segments and instead use hard-
ware protection to prevent writes to the program code and
execution of program data, following the same approach as
NaCl [66]. The text segment is marked as read/execute-only,
and other segments are marked as non-executable. Critically,
these hardware protections only need to be modified when
the system is initialized. During execution, we can safely
context switch between processes or the runtime without
modifying any page protections. Sandboxes are placed im-
mediately next to each other to maximize the number of
sandboxes that can be supported in a single virtual address
space. In order to allow addressing modes that use small im-
mediates, we also reserve 48KiB1 guard regions (unmapped
pages) at the beginning and end of the sandbox. This means
the address generated by [sp, #i] is guaranteed to be safe
1This size is the smallest multiple of 16KiB — the page size on Apple ARM64
machines — that is greater than 215 + 210, allowing a stack pointer optimiza-
tion discussed in Section 4.2.



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Zachary Yedidia

128MiB

code data

4GiB 

48KiB

......

Figure 1. The layout of an LFI sandbox (not to scale). The
base address must be aligned to a 4GiB boundary. Guard
regions of size 48KiB are shown in red. The code must be at
least 128MiB away from any executable region in neighbor-
ing sandboxes. One page is reserved between guard regions
for the runtime call table, discussed in Section 4.4.

since it will either point inside the sandbox or inside a neigh-
boring sandbox’s guard region (#i is limited to 15 bits2 by
the encoding, and sp is guaranteed to be within the sand-
box). To prevent jumps from a sandbox into its neighbor, a
sandbox’s code region must be at least 128MiB away from
any executable regions in its neighbors. This is satisfied sim-
ply by not placing executable code in the last 128MiB of a
sandbox. The sandbox layout is shown in Figure 1.
The total number of sandboxes supported by the system

depends on the size of the virtual address space. Typical
ARM64 machines support a 49-bit virtual address space, with
half reserved for the kernel, and half given to userspace.
In the 48-bit userspace region, LFI can support up to 64Ki
sandboxes3. With access to the kernel address space, either
via virtualization or via bare-metal control, LFI can support
up to 128Ki sandboxes.
When a sandbox is initialized, a static verifier reads the

text segment and ensures that the program follows all invari-
ants necessary to maintain isolation, such as the reserved
register invariants. For example, it will reject any instruction
that writes to x18 without using the invariant-preserving
guard discussed earlier. The static verifier is discussed in
more detail in Section 5.2.

4 Optimizations
The add guard discussed in the previous section is an effec-
tive instruction for SFI, but it executes with 2-cycle latency
and half-throughput on both Apple and Arm CPU designs.
Our goal for optimizing the SFI scheme is thus to decrease
the guard overhead down to 1- or 0-cycle latency. We refer
to microarchitectural documentation [8] and analysis [27]
for instruction latency and throughput information.

4.1 Zero-instruction Guards
In the basic SFI scheme, load/store instructions must use a
reserved register that is first loaded via the guard instruction.
However, for typical load/store instructions we can take
advantage of ARM64’s addressing modes to perform the
2Memory accesses targeting 128-bit SIMD registers allow a 16-bit offset.
To allow these accesses (rather than rejecting them), guard regions can be
increased to 80KiB.
3One sandbox region may need to be dedicated to the runtime.

Original code Sandboxed equivalent
ldr rt, [xN] ldr rt, [x21, wN, uxtw]

ldr rt, [xN, #i]
add w22, wN, #i
ldr rt, [x21, w22, uxtw]

ldr rt, [xN, #i]!
add xN, xN, #i
ldr rt, [x21, wN, uxtw]

ldr rt, [xN], #i
ldr rt, [x21, wN, uxtw]
add xN, xN, #i

ldr rt, [xN, xM, lsl #i]
add w22, wN, wM, lsl #i
ldr rt, [x21, w22, uxtw]

ldr rt, [xN, wM, uxtw #i]
add w22, wN, wM, uxtw #i
ldr rt, [x21, w22, uxtw]

ldr rt, [xN, wM, sxtw #i]
add w22, wN, wM, sxtw #i
ldr rt, [x21, w22, uxtw]

Table 3. Transformations for load operations using the
guarded addressing mode, which allows us to optimize guard
overhead down to 1 cycle or less. Most of these transforma-
tions each only impose 1 cycle of additional overhead, and
the base transformation imposes 0 cycles of additional over-
head. The same transformations can be re-used for store
instructions.

guard directly in thememory access instruction. In particular,
the following load is guaranteed to be safe to execute, thanks
to the 32-bit addressing mode:
ldr rt, [x21, wN, uxtw]

This performs the same operation as a load of xN in an
unsandboxed program. The guard becomes embedded in the
memory operation itself, meaning that basic loads/stores
(without an offset) can be transformed into safe equivalents
at no cost: microarchitectural documentation shows that
both forms have equivalent performance.
In addition, sandboxing the more complex addressing

modes can now be done more efficiently than with the orig-
inal two-cycle guard. For example, while the [xN, #i] ad-
dressing mode cannot be transformed into a safe load at
no cost, the use of the 32-bit addressing mode reduces the
latency of its sandboxed equivalent by one cycle. All trans-
formations are shown in Table 3.
Some specialized load/store instructions do not have ac-

cess to the guard-form addressing mode. Examples include
multi-register operations (ldp/stp), and atomic instructions.
These instructionsmust be guarded using the basic technique
via a reserved register and the add guard.

4.2 Stack Pointer and Return Address Isolation
Like most SFI systems, we make optimizations in order to
efficiently handle stack accesses and function returns. Both
the stack pointer and the link register (containing the return
address) are assumed to always contain pointers, and rather
than introduce guards when those pointers are dereferenced,
we perform the guards when the registers are modified.

Guards must only be inserted when the link register is
loaded from memory (often at the end of a function). As a
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result, functions that do not save/restore the link register do
not need any additional guards.
On ARM64, the stack pointer is a special register and

cannot be used in all the same cases as a general-purpose
register. In particular, it cannot be used as an operand in the
zero-extending add instruction that we are using as a guard.
This means that we have to expand our stack pointer guard
into a two-instruction sequence:
mov w22, wsp
add sp, x21, x22

This sequence uses the invariant that x22 must always
have 32 zeroes in its top bits. As a result, we can use a normal
add instruction as the guard, which saves one cycle. This
is a specific case of a “pre-extension” optimization that we
also implemented more generally: it attempts to avoid the
need for zero-extending add instructions by performing the
zero-extension as part of an earlier instruction, but after
benchmarking we found little benefit in general.
Since the stack pointer always contains a valid address,

we can completely drop guards for basic register-immediate
addressing modes. The more complex register-register ad-
dressing modes still require transformation into basic equiv-
alents, but uses of such addressing modes with the stack
pointer are rare. In general, the stack pointer must always
have guards inserted when it is modified, but we do apply
optimizations that allow us to drop these guards sometimes,
as discussed below.

Pre/post-indexed modification. When the stack pointer
is modified as part of a load or store instruction via the
post/pre-index addressing mode, a guard is not necessary as
the stack pointer can be known to be valid. In the pre-index
case, the memory access would cause a trap if sp exited the
bounds of the sandbox into a guard page, so after thememory
access completes, we are certain sp contains a pointer within
the sandbox. In the post-index case, for the same reason the
stack pointer was guaranteed to bewithin the sandbox before
the modification took place (in the post-index case, sp is
modified after thememory access). After themodification, sp
must be at most 210 bytes away from the sandbox (pre/post-
index immediates at most 10 bits), which could not be past a
guard region. If sp is subsequently modified by an arithmetic
instruction, a guard will be introduced. Otherwise, if sp is
subsequently accessed it will be within the sandbox or a
guard page. A second pre-index mode can only move the
stack pointer by another 210 bytes — still well within the
guard region — before performing an access that will cause a
trap. A normal immediate mode can index at most 215 bytes
away, and 215 + 210 is also still within the guard region.

Later access within the same basic block. If the stack
pointer is modified by an add/sub-immediate instruction
with a sufficiently small immediate (less than 210), but is
later accessed by a memory operation in the same basic

str x0, [x1, #8]

str x0, [x1, #16]

str x0, [x1, #24]

str x0, [x1, #32]

(a) Before LFI

add x24 , x21 , w1, uxtw

str x0, [x24 , #8]

str x0, [x24 , #16]

str x0, [x24 , #24]

str x0, [x24 , #32]

(b) After LFI

Figure 2. Example demonstrating the effect of redundant
guard elimination. Instead of using a guard for each store
instruction, a single guard can be used for all four. Since the
hoisting register is reserved, the optimization is resistant to
jumps that skip the guard.

block (i.e., without a branch in between), the guard can be
safely omitted. This is a classic SFI optimization that is safe
since the immediate is limited to a size smaller than that
of the guard page. The stack pointer may move outside the
sandbox into a guard page, but after the modification the
machine is guaranteed to execute the memory operation that
accesses sp, causing a trap if it moved into a guard page.

4.3 Redundant Guard Elimination without CFI
Programs often perform several loads/stores in a row, each
offset from the same base register. This pattern can be com-
mon when accessing array or struct elements. We have an
optimization that eliminates these redundant guards by per-
forming an initial guard, storing the result in a reserved
“hoisting” register, and subsequently performing all accesses
offset from the hoisting register. An example of this opti-
mization is shown in Figure 2. This optimization can help
both runtime and code size.
This optimization is inspired by prior work [68], but un-

like prior work, our implementation does not rely on the
enforcement of control-flow integrity (CFI) via additional
mechanisms. Since ARM64 is a register-rich ISA, we are able
to apply this optimization without needing strong CFI guar-
antees by using an additional reserved register. In addition,
using a reserved register keeps the verifier simple because
it only needs to check that the reserved register is modi-
fied using a guard instruction and to allow loads/stores that
use the reserved register — it does not need knowledge of
the hoisting optimization in order to verify its correctness.
We reserve two registers (x23 and x24) for the purpose of
redundant guard elimination. The second register makes it
possible to hoist two sets of redundant guards in the same
basic block.

4.4 Runtime Calls without Trampolines
The sandboxmust be able to make calls to the runtime so that
it can perform operations (such as system calls) on behalf of
the sandbox. One solution would be to place the runtime call
entrypoint address in a reserved register and allow indirect
branches to that register, but this would involve reserving an
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additional register exclusively for this use. Instead, we take
advantage of the fact that the reserved register x21 already
points to the base of the sandbox. We can place a table of
runtime call addresses in the first page of the sandbox, and
mark it as read-only. It is then followed by the guard region
and the program code. Loads offset from x21 are permitted to
write to register x30, as long as the following instruction is
blr x30, which resets x30 to an address within the sandbox.
Since this table is located before the guard region, it can be
read by the neighboring sandbox, and must therefore not
contain any sandbox-specific secrets.
Thus a runtime call looks like the following instruction

sequence4.
ldr x30, [x21, #n]
blr x30

This also has the benefit that the program can statically
load the runtime call function pointer it wants and jump
to it directly, without needing to use a register to identify
the desired runtime call, and without incurring additional
overhead in the runtime to dynamically determine which call
was requested. This optimization is used as part of our fast
direct yield runtime call, discussed in Section 5.3. Unused
entries in the table point to an unmapped page, and the
verifier is also used to ensure the value of n is valid.

5 Implementation
A classic SFI implementation requires three parts: the com-
piler that generates programs that pass verification, the static
verifier, and the runtime. In this section we discuss the im-
plementation of each of these components.

5.1 Compiler
Many prior SFI systems that work with GCC or LLVM have
been implemented as modifications to the corresponding
compiler toolchain. For example, the latest versions of NaCl
are implemented by several thousand lines of modifications
to LLVM, and other SFI systems often similarly choose to
modify LLVM. By contrast, our system is not fundamentally
tied to a particular compiler toolchain, and is implemented
independently.

The implementation consumes assembly source code files
generated by the compiler, and produces assembly source
code files with SFI guards inserted to be then passed to the
assembler. We can accept assembly source from LLVM, GCC,
or any other compiler toolchain that can produce GNU as-
sembly text. Our compiler tool wraps Clang to automatically
output an intermediate .s file that is then transformed by the
LFI tool and then fed to the assembler. Clang is invoked with
-ffixed-reg flags to prevent it from using reserved regis-
ters. To simplify implementation even more, we first pass
4Saving and restoring x30 may additionally be necessary. Our current im-
plementation conservatively always saves/restores x30 when inserting this
sequence.

the assembly file through llvm-mc, a tool that preprocesses
assembly files and resolves local labels, assembler macros,
assembler expressions, and other features of the GNU assem-
bly format. Our optimizing assembly transformation pass is
implemented in roughly 1,500 lines of code, including code
for parsing and emission.
There are two components to a compiler toolchain: the

compiler itself, and the runtime libraries needed for the
generated program to function properly. For example, a
hosted C program may be compiled with Clang, and must be
able to link with a libc implementation and either libgcc or
compiler-rt (i.e., a library that implements compiler intrin-
sics). While our tool accepts assembly output from any com-
piler toolchain, the toolchain must still use SFI-instrumented
versions of the runtime libraries. We currently provide in-
strumented versions of the LLVM/musl C/C++ toolchain:
musl-libc [44], compiler-rt, libc++, libc++abi, and libunwind
[36]. In the future we also hope to provide an LFI-compatible
GNU toolchain, as well as toolchains for other languages.

Difficulties. ARM64 contains local branch instructions
(tbz/tbnz) that can only jump a relative distance up to 32KiB
in either direction. It is possible that in an especially large
function, inserting SFI instructions can cause one of these
branches to target a destination that is out of range. We solve
this by conservatively estimating the distance between local
branches and their targets, and replacing the branch with a
two-instruction sequence that can target further destinations
if the estimate indicates that this is necessary.

Another issue we encountered involved LLVM’s “AArch64
compressed jump table” pass [35]. This pass attempts to
compress jump table offsets from 32-bit words into shorts or
bytes by checking if the offset between the jump base and
jump target is small enough to fit into a smaller storage unit.
Since we add guards after this pass, the offset may change
and the storage unit may become too small to store the offset.
We solve this issue by disabling the AArch64 compressed
jump table pass.

Why not implement in LLVM directly? Most prior SFI
implementations choose to modify LLVM directly. We deter-
mined that this was less practical than parsing GNU assembly
because it ties the implementation to a particular compiler
toolchain, and usually even a particular version of LLVM.
Maintenance would be more difficult since LLVM moves
quickly and makes major changes across versions, and devel-
opment would be more complex because the project would
depend on a megasystem with millions of lines of code. We
have seen several projects become stuck on old versions of
LLVM due to the maintenance burden of keeping up-to-date.
In addition, the benefit of modifying LLVM directly is

minimal. Most of the guards must use architecture-specific
instructions, and it is useful to be able to instrument assem-
bly code files since some projects contain .s files as source
code. Such files do not get translated to LLVM IR, or even
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LLVM MIR — .s files are directly converted to MCInstr
structures, without even the possibility of using a backend
pass. The modifications must therefore be made in the as-
sembler, which is not designed to support passes or store
CFG information.

5.2 Static Verifier
The static verifier is a small program that reads the text
segment of a binary that the user wishes to execute and
performs a single linear pass to verify that the machine
code is well-behaved. Specifically, it ensures the following
properties:

1. Loads, stores, and indirect branches may only target re-
served registers (guaranteed to always hold valid sand-
box addresses), or use safe addressing modes (where
the addressing mode guarantees the resulting address
is valid).

2. Reserved registers are only modified in safe ways: x21
is never modified, and registers such as x18 and x30
are only modified using the add x18, x21, wN, uxtw
instruction, which guarantees that the result stored in
x18 is a safe address.

3. No unsafe instructions are used (e.g, a system call in-
struction). We only allow instructions from a premade
list of safe ARMv8.0 instructions.

The verifier is vital because it keeps the trusted code base
small. Unlike most language-based sandboxing systems, the
compiler that produced the program does not need to be
trusted. This is because all security properties are checked
directly on the machine code, after the compiler has finished
running. By contrast, WebAssembly implementations that
use LLVM assume that the generated code is safe. As a result,
they must trust that all LLVM passes used during compila-
tion perform correct transformations. Using a static verifier
provides a major reduction in TCB size, especially when the
trusted compiler being removed is LLVM. While it is possi-
ble to use a static verifier with the Cranelift WebAssembly
backend [28], such a verifier is more complex, slower, and
directly tied to Cranelift. By contrast, the LFI verifier is fast
and can verify binaries at a rate of around 34 MB/s on a
Macbook Air (all SPEC 2017 binaries verify in under 0.3
seconds per binary). For additional comparison, the WABT
WebAssembly validator, which type-checks WebAssembly
bytecode (a required validation step), runs at 3 MB/s on the
same machine.
The core of the verifier is implemented in 300 lines of

Rust. It additionally makes use of the Binary Ninja ARM64
disassembler [31], an ELF reader, and a list of instruction
definitions, which are not counted as part of the core. Despite
the small core, the external dependencies are larger than we
would like, and we are pursuing improvements to the verifier
to reduce its external dependencies.

One major aid to the construction of the static verifier
is Arm’s Machine Readable Specification (MRS) [9], which
provides a complete formal definition of the ARM64 ISA.
The MRS is used to auto-generate most of the disassembler,
and to generate instruction definitions. These definitions
list instructions that can perform indirect branches, modify
registers, or access memory — knowing such instructions is
of vital importance to the verifier.

5.3 Runtime
The runtime is a single process that manages sandboxes as
they run and provides mediated access to the underlying host
machine. ELF executables are verified and then loaded into
appropriate 4GiB slots in the address space. The runtime also
marks the first page of the sandbox as read-only and places
the runtime call table there, so that the applicationmay safely
call the runtime without the need for a trampoline.

The runtime supports a set of basic runtime calls such as
open, read, write, fork, wait, pipe, mmap, and more. This
effectively implements a small Unix-like operating system
within a single Linux process. When a sandbox makes a
runtime call such as open, the runtime first checks the argu-
ments for correctness. For example, the runtime can disallow
all access to certain directories. Runtime calls that perform
file access will often end up making a system call to Linux,
while runtime calls that perform process management, such
as fork, wait, or yield, are handled internally. Internal run-
time calls can speed up applications significantly since there
is no need for a mode switch or pagetable switch to handle
them.
The runtime also supports a special optimized yield for

performing an inter-process call. This yield implementation
directly invokes another sandbox by saving and restoring
only the callee-saved registers, and can be used to implement
microkernel-like IPC. Since no hardware context switch is
required, the inter-process call is extremely fast, costing
roughly 50 cycles.
The runtime uses signals for preemption. An alarm sig-

nal is repeatedly generated using a timer configured with
setitimer. When the signal arrives, the runtime uses its
scheduler to decide which sandbox to run next.
One useful consequence of performing SFI using guards

that force pointers back into the sandbox is that it becomes
possible to implement fork in a single address space. Since
the top 32 bits of all pointers are reset before any memory
access, pointers can be constructed as 32-bit offsets within
a 4GiB region that could be located anywhere. This can be
achieved by zeroing the top 32 bits of addresses constructed
with adr/adrp, read from reserved registers, or returned
from the runtime. When a fork occurs, the child is placed at
a new base address, which will be added to its pointers when
they are accessed. Implementing fork as copy-on-write is
also possible through the use of Linux’s memfd API to map
the same memory at multiple places in the address space.
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Figure 3. The effects of the various optimizations we apply. The data bars are shown in the same order as the legend.

6 Evaluation
We evaluate LFI using the SPEC CPU2017 benchmark suite
[13]. SPEC 2017 is the most recent iteration of the industry
standard SPEC CPU benchmark suite, comprising programs
written in C, C++ and Fortran. SPEC 2017 has two cate-
gories: SPECspeed, which requires up to 16GB of RAM, and
SPECrate, which requires up to 1-2GB per copy, and may run
multiple copies of a benchmark in parallel. Since our sand-
boxes are limited to 4GiB in size, we only use single-copy
SPECrate benchmarks, which are typically just the same
as SPECspeed programs but with smaller inputs. We also
limit the benchmarks to C/C++ programs that compile with
musl-libc, resulting in 14 supported benchmarks5. We evalu-
ate on two machines: an Apple M1 Macbook Air (3.2 GHz)
running Asahi Linux 6.3.0 and LLVM 15.0.7, and a Google
Cloud Platform (GCP) T2A instance (3.0 GHz) running Linux
6.1.0 and LLVM 15.0.7. The M1 represents close to the best
performance available for ARM64 machines, and the GCP
machine represents a virtualized environment on a server-
class machine.
Our goal in evaluation is to determine the runtime and

code size overhead of the additional SFI checks, and how
these overheads compare with WebAssembly (the only other
software sandboxing system that supports ARM64) as well
as hardware-based isolation. We are also interested in the
individual effects of the various optimizations we apply.

6.1 Runtime Overhead
We would like to determine how much runtime overhead is
introduced by the additional guard instructions and trans-
formations used by LFI. We do this by compiling both with
the guards (LFI) and without (native). Since LFI can speed
up system calls, we run the native version within the LFI
environment so that it also benefits from accelerated system
calls. In our testing, this made a difference on the 502.gcc_r

5perlbmk and blender rely on Glibc-specific features.

benchmark, where LFI was faster than native code running
directly under Linux because the benchmark was frequently
allocating and de-allocating large regions of memory with
mmap, and incurring overhead from frequent system calls.
Running native code within the LFI runtime removes this
advantage that LFI has over standard native code.

Optimization effects. Since our assembly transformer
applies various optimizations, we would like to analyze the
effect of each optimization on overall performance. We split
the optimizations into multiple levels:

• O0: only uses the basic two-cycle guard instruction.
All optimizations are disabled except ones that apply
to the stack pointer.

• O1: enables use of the zero-instruction guard, and ad-
dress mode rewriting to take advantage of it.

• O2: enables redundant guard elimination.
• O2, no loads: does not perform sandboxing for loads.

The performance of each optimization level is shown in
Figure 3. The jump between O0 and O1 is especially large.
This shows the importance of optimizing the guard instruc-
tion down from two cycles to either one or zero cycles for
common load/store instructions. We face diminishing re-
turns beyond this primary optimization. Redundant guard
elimination provides about a 1.5% overhead reduction (and
the code size reduction is also useful).
With all optimizations enabled (LFI O2) the geometric

mean is 6.4% on the M1 and 7.3% on the T2A. On the M1, the
worst benchmark is leela_r, with a runtime overhead of
17%, and it is the only benchmark with over 10% overhead.

Figure 3 also shows the performance of pure “fault isola-
tion,” where loads are not isolated. This allows sandboxes to
read, but not modify, each other’s data. This form of isola-
tion is only suitable for certain use-cases, such as software
compartmentalization, but reduces overhead to around 1%.
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Figure 4. Shows the performance overheads of LFI and various WebAssembly engines against native code compiled with LTO.
On average, LFI has less than half the overhead of Wasm, and significantly outperforms Wasm on several benchmarks. All
systems used ahead-of-time compilation.

6.2 Comparison with WebAssembly
Next we compare with several WebAssembly engines by
using their WASI support. WebAssembly/WASI has limited
feature support: it does not support C++ exceptions, setjmp/-
longjmp, or certain system calls needed by some benchmarks.
Two benchmarks (nab and x264) also needed to be slightly
modified in order to compile with WebAssembly6. Overall,
these limitations restrict benchmarking to 7 of the 14 bench-
marks. For comparison, we select the two most performant
WebAssembly compilers:

• WAMR (also called iwasm) [2]: a WebAssembly com-
piler and engine built on LLVM. It supports an ahead-
of-time (AOT) compiler that uses LLVM to transform
Wasm directly to machine code, which we use for
benchmarking.

• Wasm2c [10]: a compiler that produces C from Web-
Assembly input. An optimizing C compiler (Clang in
this case) can then be used to emit machine code. We
use the UVWASI library [50] with Wasm2c to produce
native binaries that can make system calls.

We use the most recent versions of WAMR and Wasm2c
at the time of writing: 1.2.2 and 1.0.33, respectively.
Other WebAssembly compilers and runtimes exist but

either do not perform full sandboxing, or do not outper-
form WAMR/Wasm2c. In general, we find that Wasm2c and
WAMR currently represent the most efficient sandboxing
Wasm compilers/runtimes, in agreement with prior work
[15]. Notably, no WebAssembly compiler that uses LLVM
also supports a native code verifier, so LLVM is free to per-
form as many optimizations as it can without any constraint
that the generated code be verifiable.

6These modifications were minimal and involved marking errno as thread-
local, and fixing two conflicting function signatures.

We also benchmarked Wasmtime [1] 16.0.0, even though
it uses Cranelift rather than LLVM, because it is one of the
most widely used WebAssembly engines and serves as a
baseline. Benchmarking was done with Wasmtime’s AOT
compiler rather than its JIT compiler.

All WebAssembly engines were given WebAssembly byte-
code generated by Clang and further optimized by the wasm-
opt tool, and we enabled the SIMD128 extension for all
benchmarks. All engineswere also configured to omit bounds
checks and use guard pages for protection instead.

Optimizations to Wasm2c. We made two modifications
to Wasm2c to improve its performance. First, Wasm2c’s de-
fault configuration has a lot of overhead because it attempts
to strictly adhere to the WebAssembly specification, which
requires that out-of-bounds accesses must cause a trap. As a
result, Wasm2c includes a compiler barrier to prevent LLVM
from optimizing out loads and stores from WebAssembly
memories [63]. Since this barrier can have a significant ef-
fect on performance, we removed it. WAMR has chosen a
different default: it does not include such a barrier, and has
no option to enable one [21]. As a result, both WAMR and
our modified version of Wasm2c are non-conforming Web-
Assembly implementations, and do not pass tests that check
for adherence to WebAssembly’s deterministic trap seman-
tics.

Second, Wasm2c stores the current module’s heap base in
a struct, and passes a pointer to this struct to all functions.
When a memory access is made, the 32-bit pointer is offset
into the heap base, which must be loaded from the struct.
This introduces an additional load instruction for every mem-
ory access (except when LLVM can perform hoisting). In-
stead, the heap base could be pinned in a reserved register
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System Geomean (T2A) Geomean (M1)
Wasmtime 47.0% 67.1%
Wasm2c 40.7% 37.5%
Wasm2c (no barrier) 21.5% 20.8%
Wasm2c (pinned reg) 16.5% 15.7%
WAMR 22.3% 18.2%
LFI 7.3% 6.4%

Table 4. Geometric mean of the overheads over native code
(LTO) for various sandboxing systems on the benchmarks
from Figure 4.

to avoid these loads, which we implement to increase the
performance of Wasm2c7.

Results. We compare WebAssembly against link-time op-
timized (LTO) versions of native code and LFI (providing
full isolation). This is because ahead-of-time WebAssembly
compilation intrinsically has the benefit of LTO by running
an optimizing compiler that has a full view of the entire com-
pilation unit. Figure 4 compares WebAssembly overheads
to LFI on 7 SPEC 2017 benchmarks. We find that the Wasm
runtimes reach geomean overheads of around 15% at best,
while LFI has 6-7% overhead on the same set of benchmarks.
Geomean overheads are shown in Table 4.

The difference in overhead between LFI andWebAssembly
may partially be explained by the increased number of com-
pilation steps for WebAssembly. The compiler first targets
the safe Wasm IR, then possibly C, and finally machine code.
These additional steps make it more difficult for the com-
piler to make correct decisions about function inlining and
auto-vectorization.

Another factor in play is the additional checks that Wasm
performs for indirect function calls. Wasm must ensure that
the function being called is valid and has the correct type
signature, while LFI just verifies that the target address is
within the sandbox.

6.3 Code Size Overhead
Code size overhead is generally not as large a concern as
runtime overhead, but can be important when transferring
binaries over a network or when disk space is scarce.
Since our SFI scheme does not use any alignment con-

straints, it does not introduce additional padding. The lack
of padding, zero-instruction guard, and redundant guard
elimination optimizations result in quite modest code size
increases. We calculated the percent increase in code size for
both the text segment and the overall binary for the SPEC
2017 subset supported by LFI, and observed a geomean text
segment increase of 12.9% and overall binary size increase

7Our implementation of reserved heap registers in Wasm2c does not fully
handle cross-module indirect calls. This may cause Wasm2c to handle indi-
rect calls faster than it would in a fully conforming implementation.

of 8.3%. By contrast, for the subset of benchmarks supported
by WebAssembly, we found that WAMR incurs a geomean
overall binary size increase of 22%.

6.4 Comparison with Hardware-based Approaches
An alternative to software sandboxing for usermode isolation
is to use hardware-based techniques such as virtualization
and containerization. These techniques generally have lower
CPU overheads thanks to dedicated hardware support, but
suffer from worse context switch performance. Virtualiza-
tion makes it possible to run guest kernel code in userspace,
with another layer of pagetables for isolation between pro-
cesses running within the guest kernel. This incurs modest
CPU overhead, as shown in Figure 5, because the cost of a
TLB miss is doubled due to the additional pagetable levels.
An additional weakness of virtualization is that it is already
used universally by cloud providers, meaning that nested
virtualization would be required when running in such an en-
vironment. This may cause additional performance overhead,
or may be entirely unusable: for example, nested virtualiza-
tion is not supported on the T2A instance.
Containerization is a different approach that makes use

of Linux APIs to allow one process to control and handle
the system calls made by another process in a secure way.
While there is no CPU overhead for this approach, the inter-
process communication between the sandboxed process and
the handler suffers from the high context switch costs that
exist on Linux.

We have implemented microbenchmarks to compare LFI’s
context switch performancewith hardware-based approaches,
shown in Table 5. We compare LFI both with Linux, repre-
senting typical pagetable-based hardware protection, and
gVisor [18], representing the containerization approach. Our
benchmarks with gVisor use its recently released systrap
platform (August 2023), which is significantly more perfor-
mant than the older ptrace platform. Unfortunately gVisor
does not support systems with page sizes other than 4KiB,
making it unsupported on Asahi Linux, which uses 16KiB
pages, so we can only include it in the T2A results.

The syscall benchmark measures the time needed to per-
form a system call that performs no work (i.e., getpid). Since
LFI does not require a hardware mode switch to transition
from untrusted code into the runtime, the syscall bench-
mark outperforms Linux (standard hardware protection) by
a factor of 6. Furthermore, since gVisor must handle system
calls via communication between multiple Linux processes,
it must perform multiple context switches just to handle a
system call.
The pipe benchmark aims to measure the overhead of

switching between two isolation domains via a system call.
The benchmark sets up two pipes between two processes
that repeatedly pass one byte of data back and forth. Since
the data passed in the pipe is minimal, the majority of time
is spent switching between processes.
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Figure 5. Comparison of the overheads of LFI and KVM
(using a Ubuntu 20.04 virtual machine) on an Apple M1.

Benchmark LFI Linux
syscall 22ns 129ns
pipe 46ns 1504ns
yield 17ns -

(a) Apple M1 (3.2 GHz).

LFI Linux gVisor
26ns 160ns 12019ns
48ns 2494ns 22899ns
18ns - -

(b) GCP T2A instance (3.0 GHz).

Table 5.Microbenchmarks for measuring the overhead of
changing isolation domains.

The yield benchmark measures the time to make a cross-
sandbox function call, by changing the current isolation do-
main and directly invoking another sandbox. This is similar
to a microkernel-style IPC call. Linux and gVisor do not have
efficient mechanisms for this, but existing research on micro-
kernels suggests that the hardware-protection performance
limit is around 400 cycles [22, 53], which would imply that
IPC with LFI could be substantially faster than even highly
optimized existing microkernel IPC.

With currently available sandboxing techniques, there ap-
pears to be a tradeoff between average CPU overhead and
context switch performance. LFI demonstrates that state-of-
the-art software sandboxing can have CPU overheads much
closer to virtualization, while still maintaining its advan-
tage in context switch speed. We believe the performance
could be further improved with direct hardware support,
similar to that of virtualization, and provide some design
recommendations in Section 7.3.

7 Discussion
In the last ten years there have been a number of develop-
ments related to SFI that are worth discussing in the context
of LFI. Speculation exploits have been discovered, and can be
particularly dangerous for SFI systems, which run mutually
untrusting code in the same address space. New ISAs and ISA
extensions are being developed, such as RISC-V, hardware

control-flow enforcement, and Intel APX [62], which change
how SFI may be implemented for various architectures. Fi-
nally, there have been proposals for hardware support for
SFI, and we give our recommendations for the design of
hardware with SFI in mind.

7.1 Side-channel Attacks
Spectre. When a processor executes instructions specu-

latively, it flushes architectural state if those instructions
turned out to be along an invalid path, but does not always
flush microarchitectural state. Spectre attacks use mispre-
dicted branches to speculatively execute instructions that
then modify microarchitectural state to reveal sensitive in-
formation via side-channels. Following prior work [46], we
are concerned with three types of Spectre attacks:

• Sandbox breakout: the sandbox uses mispredictions
within itself to access data from outside the sandbox.

• Cross-sandbox poisoning: a sandbox trains the branch
predictor so that it mispredicts a branch in another
sandbox, causing it to speculatively execute a Spectre
gadget that wouldn’t otherwise exist. This gadget can
then be used to extract sensitive information from the
other sandbox.

• Host poisoning: the same attack as cross-sandbox poi-
soning, but applied to the host runtime instead of an-
other sandbox.

Sandbox breakout attacks work by using speculation to
circumvent CFI guarantees. This is effective against Web-
Assembly, which requires CFI and enforces it via the trusted
compiler and some dynamic checks for indirect calls. By
contrast, LFI does not rely on any fine-grained CFI guaran-
tees: jumping anywhere in the sandbox — speculatively or
not — is legal, and LFI enforces that all jumps remain in the
sandbox with simple data-flow-based guards. As a result, LFI
mitigates sandbox breakout attacks by construction.

The remaining two poisoning attacks are more difficult to
use, but also more difficult to mitigate. The straightforward
solution is to use Arm’s CSV2_2 extension for Spectre mitiga-
tion [6], which introduces software context numbers via the
system register SCXTNUM_EL0. The hardware enforces that a
program running within one software context cannot be in-
fluenced by a program running in another software context
through the use of side-channels using “branch prediction
and similar resources.” [7] The runtime and each sandbox
would be assigned a different software context number, pre-
venting them from sharing speculation resources. This ex-
tension is present in Arm’s latest processors starting with
the Cortex-X2 generation. This approach does require modi-
fying SCXTNUM_EL0 when entering and leaving the runtime,
which will likely have some cost8.

8Linux does not yet enable this feature and hardware with support for this
feature is not yet widely available, so we were not easily able to measure
the cost of changing the software context.
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General side-channels. With hardware support for soft-
ware context numbers, LFI processes are susceptible to side-
channel attacks in mostly the same ways as processes that
use hardware protection. However, software protection can
be additionally helpful for preventing side-channel attacks
in certain cases. Since the system already uses a static veri-
fier, disallowing exploitable instructions when vulnerabilities
are discovered becomes easy. For example, recent work has
shown that the ARM64 LL/SC instructions can be used to
perform a timerless side-channel attack on M1 Macs [67].
This kind of exploit is traditionally difficult to mitigate with-
out hardware modifications, but with software protection
those instructions can be simply disallowed by the verifier.

7.2 Application to Other Architectures
LFI primarily takes advantage of fixed-width encodings and
32-bit support within the ISA to provide an SFI scheme that
is highly efficient while supporting tens of thousands of
isolation domains. While our current implementation is for
ARM64, we believe there are similarly efficient designs for
both x86-64 and RISC-V, and present the initial designs we
would use to port LFI to those architectures.

x86-64. The x86-64 ISA is a traditionally difficult target
for SFI since it has many instructions that can access memory
and has a highly variable-length encoding. Native Client sup-
ported x86-64 via 32-byte-aligned chunks, and also made use
of 32-bit support to accelerate SFI (but reserved much more
virtual memory for a single sandbox thanwewould like). One
of our goals is to avoid alignment constraints, and with the
release and deployment of Intel CET [25], this would be pos-
sible by using hardware-enforced CFI. Hardware-enforced
control flow would preclude the need for any alignment con-
straints, making it possible to reuse nearly the same design
as for ARM64. The scheme for x86-64 would reserve one
register (e.g., %r15) and place the sandbox base in a segment
register (%gs). Memory operations can then be safely rewrit-
ten as 32-bit offsets from %gs, with the syntax %gs:r15d. We
expect this would have comparable overhead to our ARM64
implementation. One implementation difficulty is that Linux
currently does not support indirect branch tracking (a sub-
set of Intel CET) in usermode, which is necessary to avoid
relying on alignment constraints.

RISC-V. The main difficulty in applying LFI to RISC-V is
in including support for compressed instructions, since RISC-
V does not currently have support for hardware-enforced
CFI. If we enforce a minimal alignment constraint that every
jump target must be 4-byte aligned, then we can uncompress
instructions as necessary tomeet this constraint, and inmany
cases still make use of compressed instructions (if two com-
pressed instructions are side-by-side). This small alignment
constraint prevents the ability to jump into the middle of 4-
byte instructions, and we do not expect it to introduce much
code size overhead. The add.uw instruction from the Zba

extension can be used to perform an efficient guard, much
like the ARM64 implementation. However, RISC-V does not
have any register-register addressing modes, but if processor
designs perform instruction fusion between common ad-
dressing instructions and memory operations, performance
might still be comparable to the ARM64 implementation.

7.3 Recommendations for Hardware Design
We believe it is possible to design hardware with fast fault
isolation in mind and believe this would look similar to past
hardware segmentation implementations. Since a key factor
is that changing protection domains must be fast, the design
might still make use of a static verifier rather than privilege
levels to prevent the execution of unsafe instructions. When
sandboxing is active, the hardware would automatically per-
form masking for loads, stores, and indirect jumps as part
of the instructions themselves. It would use a protection do-
main base register to directly set the top bits of the pointer
before making an access.
If the architecture supports a variable-width instruction

encoding, it is imperative to provide strong support for
hardware-enforced CFI.

8 Related Work
Software-based fault isolation. Our approach was heav-

ily informed by the original SFI work by Wahbe et al. target-
ing MIPS and Alpha — particularly their use of reserved reg-
isters for safe sandboxing, and optimizations related to guard
pages and stack references [61]. Due to somewhat expensive
guard sequences (two bitwise operations), the SFI system
presented byWahbe et al. had higher average overheads (20%
on SPEC 92). As x86 became a popular ISA it became a target
for subsequent SFI projects [16, 39, 40, 55]. Pure software ap-
proaches continued to have high average overhead, though
some systems used x86 segmentation (now discontinued)
to improve sandboxing overhead [17, 66]. Many uses of SFI
only isolate stores and jumps, such as for improving kernel
reliability by separating components of the kernel [14, 38].

Google Native Client (NaCl) was a major project that ini-
tially applied SFI to x86 using segments [66], and then ex-
panded to ARM32 and x86-64 using pure software techniques
[52]. NaCl maintained low overhead across all of its target
architectures (roughly 5-7% on SPEC 2000) by optimizing
for the single-sandbox case. On ARM32, NaCl made use of
single-instruction bitwise guards that limit the number of
sandboxes to below 32. On x86-64 NaCl reserved 44GiB of
virtual memory per sandbox, limiting the system to less than
3,000 sandboxes. Additionally, in practice, the NaCl imple-
mentation never supported more than 1 sandbox. Like LFI,
NaCl x86-64 took advantage of instructions that operate on
32-bit subsets of 64-bit registers to accelerate SFI, and hence
also limited the sandbox’s memory to 4GiB in size. However,
NaCl did not make use of any addressing modes that allow
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the SFI guard to be performed as part of the address calcula-
tion. NaCl also required alignment constraints rather than
reserved registers for sandbox integrity, which caused code
size increases due to padding (average code size overheads
of 20% on ARM32 and 62% on x86-64).
Like many prior SFI systems, LFI uses a static verifier,

inspired by the general concept of proof-carrying code [49].
Several projects have investigated increasing verifier security
via formal verification and/or size reduction [28, 42, 69].

Language-based isolation. There is a long history of
using programming languages to provide security. One of
the first systems to do so was Pilot [51], an operating system
which required all code to be written in Mesa, a type-safe
language. Similarly, the Singularity operating system was
entirely implemented in a safe language called Sing#, and
relied on the language and its runtime to provide isolation
rather than any hardware mechanisms [24]. The SPIN op-
erating system used Modula-3 to allow kernel extensions
to be downloaded into the kernel [11]. More recently, some
projects propose to use Rust in this domain, since it pro-
vides memory safety without the use of a garbage collector
[12, 33, 48].

In order to support a wide variety of frontend languages,
it is also possible to design a safe language meant to be used
as an intermediate representation. Examples of this include
WebAssembly [20] and Java Bytecode [19]. WebAssembly
compilers insert dynamic checks for memory accesses and
indirect branches, and use a runtime to implement system
calls. Since WebAssembly programs are 32-bit, memories are
limited to 4GiB. Expensive bounds checks can be omitted by
reserving at least 6GiB of virtual memory per linear memory,
since Wasm allows a 32-bit displacement from the 32-bit
address for loads and stores.
Language-based isolation typically suffers from using a

trusted compiler, but typed assembly language can aid to
reduce TCB size by incorporating the language-based safety
features into a pseudo-assembly language that can be effi-
ciently compiled to machine code without requiring further
optimizations [41, 43, 65]. Another approach is to adapt SFI-
style verifiers to language-based systems, as done by Veri-
Wasm [28]. However, this approach involves coordination
between the verifier and the compiler’s optimizer, which can
result in a more complex and slower verifier, and has not
been achieved with an advanced compiler such as LLVM.

Hardware-based isolation. The typical mechanism for
the isolation of untrusted code is hardware protection via
the operating system. Operating systems make use of page-
tables to give each process a separate virtual address space,
and mark the kernel as inaccessible to user code within that
address space. In usermode, hardware protection can still
be used in the form of virtualization or containerization, as
discussed in Section 6.4. However, all of these approaches
suffer from the high cost of changing hardware contexts,

caused by privilege mode and pagetable switches, leading
to the research of several alternate mechanisms [3, 34, 56].
Microkernels in particular suffer from high context switch
costs, since they make use of frequent inter-process commu-
nication, and projects like L4 [22] have spent considerable
effort optimizing for this case.

Given the overhead costs of software-based fault isolation,
many prior projects have made use of alternative hardware
protection mechanisms or designed their own. Several sand-
boxing systems for x86 made use of segmentation [17, 66],
and more recently, systems for x86-64 have made use of Intel
MPK [57, 59] or MPX [29]. Similarly, on ARM32, ARMlock
made use of domains for fault isolation [70]. Approaches like
MPK and ARM domains typically only allow for a small num-
ber of protection domains, or have to resort to page-based
isolation to handle many domains. Some projects have gone
further, proposing custom hardware extensions for fault iso-
lation [47] and capability-based hardware [45, 64]. These
approaches are typically more suited to fault isolation, but
have not been widely deployed.

9 Conclusion
Lightweight sandboxes for running untrusted code are in-
creasingly important, and software-based fault isolation is an
effective way to provide lightweight isolation. Even though
classic SFI is an old technique, it lost traction due to lack of
efficient support for many sandboxes, as well as difficulties in
applying it to complicated and 32-bit ISAs, performance/code
size overheads, and the complexity of modifying massive
compiler toolchains. This work shows that many of these
issues can be resolved with new designs on available hard-
ware. We present LFI, an optimized SFI implementation for
ARM64, and implement it outside of a particular compiler
toolchain, massively reducing engineering effort and avoid-
ing the need to develop within a megasystem. We show
that LFI has lower overheads than WebAssembly, a mod-
ern language-based sandboxing system, while supporting
at least 1.5× more bounds-check-free sandboxes. On top of
these performance gains, LFI benefits from a small static
verifier to reduce TCB size, is hardened against basic Spectre
attacks, and has broad support for language mechanisms
such as exceptions, and ISA features such as SIMD.
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A Artifact Appendix
A.1 Abstract
This artifact demonstrates how to run the benchmarks per-
formed in Section 6. Users must have a Linux ARM64 ma-
chine (running inside a VM is fine) — in the paper, we used
a GCP T2A instance and an Apple M1 running Asahi Linux.
Users must also have access to the SPEC 2017 benchmark
suite, which we do not provide due to licensing. Alterna-
tively, our artifact is set up to run CoreMark, which is openly
accessible, but is not used in the paper’s evaluation.
The instructions for this artifact are also available on

GitHub at zyedidia/lfi-artifact.
The source code for LFI is available on GitHub at zye-

didia/lfi.

A.2 Artifact check-list (meta-information)
• Program: SPEC 2017, not included.
• Compilation: LLVM, Clang, LLD, Wasmtime, WAMR,
Wasm2c. All included.

• Binary: A pre-built Podman container is included, con-
taining all necessary binaries except the SPEC 2017
benchmarks.

• Run-time environment: Linux 5+ with Podman.
• Hardware: ARM64 machine
• Metrics: Execution time, relative percent overhead.
• Output: Bar graphs, overhead numbers.
• Experiments: A pre-built container is included along
with step-by-step instructions.

• Howmuch disk space required (approximately)?: 20GB.
• How much time is needed to prepare workflow (ap-
proximately)?: 30 minutes.

• How much time is needed to complete experiments
(approximately)?: 8 hours (on an M1 Mac).

• Publicly available?: Yes.
• Code licenses (if publicly available)?: MPL 2.0.
• Archived (provide DOI)?: 10.5281/zenodo.10694909

A.3 Description
A.3.1 How to access. The artifact can be downloaded
fromhttps://github.com/zyedidia/lfi-artifact/releases/tag/pre-
built.

A.3.2 Hardware dependencies. ARM64 machine.

A.3.3 Software dependencies. Linux and Podman.

A.3.4 Data sets. The SPEC 2017 benchmark suite.

A.4 Installation
A.4.1 Install Podman.
sudo apt install podman

A.4.2 Download and import the Podman container.
Download the file lfi.tar.xz from the releases page at
zyedidia/lfi-artifact. Then import it into Podman:
podman import lfi.tar.xz lfi

A.4.3 Download and install SPEC 2017. Please install
to /home/$USER/cpu2017.
sudo mount -t iso9660 -o ro,exec,loop \

cpu2017.iso /mnt
cd /mnt
./install.sh

A.4.4 Enter the Podman container.
podman run -v ~/cpu2017:/home/lfi/cpu2017:U \
-it --user lfi --workdir /home/lfi --name lfi \
--security-opt=seccomp=unconfined lfi /bin/bash

A.4.5 Set up the benchmark.
./setup.sh

You will not need to re-run this command again, even
if you restart the container, since this sets up the shared
cpu2017 directory.

A.4.6 Run the basic test.
./fast-run-and-report.sh

This should take about 2 minutes to run and should pro-
duce plots in the $HOME/cpu2017/stats directory. This di-
rectory is accessible from both the host and from within
the container. You should see a wasm.png and opts.png file
containing plots for the mcf_r benchmark in test mode.

A.5 Experiment workflow
Programs are compiled using the lfi-clang compiler lo-
cated in /opt/lfi/toolchain/bin. Then they can be veri-
fied using the lfi-verify program and run with the lfi-
run tool. See the examples directory for a simple hello world
program.
The bench-*.sh scripts invoke the SPEC runner tool

runcpu with the appropriate options and commands to run
the benchmarks inside sandboxing systems. The files in
cpu2017/config store the configurations for how bench-
mark files should be compiled. Benchmarks are run by our
modified specinvoke tool, that wraps the default commands
using a loader tool, such as lfi-run or wasmtime, defined
by the LOADER environment variable.
SPEC places raw results in the cpu2017/result folder.

Our specstats program then parses those results and cal-
culates overheads and geometric means (see the stats.sh
script which invokes this tool).

A.6 Evaluation and expected results
A.6.1 SPEC 2017. From inside the container, run
./run-and-report.sh

This should take approximately 8 hours on an M1 Mac
and will generate the graphs seen in Figures 3 (opts.png)
and 4 (wasm.png). You should also be able to view the geo-
means in each CSV file, as listed in Table 4 (which is just a
summarization of the figures).

https://github.com/zyedidia/lfi-artifact
https://github.com/zyedidia/lfi
https://github.com/zyedidia/lfi
https://zenodo.org/doi/10.5281/zenodo.10694909
https://github.com/zyedidia/lfi-artifact/releases/tag/pre-built
https://github.com/zyedidia/lfi-artifact/releases/tag/pre-built
https://github.com/zyedidia/lfi-artifact/releases/download/pre-built/lfi.tar.xz
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Expected results would be no more than 2% deviation
on the same exact hardware setup, and no more than 5%
deviation on a similar hardware setup.

A.6.2 Microbenchmarks. To reproduce the microbench-
marks from Table 5 (without gVisor), run the following
cd microbenchmarks
./run-linux.sh
./run-lfi.sh

For the run-linux.sh script you may see a benefit to
process pinning using taskset. We included a comment in
the script, but we don’t automatically do it since you should
select a P-core (if your machine has P-cores vs E-cores). For
example, processor 5 is a P-core on an M1 chip (processor
0 is not). We used taskset during the evaluation, so if you
don’t you might see worse performance for Linux than we
reported.

Running gVisor is optional. If your setup can support gVi-
sor (4K pages), you can run the benchmarks with gVisor as
well. Unfortunately these benchmarks cannot be run from
inside Podman, so you must copy the directory to your host
and run the binaries there. You may need to wait 10x as long
for the gVisor benchmarks to complete, since these bench-
marks are significantly slower with gVisor than with Linux.
Alternatively, you can decrease the number of iterations
in pipe.c and recompile. Run these commands outside the
container:
podman cp lfi:/home/lfi/microbenchmarks .
cd microbenchmarks
sudo ./gvisor/runsc --network none do /bin/bash
# ./run-linux.sh

A.6.3 CoreMark (optional). If you don’t have access to
SPEC 2017, you can run CoreMark with
cd coremark
./bench.sh

The results we saw on anM1machine are in the expected-
m1/ folder.

A.7 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-
badging

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

References
[1] Bytecode Alliance. Wasmtime, 2023. URL: https://wasmtime.dev/.
[2] Bytecode Alliance. Webassembly micro runtime, 2023. URL: https:

//bytecodealliance.github.io/wamr.dev/.
[3] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and

Henry M. Levy. Scheduler activations: Effective kernel support for
the user-level management of parallelism. In Proceedings of the Thir-
teenth ACM Symposium on Operating Systems Principles, SOSP ’91,

page 95–109, New York, NY, USA, 1991. Association for Computing
Machinery. doi:10.1145/121132.121151.

[4] Arm. Arm Architecture Reference Manual for A-profile architecture,
2016. FEAT_LVA, p. A2-90.

[5] Arm. Arm Architecture Reference Manual for A-profile architecture,
2016.

[6] Arm. Arm Architecture Reference Manual for A-profile architecture,
2016. FEAT_CSV2_2, p. A2-76.

[7] Arm. Arm Architecture Reference Manual for A-profile architecture,
2016. SCXTNUM_EL0, EL0 Read/Write Software Context Number, p.
D13-5913.

[8] Arm. Arm Cortex-X3 Core: Software Optimization Guide, r1p2 edition,
2021.

[9] Arm. Exploration tools, 2023. URL: https://developer.arm.com/
downloads/-/exploration-tools.

[10] Wasm2c authors. wasm2c: Convert wasm files to c source and
header, 2023. URL: https://github.com/WebAssembly/wabt/tree/main/
wasm2c.

[11] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,
D. Becker, C. Chambers, and S. Eggers. Extensibility safety and
performance in the spin operating system. SIGOPS Oper. Syst. Rev.,
29(5):267–283, dec 1995. doi:10.1145/224057.224077.

[12] Kevin Boos, Namitha Liyanage, Ramla Ijaz, and Lin Zhong. Theseus:
An experiment in operating system structure and state management.
In Proceedings of the 14th USENIX Conference on Operating Systems
Design and Implementation, OSDI’20, USA, 2020. USENIX Association.

[13] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. Spec
cpu2017: Next-generation compute benchmark. In Companion of the
2018 ACM/SPEC International Conference on Performance Engineer-
ing, ICPE ’18, page 41–42, New York, NY, USA, 2018. Association for
Computing Machinery. doi:10.1145/3185768.3185771.

[14] Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado,
Periklis Akritidis, Austin Donnelly, Paul Barham, and Richard Black.
Fast byte-granularity software fault isolation. In Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP
’09, page 45–58, New York, NY, USA, 2009. Association for Computing
Machinery. doi:10.1145/1629575.1629581.

[15] Frank Denis. Performance of webassembly runtimes in 2023, 2023.
URL: https://00f.net/2023/01/04/webassembly-benchmark-2023/.

[16] Úlfar Erlingsson, Martín Abadi, Michael Vrable, Mihai Budiu, and
George C. Necula. Xfi: Software guards for system address spaces. In
Proceedings of the 7th Symposium on Operating Systems Design and
Implementation, OSDI ’06, page 75–88, USA, 2006. USENIX Association.

[17] Bryan Ford and Russ Cox. Vx32: Lightweight user-level sandboxing
on the x86. In Rebecca Isaacs and Yuanyuan Zhou, editors, 2008
USENIX Annual Technical Conference, Boston, MA, USA, June 22-27,
2008. Proceedings, pages 293–306. USENIX Association, 2008. URL: http:
//www.usenix.org/events/usenix08/tech/full_papers/ford/ford.pdf.

[18] Google. gvisor documentation, 2021. URL: https://gvisor.dev/docs/.
[19] James Gosling, Bill Joy, and Guy L. Steele. The Java Language Specifica-

tion. Addison-Wesley Longman Publishing Co., Inc., USA, 1st edition,
1996.

[20] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer,
Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and
JF Bastien. Bringing the web up to speed with webassembly. In
Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, page 185–200, New
York, NY, USA, 2017. Association for Computing Machinery. doi:
10.1145/3062341.3062363.

[21] Liang He. A problem about "traps in dead code", 2023. URL: https:
//github.com/bytecodealliance/wasm-micro-runtime/issues/2773.

[22] Gernot Heiser and Kevin Elphinstone. L4 microkernels: The lessons
from 20 years of research and deployment. ACM Trans. Comput. Syst.,
34(1), apr 2016. doi:10.1145/2893177.

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://wasmtime.dev/
https://bytecodealliance.github.io/wamr.dev/
https://bytecodealliance.github.io/wamr.dev/
https://doi.org/10.1145/121132.121151
https://developer.arm.com/downloads/-/exploration-tools
https://developer.arm.com/downloads/-/exploration-tools
https://github.com/WebAssembly/wabt/tree/main/wasm2c
https://github.com/WebAssembly/wabt/tree/main/wasm2c
https://doi.org/10.1145/224057.224077
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/1629575.1629581
https://00f.net/2023/01/04/webassembly-benchmark-2023/
http://www.usenix.org/events/usenix08/tech/full_papers/ford/ford.pdf
http://www.usenix.org/events/usenix08/tech/full_papers/ford/ford.pdf
https://gvisor.dev/docs/
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3062341.3062363
https://github.com/bytecodealliance/wasm-micro-runtime/issues/2773
https://github.com/bytecodealliance/wasm-micro-runtime/issues/2773
https://doi.org/10.1145/2893177


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Zachary Yedidia

[23] Pat Hickey. How fastly and the developer community
are investing in the webassembly ecosystem, 2020. URL:
https://www.fastly.com/blog/how-fastly-and-developer-
community-invest-in-webassembly-ecosystem.

[24] Galen C. Hunt and James R. Larus. Singularity: Rethinking the software
stack. SIGOPS Oper. Syst. Rev., 41(2):37–49, apr 2007. doi:10.1145/
1243418.1243424.

[25] Intel. Intel 64 and IA-32 architectures software developer’s manual, 2020.
[26] RISC-V International. The RISC-V Instruction Set Manual, Volume II:

Privileged Architecture, 20211203 edition, 2021. sv57, p. 87.
[27] Dougall Johnson. Apple microarchitecture research, 2021. URL: https:

//dougallj.github.io/applecpu/firestorm.html.
[28] Evan Johnson, David Thien, Yousef Alhessi, Shravan Narayan, Fraser

Brown, Sorin Lerner, Tyler McMullen, Stefan Savage, and Deian Stefan.
Доверя́й, но проверя́й: SFI safety for native-compiledWasm. InNDSS.
Internet Society, 2021.

[29] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias
Athanasopoulos. No need to hide: Protecting safe regions on com-
modity hardware. In Proceedings of the Twelfth European Conference
on Computer Systems, EuroSys ’17, page 437–452, New York, NY, USA,
2017. Association for Computing Machinery. doi:10.1145/3064176.
3064217.

[30] Dexter Kozen. Language-based security. In Mirosław Kutyłowski,
Leszek Pacholski, and Tomasz Wierzbicki, editors, Mathematical Foun-
dations of Computer Science 1999, pages 284–298, Berlin, Heidelberg,
1999. Springer Berlin Heidelberg.

[31] Andrew Lamoureux. Ground-up aarch64, 2021. URL: https://binary.
ninja/2021/04/05/groundup-aarch64.html.

[32] Michael Larabel. Amazon graviton3 vs. intel xeon vs. amd epyc per-
formance, 2022. URL: https://www.phoronix.com/review/graviton3-
amd-intel.

[33] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat
Pannuto, Prabal Dutta, and Philip Levis. Multiprogramming a 64kb
computer safely and efficiently. In Proceedings of the 26th Symposium
on Operating Systems Principles, SOSP ’17, page 234–251, New York,
NY, USA, 2017. Association for Computing Machinery. doi:10.1145/
3132747.3132786.

[34] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak
Garg, Bobby Bhattacharjee, and Peter Druschel. Light-weight contexts:
An os abstraction for safety and performance. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation,
OSDI’16, page 49–64, USA, 2016. USENIX Association.

[35] LLVM. Aarch64: compress jump tables to minimum size needed to
reach destinations, 2017. URL: https://reviews.llvm.org/D32564.

[36] LLVM. Assembling a complete toolchain, 2023. URL: https://clang.
llvm.org/docs/Toolchain.html.

[37] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuen-
zer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. My
vm is lighter (and safer) than your container. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17, page 218–233,
New York, NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3132747.3132763.

[38] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang, Nickolai Zel-
dovich, and M. Frans Kaashoek. Software fault isolation with api
integrity and multi-principal modules. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles, SOSP ’11, page
115–128, New York, NY, USA, 2011. Association for Computing Ma-
chinery. doi:10.1145/2043556.2043568.

[39] Stephen McCamant and Greg Morrisett. Efficient, verifiable binary
sandboxing for a cisc architecture. 2005.

[40] Stephen McCamant and Greg Morrisett. Evaluating sfi for a cisc ar-
chitecture. In Proceedings of the 15th Conference on USENIX Security
Symposium - Volume 15, USENIX-SS’06, USA, 2006. USENIX Associa-
tion.

[41] Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-based
typed assembly language. J. Funct. Program., 12(1):43–88, jan 2002.
doi:10.1017/S0956796801004178.

[42] Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-Baptiste Tristan,
and Edward Gan. Rocksalt: Better, faster, stronger sfi for the x86. In
Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’12, page 395–404, New
York, NY, USA, 2012. Association for Computing Machinery. doi:
10.1145/2254064.2254111.

[43] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From sys-
tem f to typed assembly language. ACM Trans. Program. Lang. Syst.,
21(3):527–568, may 1999. doi:10.1145/319301.319345.

[44] musl. musl libc, 2023. URL: https://musl.libc.org/.
[45] G. J. Myers and B. R. S. Buckingham. A hardware implementa-

tion of capability-based addressing. SIGARCH Comput. Archit. News,
8(6):12–24, oct 1980. doi:10.1145/641914.641916.

[46] Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi,
Evan Johnson, Zhao Gang, Anjo Vahldiek-Oberwagner, Ravi Sahita,
Hovav Shacham, Dean M. Tullsen, and Deian Stefan. Swivel: Hard-
ening webassembly against spectre. In Michael Bailey and Rachel
Greenstadt, editors, 30th USENIX Security Symposium, USENIX Se-
curity 2021, August 11-13, 2021, pages 1433–1450. USENIX Associa-
tion, 2021. URL: https://www.usenix.org/conference/usenixsecurity21/
presentation/narayan.

[47] Shravan Narayan, Tal Garfinkel, Mohammadkazem Taram, Joey
Rudek, Daniel Moghimi, Evan Johnson, Chris Fallin, Anjo Vahldiek-
Oberwagner, Michael LeMay, Ravi Sahita, Dean Tullsen, and Deian
Stefan. Going beyond the limits of sfi: Flexible and secure hardware-
assisted in-process isolation with hfi. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 3, ASPLOS 2023, page 266–281,
New York, NY, USA, 2023. Association for Computing Machinery.
doi:10.1145/3582016.3582023.

[48] Vikram Narayanan, Tianjiao Huang, David Detweiler, Dan Appel,
Zhaofeng Li, Gerd Zellweger, and Anton Burtsev. Redleaf: Isolation and
communication in a safe operating system. In Proceedings of the 14th
USENIX Conference on Operating Systems Design and Implementation,
OSDI’20, USA, 2020. USENIX Association.

[49] George C. Necula. Proof-carrying code. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’97, page 106–119, New York, NY, USA, 1997. Association for
Computing Machinery. doi:10.1145/263699.263712.

[50] NodeJS. uvwasi, 2023. URL: https://github.com/nodejs/uvwasi.
[51] David D. Redell, Yogen K. Dalal, Thomas R. Horsley, Hugh C. Lauer,

William C. Lynch, Paul R. McJones, Hal G. Murray, and Stephen C.
Purcell. Pilot: An operating system for a personal computer. Commun.
ACM, 23(2):81–92, feb 1980. doi:10.1145/358818.358822.

[52] David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko, Egor Pasko,
Karl Schimpf, Bennet Yee, and Brad Chen. Adapting software fault
isolation to contemporary CPU architectures. In 19th USENIX Security
Symposium, Washington, DC, USA, August 11-13, 2010, Proceedings,
pages 1–12. USENIX Association, 2010. URL: http://www.usenix.org/
events/sec10/tech/full_papers/Sehr.pdf.

[53] seL4. sel4 performance, 2023. URL: https://sel4.systems/About/
Performance/home.pml.

[54] Simon Shillaker and Peter Pietzuch. Faasm: Lightweight isolation
for efficient stateful serverless computing. In Proceedings of the 2020
USENIX Conference on Usenix Annual Technical Conference, USENIX
ATC’20, USA, 2020. USENIX Association.

[55] Christopher Small. A tool for constructing safe extensible c++ systems.
In Proceedings of the 3rd Conference on USENIX Conference on Object-
Oriented Technologies (COOTS) - Volume 3, COOTS’97, page 13, USA,
1997. USENIX Association.

https://www.fastly.com/blog/how-fastly-and-developer-community-invest-in-webassembly-ecosystem
https://www.fastly.com/blog/how-fastly-and-developer-community-invest-in-webassembly-ecosystem
https://doi.org/10.1145/1243418.1243424
https://doi.org/10.1145/1243418.1243424
https://dougallj.github.io/applecpu/firestorm.html
https://dougallj.github.io/applecpu/firestorm.html
https://doi.org/10.1145/3064176.3064217
https://doi.org/10.1145/3064176.3064217
https://binary.ninja/2021/04/05/groundup-aarch64.html
https://binary.ninja/2021/04/05/groundup-aarch64.html
https://www.phoronix.com/review/graviton3-amd-intel
https://www.phoronix.com/review/graviton3-amd-intel
https://doi.org/10.1145/3132747.3132786
https://doi.org/10.1145/3132747.3132786
https://reviews.llvm.org/D32564
https://clang.llvm.org/docs/Toolchain.html
https://clang.llvm.org/docs/Toolchain.html
https://doi.org/10.1145/3132747.3132763
https://doi.org/10.1145/2043556.2043568
https://doi.org/10.1017/S0956796801004178
https://doi.org/10.1145/2254064.2254111
https://doi.org/10.1145/2254064.2254111
https://doi.org/10.1145/319301.319345
https://musl.libc.org/
https://doi.org/10.1145/641914.641916
https://www.usenix.org/conference/usenixsecurity21/presentation/narayan
https://www.usenix.org/conference/usenixsecurity21/presentation/narayan
https://doi.org/10.1145/3582016.3582023
https://doi.org/10.1145/263699.263712
https://github.com/nodejs/uvwasi
https://doi.org/10.1145/358818.358822
http://www.usenix.org/events/sec10/tech/full_papers/Sehr.pdf
http://www.usenix.org/events/sec10/tech/full_papers/Sehr.pdf
https://sel4.systems/About/Performance/home.pml
https://sel4.systems/About/Performance/home.pml


Lightweight Fault Isolation: Practical, Efficient, and Secure Software Sandboxing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[56] Livio Soares and Michael Stumm. Flexsc: Flexible system call schedul-
ing with exception-less system calls. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation, OSDI’10,
page 33–46, USA, 2010. USENIX Association.

[57] Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran.
Intra-unikernel isolation with intel memory protection keys. In
Proceedings of the 16th ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments, VEE ’20, page 143–156,
New York, NY, USA, 2020. Association for Computing Machinery.
doi:10.1145/3381052.3381326.

[58] Gang Tan. Principles and Implementation Techniques of Software-Based
Fault Isolation. Now Publishers Inc., Hanover, MA, USA, 2017.

[59] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael
Sammler, Peter Druschel, and Deepak Garg. Erim: Secure, efficient in-
process isolation with protection keys (mpk). In Proceedings of the 28th
USENIX Conference on Security Symposium, SEC’19, page 1221–1238,
USA, 2019. USENIX Association.

[60] Kenton Varda. Webassembly on cloudflare workers, 2018. URL: https:
//blog.cloudflare.com/webassembly-on-cloudflare-workers/.

[61] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Gra-
ham. Efficient software-based fault isolation. In Andrew P. Black and
Barbara Liskov, editors, Proceedings of the Fourteenth ACM Sympo-
sium on Operating System Principles, SOSP 1993, The Grove Park Inn
and Country Club, Asheville, North Carolina, USA, December 5-8, 1993,
pages 203–216. ACM, 1993. doi:10.1145/168619.168635.

[62] Sebastian Winkel and Jason Agron. Introducing intel® ad-
vanced performance extensions (intel® apx), 2023. URL:
https://www.intel.com/content/www/us/en/developer/articles/
technical/advanced-performance-extensions-apx.html.

[63] Keith Winstein. wasm2c: run tests with -o2 on non-windows, 2022.
URL: https://github.com/WebAssembly/wabt/pull/1939.

[64] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W.
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neu-
mann, Robert Norton, and Michael Roe. The cheri capability model:
Revisiting risc in an age of risk. In Proceeding of the 41st Annual
International Symposium on Computer Architecuture, ISCA ’14, page
457–468. IEEE Press, 2014.

[65] Jean Yang and Chris Hawblitzel. Safe to the last instruction: Auto-
mated verification of a type-safe operating system. In Proceedings of the
31st ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’10, page 99–110, New York, NY, USA, 2010. Asso-
ciation for Computing Machinery. doi:10.1145/1806596.1806610.

[66] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert
Muth, Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Ful-
lagar. Native client: a sandbox for portable, untrusted x86 native code.
Commun. ACM, 53(1):91–99, 2010. doi:10.1145/1629175.1629203.

[67] Jiyong Yu, Aishani Dutta, Trent Jaeger, David Kohlbrenner, and
Christopher W. Fletcher. Synchronization storage channels (S2C):
Timer-less cache Side-Channel attacks on the apple m1 via hard-
ware synchronization instructions. In 32nd USENIX Security Sym-
posium (USENIX Security 23), pages 1973–1990, Anaheim, CA, August
2023. USENIX Association. URL: https://www.usenix.org/conference/
usenixsecurity23/presentation/yu-jiyong.

[68] Bin Zeng, Gang Tan, and Greg Morrisett. Combining control-flow
integrity and static analysis for efficient and validated data sandboxing.
In Proceedings of the 18th ACM Conference on Computer and Communi-
cations Security, CCS ’11, page 29–40, New York, NY, USA, 2011. Asso-
ciation for Computing Machinery. doi:10.1145/2046707.2046713.

[69] Lu Zhao, Guodong Li, Bjorn De Sutter, and John Regehr. Armor:
Fully verified software fault isolation. In Proceedings of the Ninth
ACM International Conference on Embedded Software, EMSOFT ’11,
page 289–298, New York, NY, USA, 2011. Association for Computing
Machinery. doi:10.1145/2038642.2038687.

[70] Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang. Armlock:
Hardware-based fault isolation for arm. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’14, page 558–569, New York, NY, USA, 2014. Association for
Computing Machinery. doi:10.1145/2660267.2660344.

https://doi.org/10.1145/3381052.3381326
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://doi.org/10.1145/168619.168635
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-performance-extensions-apx.html
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-performance-extensions-apx.html
https://github.com/WebAssembly/wabt/pull/1939
https://doi.org/10.1145/1806596.1806610
https://doi.org/10.1145/1629175.1629203
https://www.usenix.org/conference/usenixsecurity23/presentation/yu-jiyong
https://www.usenix.org/conference/usenixsecurity23/presentation/yu-jiyong
https://doi.org/10.1145/2046707.2046713
https://doi.org/10.1145/2038642.2038687
https://doi.org/10.1145/2660267.2660344

	Abstract
	1 Introduction
	2 ARM64 Overview
	3 Basic SFI Scheme
	4 Optimizations
	4.1 Zero-instruction Guards
	4.2 Stack Pointer and Return Address Isolation
	4.3 Redundant Guard Elimination without CFI
	4.4 Runtime Calls without Trampolines

	5 Implementation
	5.1 Compiler
	5.2 Static Verifier
	5.3 Runtime

	6 Evaluation
	6.1 Runtime Overhead
	6.2 Comparison with WebAssembly
	6.3 Code Size Overhead
	6.4 Comparison with Hardware-based Approaches

	7 Discussion
	7.1 Side-channel Attacks
	7.2 Application to Other Architectures
	7.3 Recommendations for Hardware Design

	8 Related Work
	9 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Methodology

	References

