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In the world of data analytics, domain experts, such as public health scientists and medical

researchers, play a crucial role as their domain knowledge can unlock valuable insights from

data. However, they face several challenges in the current landscape of data analytics tools.

They often lack the technical skills necessary to analyze large datasets, requiring collabora-

tion with technical experts who may not have relevant domain knowledge. Moreover, when

processing large volumes of data, the execution times can be lengthy, and non-technical users

are left in the dark without feedback.

Over the past six years, our team has been developing Texera, a workflow-based data an-

alytics system specifically designed to enable non-technical users to perform data analytics

tasks with ease by promoting seamless collaboration and responsive interactions. Texera

enables multiple users to collaboratively construct workflows, offering an experience similar

to that of Google Docs and Overleaf. Furthermore, Texera allows users to interact with the

workflow execution, enabling them to pause/resume workflows, inspect execution states, and

modify logic as needed.

In this thesis, we first present an overview of the Texera system in Chapter 2, discussing

the design choices and the associated tradeoffs of several key components within Texera that

enable these powerful features of real-time collaborations and user interactions. Following

xvi



this, in Chapter 3, we explore a specific use case of user interaction: modifying the logic

of operators in a workflow, also referred to as reconfigurations. We develop an algorithm

called Fries, which can schedule these reconfigurations with minimal delay while maintaining

transactional guarantees, particularly when a reconfiguration involves multiple operators. In

Chapter 4, we shift our focus to incremental data processing, as Texera uses progressive

computation to deliver early results to users. We present Tempura, a cost-based optimiza-

tion framework designed for incremental processing. As a general framework, Tempura can

support various incremental computation requirements for many different applications and

use cases even beyond Texera’s scope. Tempura can select the best incremental computation

plan based on the specific query and data involved. In Chapter 5, we conclude this thesis

and discuss future work.
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Chapter 1

Introduction

Real-time collaborative editing services, such as Google Docs and Overleaf, have gained

significant popularity and brought immense value to society. These services enable individ-

uals to easily collaborate and jointly contribute to various tasks, including document cre-

ation, spreadsheet management, presentations, and drawings. The benefits of these services

have become even more appealing following the recent shift toward remote work. Although

real-time collaborative editing is becoming increasingly prevalent in editing applications, it

remains a rare feature in data-analytics applications. The need for collaboration features

is arguably even more crucial in data-analytics applications, particularly with the growing

involvement of domain scientists in the process.

Domain experts, such as public health scientists or medical researchers, are crucial in the

context of data analytics because they possess valuable domain knowledge that can unlock

the full potential of data-driven insights. However, they face several challenges in the current

landscape of data analytics tools. First of all, they often lack the technical skills needed to

analyze large datasets, such as proficiency in programming languages (e.g., Python, R), un-

derstanding of machine learning algorithms, and knowledge of data visualization techniques.
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This necessitates the collaboration with technical experts who have the technical skills but

might not possess the relevant domain knowledge, such as comprehension of public health

policies or familiarity with medical terminologies. Additionally, data analytics jobs process-

ing large datasets can be time-consuming, leaving users without feedback on results until

the very end. This lack of real-time visibility can impede collaboration, as users cannot view

results, identify workflow issues, or implement quick fixes and iterations to improve the data

workflows.

Consequently, it is essential for a data analytics system to enable real-time collaboration and

user interaction throughout its operation. In terms of collaboration, these systems should

facilitate real-time cooperation during both the workflow editing phase and execution phase.

Regarding interactivity, the systems must support progressive computation and provide real-

time updates on execution status and early results. Moreover, they should empower users

to control the system during runtime by offering options to pause or resume execution,

monitor progress, inspect intermediate states and outcomes, and modify logic of operators

as necessary.

Current data analytics systems present several limitations. Several Python notebook-style

platforms have recently incorporated real-time collaboration features, including DeepNote [3],

Google Colab [5], and Databricks Notebooks [7]. These tools are useful for technical experts

proficient in programming languages like Python and SQL. However, the necessity of under-

standing complex code can impede collaboration with domain experts.

Workflow-style systems are popular among domain scientists due to their easy-to-understand

graphical user interface. Example systems include Alteryx [2], KNIME [8], and Rapid-

Miner [9]. Despite their popularity, these systems also have shortcomings. Firstly, they are

often built with a “pre-cloud” architecture and require users to install desktop software or

clients. This restricts their ability to support collaborative features. Furthermore, they often

run on a single machine, limiting their capacity to scale when working with large data sets.
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Figure 1.1: A screenshot of Databricks Notebooks, which supports real-time collaboration
in executing Python and SQL code.

On the other hand, big data processing systems such as Spark [115], Flink [35], and Dask [87],

excel in terms of scalability and efficiency, making them ideal for handling large volumes of

data. However, these systems are less accessible to non-technical users who lack programming

skills. Moreover, they do not prioritize interactivity and responsiveness, leaving users in the

dark during processing, which hampers collaboration and communication with data scientists

responsible for running the analytics processes.

We outline the essential requirements of a system that effectively addresses the previously

mentioned challenges:

1. Interactive and responsive: The system needs to allow users to interact with it during

execution, allowing them to pause/resume the execution, examine the execution status,

inspect intermediate states and results, and even modify the workflow. Moreover, the

system should be responsive to user interaction requests, providing near-instantaneous

response times, ideally within a second .

2. Collaborative interface: A user-friendly web-based GUI is necessary to allow multiple

users to concurrently edit, run, monitor, and interact with workflows.
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3. Parallel and fault-tolerant: The system should be capable of running on a cluster of

machines and ensuring scalability to handle large data sets. Furthermore, the system

must be fault-tolerant because machine failures are common in a cluster.

In response to these requirements, our team has spent the past six years developing Texera,

a workflow-based data analytics system specifically designed to enable non-technical users

to perform data analytics tasks with ease by promoting seamless collaboration and respon-

sive interactions. As shown in Figure 1.2, Texera enables multiple users to collaboratively

construct and control workflows, offering an experience similar to that of Google Docs and

Overleaf. Texera supports progressive execution that allows the users to see early results

during execution. Texera allows users to interact with the workflow execution, enabling them

to pause/resume workflows, inspect execution states, and modify logic as needed. In Chapter

2 of the thesis, we explore the challenges, key design decisions, and trade-offs involved in

enabling the collaboration and interaction features within the Texera system.

Figure 1.2: Illustration of collaborative data analytics in Texera. Multiple users simultane-
ously contribute to various components within an active workflow.

The Texera system has been utilized by a wide range of users from different fields of study,
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# of users # of workflows # of versions # of executions
80 >1,000 >100,000 >10,000

Table 1.1: Statistics of the Texera Service as of May 2023

demonstrating its versatility and effectiveness. Table 1.1 gives a simple summary of how

Texera was used up to May 2023. It shows the number of users, workflows, versions, and

times workflows are executed, which shows just how much people are using the system. These

users have engaged with the system over an extended period and constructed numerous

workflows tailored to their needs. Table1.2 provides a spotlight on several notable research

projects that have used the Texera service.

In Chapter 3, we examine a specific use case of user interaction: modifying the logic of

operators within a workflow, also known as reconfigurations. Computation jobs in modern

big data systems that process large amounts of data can take a considerable amount of time

to run, ranging from hours to days or even weeks to complete. In these applications, when a

long-running job continuously processes ingested data, developers often need to modify the

computing logic of the job without disrupting the execution. Reconfigurations are not only

highly beneficial in the context of systems like Texera, which employ pipelined progressive

execution, but also prove valuable in streaming systems such as Apache Flink, that process

real-time streaming data. When users issue reconfiguration requests, the delay until the

changes are applied in the system is critical, as users often want to apply the changes as soon

as possible. A primary limitation of existing systems supporting runtime reconfigurations

is that they may have long reconfiguration delays. These systems either have to stop and

restart the execution, or wait for all in-flight tuples to be completely processed. We develop

a novel reconfiguration scheduler called Fries, which uses fast control messages to schedule

reconfigurations. This algorithm ensures the consistency of the reconfiguration, particularly

when involving multiple operators and complex workflows. More importantly, this work

addresses a crucial question regarding the meaning of consistency in the context of runtime
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Project Lead Research Topic Workflow Operations Duration
UCI Data Science Students COVID signal detection Data wrangling, model training 09/2022 - 12/2022

UCI Statistics Students Reddit data analysis Data crawling, wrangling,
visualization, and model training 02/2023 - Present

Prof. Suellen Hopfer
UCI Public Health Extreme heat tweet analysis Data wrangling, model training 01/2023 - Present

Prof. Natalia Komarova
UCI Mathematics HPV vaccine networks Retweet network crawling,

topic modeling, visualization 01/2021 - Present

Prof. Wei Wang
UCLA Computer Science ML task paradigm comparison KGE inferencing, FSQA model

training, multi-label classification 01/2021 - Present

Prof. David Timberlake
UCI Public Health Tobacco tweet analysis SVM training/inference,

topic modeling, visualizations 03/2021 - 10/2022

Prof. Gloria Mark
UCI Informatics COVID vaccine attitude analysis Ideology score computing,

visualizations 06/2021 - 5/2022

Prof. Gloria Mark
UCI Informatics COVID tweets linguistic analysis Ideology score computing 5/2022 - 3/2023

Prof. Lina Rosengren-Hovee
UNC Chapel Hill Public Health Social media analysis Text classification model training,

sentiment analysis 06/2021 - Present

Prof. Kai Zheng
UCI Informatics COVID mask mandate analysis Data crawling, Twitter search 01/2022 - 7/2022

Prof. Suellen Hopfer
UCI Public Health Wildfires and climate change Data wrangling,

BERT model training 01/2022 - Present

Profs. Sunny Jiang and
Volodymyr Minin

UCI Microbiology and Statistics
Wastewater management Data extraction and cleaning 02/2023 - Present

Prof, Ju Fan
Renmin University of China Social media analysis Data extraction, cleaning,

semi-structured data analytics 09/2019 - 12/2019

Prof. Gloria Mark
UCI Informatics Immigration policies Data extraction 01/2018 - 10/2018

Prof. Elvan Bayraktaroglu
Istanbul Technical University Police violence Data extraction, cleaning,

and wrangling 06/2017 - 10/2018

Dr. Zhihui Yang
Zhijiang Lab, China Machine learning acceleration Machine learning model training

and inference acceleration 07/2018 - 06/2022

Prof Irene Zhang,
National Natural Science

Foundation of China
Proposal report analysis Data cleaning and wrangling 10/2018 - 05/2019

Prof Hui Zhang
Henan Academy of

Agricultural Sciences, China
Patent document analysis Data cleaning and wrangling 01/2017 - 05/2017

Prof. Suellen Hopfer
UCI Public Health Hurricane Maria analysis Data extraction and visualization 01/2018 - 08/2018

Prof. Sean Young
UCLA School of Medicine Hurricane Harvey analysis Data extraction and cleaning 08/2017 - 10/2017

Prof. Jun Wu
UCI Public Health Zika virus analysis Spatial and temporal distribution

analysis and visualization 07/2016 - 12/2016

Table 1.2: Project highlights using Texera for collaborative data analytics.
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reconfiguration by integrating concepts from database transactions.

In Chapter 4, we shift our focus to incremental data processing. Incremental computing

plays a vital role in numerous applications. In Texera, it is utilized to progressively deliver

early results to users. Beyond Texera, incremental computation is advantageous in several

other situations, such as progressively maintaining the results of routine data analytics jobs

as data gets ingested in a data warehouse, and in the context of intermittent late data

processing, where results need to be updated when late data arrives. We develop a general

cost-based optimization framework called Tempura, which differs from a traditional optimizer

in that it is specifically designed to support various forms of incremental processing. We

observe that there are many incremental computation algorithms, and the optimal choice

depends on the application’s requirements, the query, and the input data’s characteristics.

We propose a novel query planning model based on time-varying relations (TVR’s), which

can model incremental processing in its most general form. Furthermore, we provide a

comprehensive specification of the Tempura optimizer framework, including rewriting rules

specific to incremental computation, plan-space exploration, the selection of an optimal

incremental plan, the integration of Tempura into a traditional Volcano-style optimizer, and

various techniques to improve query planning speed.

In Chapter 5, we conclude this thesis and discuss future work.
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Chapter 2

Texera: A System for Collaborative and

Interactive Data Analytics Using

Workflows

In this chapter, we first give an overview of the Texera system’s architecture, explain a

query’s execution lifecycle, and discuss the major components of the system in Section 2.1.

We then delve into one of Texera’s most crucial features: pausing the execution of the

workflow in Section 2.2. We examine various methods for implementing pausing, discuss

their trade-offs, and present Texera’s approach to ensuring responsiveness to pause requests

while still supporting user interactions after pausing. Subsequently, we extend the discussion

to address Texera’s ability to support a wide range of user interactions in Section 2.3. We

also discuss the complexities in fault tolerance introduced by supporting user interactions in

Section 2.3.2, as these interactions must be recovered in the event of a failure. We present

Texera’s approach to fault tolerance in Section 2.3.3. Finally, we address the challenges

Texera faces in facilitating collaborative workflow editing and intelligent auto completions,

as well as the difficulties of sharing execution states among multiple users in Section 2.4.
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2.1 System Overview

Figure 2.1 shows the overall architecture of Texera, which consists of three main layers: the

web UI, the web service, and the dataflow execution engine called Amber [65]. Next, we

outline the role of each component, following the order of a workflow’s lifecycle, including

constructing a workflow, submitting the workflow, and executing it using the engine.

Log

Worker Actor Log

  Web UI
  User 1

Shared Editing
Server

Control
Channels

Actor System

W
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ke
r A

ct
or

Controller Actor

Scheduer

RPC Handler
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Shared Execution
Manager
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  User 2

Execution
Engine

Web UI

Web 
Service

Figure 2.1: Texera’s System Architecture

Workflow Construction and Shared Editing: At the web UI layer, Texera offers a

graphic user interface for users to construct workflows through intuitive drag-and-drop oper-

ations. The system supports collaborative workflow construction by multiple users. The web

UI layer and the shared editing server in the web service work together to resolve concurrent

editing conflicts and propagate editing changes. Texera ensures that all users maintain a
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consistent view of the workflow. Section 2.4.1 provides a detailed discussion on the design

of the collaborative editing feature.

Submitting a Workflow to the Execution Engine: Once users have completed con-

structing a workflow, they submit it to the web service. The workflow compiler component

first maps the workflow to a logical execution plan and verifies its validity. Subsequently, the

compiler translates the logical plan to a parallel physical execution plan, and determines the

parallelism and placement of each operator, as well as the data-transfer strategy between

workers. The workflow compiler also rewrites the execution plans to perform various op-

timizations, such as reusing cached data and shuffle removal. After finalizing the physical

execution plan, the web service launches the job on the actor system.

The actor model is a computing paradigm that provides concurrent units of computation

called “actors.” Each actor possesses a mailbox for receiving received messages. Upon receipt

of a message, an actor can send messages to other actors (or itself), create new actors, and

alter its state. Texera builds its execution engine on top of the actor model, leveraging several

of its inherent benefits. First, it is fundamentally parallel, enabling efficient computation

across clusters, which in turn facilitates the processing of large volumes of data. Second,

its message-passing mechanism provides a clean way of supporting both data computation

and control processing via distinct types of messages. Finally, several mature open-source

implementations exist for the Actor Model, such as Akka [17] and Orleans [84], that provide

robust frameworks for implementing this model. Texera’s execution engine, constructed atop

the Actor Model, is capable of running on more than 100 machines in a cluster and efficiently

processing terabytes of data. Further details regarding the implementation of the execution

engine on the actor model can be found in our VLDB 2020 paper [65].

Executing the Workflow on the Execution Engine: The first step in executing a

workflow involves creating a controller actor responsible for its execution. This controller
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actor has a scheduler component that instantiates the corresponding worker actor instances

for each parallel worker of an operator. The underlying actor system ensures that these actors

are created at the desired physical machine location. The controller actor establishes control

channels with each worker actor to exchange control commands, such as operator lifecycle

operations, statistic updates, and user interaction requests. These control commands are

sent as remote procedure calls (RPC) messages and processed by the RPC handler.

Each worker actor includes an RPC handler component to process control messages and a

data processor component to run the operator logic of the worker. Workers establish data

channels with other workers to exchange input and output data according to the physical

execution plan. They can also create control channels with other workers, apart from the

control channel with the controller. Section 2.3.1 discusses the details of how the RPC

handler and data processor work together within a worker. To achieve fault tolerance, each

worker actor has a logging component that records input information from all incoming

channels, which will be further elaborated in Section 2.3.2 and Section 2.3.3. The controller

establishes a control channel with the shared execution manager within the web service layer,

allowing the web service to support runtime interactions from users and relay execution-

status updates back to them. Section 2.4.2 delves into the details of how the shared execution

manager enables multiple users to monitor and manage the execution process, as well as how

users can disconnect and subsequently reconnect (re-attach) to an ongoing execution at any

time.
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2.2 Designing an Interruptible Dataflow Engine

The ability to interrupt (pause) the execution of an operator is a critical aspect of facilitating

user interactions with the Texera system. By allowing users to pause the execution of an

operator, the system enables them to perform additional interactions, such as inspecting

operator state or modifying operator logic. In this section, we focus on how to pause the

execution of an operator. We present a few alternative designs and discuss their tradeoffs.

2.2.1 Forcibly Interrupting Workflow Execution

We first explore methods that rely on external entities to forcibly interrupt and halt the

execution of a running workflow. We examine these methods at two levels: the operating

system (OS) level through stopping a process, and the Java Virtual Machine (JVM) level

through suspending a thread. Although these methods ensure a swift and timely pause, we

show that they have significant limitations, particularly in terms of allowing users to interact

with the program’s state and ensuring meaningful user interactions.

OS-level Process Interruption One approach to interrupting the execution of an operator

is to utilize the SIGSTOP signal available in Unix-based systems. This signal can be sent to

a running process to halt the execution immediately. When the process receives the signal,

the OS suspends the process by saving its current execution context, including the program

counter, register, and memory states. The process remains in a stopped state until it receives

a SIGCONT signal, which instructs the OS to resume the process by restoring its previously

saved context. This mechanism enables a quick and efficient way to pause and resume the

execution of a program without terminating it.

However, this approach has significant limitations, particularly in its inability to access and

interact with the program’s state, e.g., when the user wants to access the build table in a
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hash join operator, or accumulated values of the processed tuples in an aggregation operator.

After pausing a process at the OS level, accessing the program state requires reading the

memory content of the paused process, for instance, by accessing the /proc/<pid>/mem file

in Unix systems. However, even if the memory content is obtained, interpreting the binary

content is very difficult, if not impossible, especially when the data processor is implemented

using a high-level language such as Java. Given this limitation, this approach is not suitable

for the Texera system.

JVM-level Thread Interruption Another approach for interruptible execution utilizes

Java’s built-in Thread.suspend() method to pause the execution of an operator. In this

strategy, each operator employs two threads: a data-processing (DP) thread, which is respon-

sible for conducting the computation of an operator, and a control-processing (CP) thread,

which listens to user requests. As illustrated in Figure 2.2, upon receiving a message, the

CP thread invokes the Thread.suspend() method to halt the DP thread’s execution.

This method can address the primary limitation of the OS-level pausing method, namely the

inability to interact with the program’s state. As depicted in Figure 2.2, when the DP thread

is suspended, the CP thread can access the operator’s state through shared variables storing

that state. Additionally, the CP thread is capable of executing additional control logic in the

same runtime environment. For instance, the user can inspect the content of state variables

or examine complex data structures. The operator’s logic can also be modified by changing

variable values, allowing actions such as updating the computation logic of an operator or

adjusting the workflow topology by modifying the routing table.

However, this method has a significant drawback: the operator’s processing logic can be

interrupted at arbitrary points in its execution, leading to two main issues. First, this

interruption may result in a state that is in the middle of an update, potentially leaving

data structures in an inconsistent state. For example, consider a case where a join operator
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Figure 2.2: Using Java thread level interruption to pause

is updating its hash table. If a pause occurs during an operation of resizing the hash table,

when the data of the smaller hash table are gradually transferred to a larger one, the resulting

view of the hash table might be incomplete. Second, it is challenging to reason about the

application’s state because the stopping point might be incomprehensible to the user. For

example, in the case of a filter operator with a complex user-defined function, the pause

might happen within the function or even during the execution of an external library, rather

than within the user’s code. Note that these limitations also apply to the aforementioned

OS-level process interruption method, as both methods forcibly interrupt an operator at an

arbitrary point.

2.2.2 Texera’s Design: Voluntarily Suspending Execution at Pre-

determined Points

In light of the drawbacks of the previous methods, Texera employs a novel design that

avoids forcibly interrupting the execution of an operator. We observe that data processing

systems have natural stopping points, such as between the processing of two tuples, and many

interactions only make sense at these stopping points. In this section, we present Texera’s

design of letting the data processor actively check for pause signals at pre-determined and

predictable points and voluntarily suspend its execution. The following code snippet shows
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a simple implementation to suspend execution between two tuples.

Pausing Execution Between Tuples. We first present a design that allows an operator

to pause between the execution of two tuples, as shown in Listing 2.1 In this design, the

operator continuously processes input tuples. For each input tuple, the process_tuple

function is invoked to perform the necessary computation of an operator. Before processing

the next tuple, the operator checks for the paused flag, which is set if the user has requested

the system to pause. If the flag is set, the operator voluntarily suspends its own execution,

yielding control to allow subsequent user interactions and inspections to take place. When

the user resumes the execution, a signal is sent to the thread, waking it up and allowing it

to continue processing the next tuple. This process is also visualized in Figure 2.3.

1 while (not finished):

2 tuple = data_channel.get()

3 process_tuple(tuple)

4 if (paused flag is set):

5 suspend execution until resumed

Listing 2.1: Suspending operator execution between two tuples.

Figure 2.3: Texera DP thread mechanism

This method has a drawback: while the processing of a single tuple is typically very fast

for relational operators, there could be expensive user-defined functions that take a long

time to complete. For example, consider the sentiment analysis operator in Listing 2.2 that

tokenizes the input text, annotates the tokens, and infers the sentiment. Completing these

steps might take a significant amount of time. If the operator can only pause between two
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tuples, then the user may need to wait for a long period before the system pauses, which

reduces the responsiveness. Next, we discuss how to support pausing at a finer-granularity.

1 def process_tuple(tuple):

2 // step 1: tokenize the text

3 tokens = tokenize(tuple)

4 // step 2: tag tuples with annotations

5 annotations = tag(tokens)

6 // step 3: infer sentiment

7 sentiment = infer(annotations)

8 return sentiment

Listing 2.2: A sentiment analysis operator that takes a long time for a single tuple.

Pausing Execution at a Finer Granularity. A key observation is that an operator’s

processing of even a single tuple can be further divided into mini-steps, with each step per-

forming a portion of the operator’s computation. For instance, in the sentiment analysis

operator, the process_tuple function can be broken down into three mini-steps. The fol-

lowing code snippet demonstrates a new implementation that transforms the processing of

a single tuple into an iterator with three steps.

1 next_step = "tokenize"

2 def has_next() =

3 return next_step != "end"

4

5 def get_next(tuple) =

6 if (next_step == "tokenize"):

7 this.tokens = tokenize(tuple)

8 next_step = "tagging"

9 else if (next_step == "tagging"):

10 this.annotations = tag(this.tokens)

11 next_step = "inference"

12 else if (next_step == "inference"):
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13 this.sentiment = infer(taggings)

14 next_step = "end"

15 return this.sentiment

Listing 2.3: An iterator-based transformation of the sentiment analysis operator that

decomposes the computation into three mini-steps.

As shown in Listing 2.3, the operator logic is transformed into a state machine [1] that

utilizes the next_step variable to track the upcoming execution step. When the get_next

function is called, the operator first examines the computation of the current mini-step, as

indicated by next_step. It then performs the corresponding computation and updates the

next_step variable, preparing for the engine’s subsequent get_next function call. Once

the next_step variable is set to end, the operator recognizes that all mini-steps have been

completed.

The engine’s implementation needs to be modified to accommodate an iterator interface for

processing a single tuple, which can consist of multiple steps. As illustrated in Listing 2.4,

to process a single tuple, the engine first acquires an iterator from the operator and then

consumes the iterator to go through all the mini-steps of the computation. The engine

performs pause checks between each mini-step iteration.

1 while (there is an input tuple):

2 iterator = process_tuple(tuple)

3 while (iterator.has_next()):

4 iterator.get_next()

5 if (paused flag is set):

6 suspend execution until resumed

Listing 2.4: Suspending operator execution between two fine-grained mini-steps of data

processing.

This design provides operator developers with full control over the granularity at which the
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operator’s code checks for user interactions. This approach offers two main benefits. First,

since developers have knowledge of the operator’s execution speed, they can select proper

mini-steps to ensure each step is fast enough to make the operator responsive. Second, the

developer can define meaningful pause points in the operator based on the semantics of the

application. For example, in the sentiment analysis operator, the developer may naturally

treat each major step as a meaningful point to pause and inspect, while other points, such

as implementation details within the tokenize function, might not warrant inspection.

A noticeable consideration with this design is the potential for increased overhead caused by

numerous fine-granularity checks. Each check requires an extra access with a shared variable,

which may be concurrently modified by a different thread. Although the time spent on each

individual check is rather small, an abundance of these checks could lead to an increase in

overhead. One strategy to mitigate this overhead could involve developers offering hints

regarding the speeds of operators. For example, the system could reduce the frequency of

checks for faster operators like filter or projection. On the other hand, for slower operators,

such as user-defined functions like sentiment analysis, the systems could do more fine-grained

checks.

In summary, by actively checking and processing user interactions at pre-determined, fine-

granularity points, Texera can be responsive to users’ pause requests while still supporting

user interactions, such as inspecting state or modifying logic, at appropriate points in the

operator’s execution.

2.2.3 Experiments

In the following experiments, we first evaluated the latency of pausing the computation by

comparing the forced interruption method and the voluntary check method. We implemented

the forced interruption method using JVM’s built-in Thread.suspend() function. This la-
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tency was measured from the instance an operator received a Pause request until the moment

when computation actually paused. Figure 2.4 shows the workflow utilized in the experi-

ments. It includes a diverse set of operators such as Scan, Hash Join, Sentiment Analysis,

Keyword Search, and Aggregate. Notably, the Aggregate operator is implemented in two

phases: a Partial Aggregate and a Global Aggregate. During the execution, we ran-

domly paused the workflow at various points, and we measured the average pause latency.

Figure 2.4: An example workflow to evaluate the latency of pausing an operator.

Figure 2.5 shows the experiment results. For the method based on JVM-level thread forced

interruption, all operators were able to be paused under a millisecond. The Sentiment

Analysis operator, being the slowest to pause, required around 0.4 milliseconds, while the

Aggregate operator, as the fastest, only needed 0.002 milliseconds. Note that, despite uti-

lizing JVM thread’s inherent Suspend() method, the more resource-intensive operators still

required more time to pause.

As for Texera’s voluntary check method, the pause latency depended on the execution du-

ration of each user-defined mini-step of an operator. For example, the implementation of

the Sentiment Analysis operator is divided into four mini-steps, resulting in a pause la-

tency of roughly 126 milliseconds. Even though this duration is longer than the forced

interruption method, it still remains sufficiently responsive for a human user. In summary,

the JVM-level forced interruption method offers a markedly shorter latency compared to the

voluntary check method. Nonetheless, the voluntary check method can consistently pause

all operators in less than 200 milliseconds, fulfilling the response time expectations of the
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Figure 2.5: Comparison of pause latency between JVM-level forced interruption method
and voluntary check method (used in Texera).

users.

Next, we evaluated the performance overhead of the voluntary check method. This was done

by testing two operators: a fast filter operator processing one million tuples, implemented

by comparing a tuple field to an integer, and a slower sentiment analysis operator processing

100,000 tuples, implemented using the Stanford NLP [75] library. We varied the frequency

of the voluntary checks by adjusting the number of tuples processed between each check.

This varied from every tuple, to 10 tuples per check, to 100, 1,000, and 10,000 tuples per

check, and finally, a baseline with no checks at all. Figure shows the experiment results.

The fast filter operator can experience up to 25% overhead with the most fine-grained check

(a check with every tuple), with the performance overhead soon diminishes as the check

frequency decreases. Conversely, for a slower operator, even the most fine-grained checks

did not introduce a noticeable overhead, which is approximately around 3% compared to the

baseline.

20



1 10 10
2

10
3

10
4 no check

Check Frequency (per number of tuples)

10%

0%

10%

20%

30%

40%

R
el

at
iv

e 
R

un
tim

e 
O

ve
rh

ea
d

Filter Sentiment Analysis

Figure 2.6: Comparison of relative runtime overhead at various voluntary check frequencies,
compared to a baseline run with no voluntary checks."
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2.3 Designing an Extensible and Fault-tolerant Control

Plane

In Section 2.2, we discussed how to handle a specific case of a control command, namely

pausing the execution of a workflow. To satisfy various user interaction requirements, such

as inspecting internal states, examining intermediate results, and modifying operator logic,

Texera needs to be extensible and support a wide range of control messages. In this section,

we first provide a comprehensive view of how Texera’s worker actor component handles other

types of control messages. In addition, Texera is designed as a scalable and parallel engine

capable of running on a cluster of machines. Given the common occurrence of failures on

clusters, fault tolerance is a critical aspect that must be supported. However, ensuring fault

tolerance becomes increasingly complex when Texera also needs to accommodate various

user interactions. In the second part, we discuss how Texera recovers user interactions in

addition to data computation in case of failures.

2.3.1 Handling Arbitrary Control Commands in a Worker

User interaction requests are executed by sending control messages from the controller

through a dedicated channel to a worker actor. We extend the approach outlined in Sec-

tion 2.2.2 for suspending execution, as illustrated in Listing 2.5. Between two fine-grained

mini-step of data processing, we seize the opportunity to check the control channel and

process any control messages received by the operator. The main difference in the new im-

plementation lies in calling a special function handle_control_message between two mini-

steps.

1 while (not finished):

2 tuple = data_channel.get()

3 iterator = process_tuple(tuple)
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4 while (iterator.has_next()):

5 iterator.get_next()

6 handle_control_message()

7

8 def handle_control_message():

9 while (control channel has an message

10 OR paused flag is set):

11 message = control_channel.get()

12 rpc_handler.process(message)

Listing 2.5: Handle arbitrary control messages between two mini-steps of data processing

During data-processor execution, any control messages sent to the workflow worker are

queued in the control channel as a FIFO queue. The handle_control_message function

processes all control messages currently in the control channel, one at a time. Each control

message is processed by the RPC handler based on its type, which can involve reading the

state of the operator, examining execution statistics, modifying the logic or state of an oper-

ator, or sending other control messages to the controller and other workers. When there are

no control messages left in the control channel, the workflow worker can proceed to process

the next mini-step of the data-processing logic.

It is worth noting that the pause and resume logic is integrated into the control handling

mechanism. If a control message requests to pause the execution of a worker, the data

processing should halt until a Resume command is received. When a Pause control message

is processed by the RPC handler, a paused flag is set. For subsequent processing, we stop

taking data messages. In this way, the data processing logic won’t be invoked to process the

next data. Instead, the control_channel.get() statement blocks the worker’s execution

until a control message is received from the user. This ensures that the workflow actor

remains responsive to user interactions when the execution is paused. Additionally, the

workflow actor does not consume CPU resources or engage in busy-waiting while it is paused.
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Upon receiving a resume message, the paused flag is unset, allowing the workflow actor to

exit the handle_control_message loop and resume normal processing in the next iteration.

While the data processor is paused, any new data messages arriving in the data channel are

queued in a FIFO order. As Texera pauses all operator workers in a workflow, the tuples in

the data channel will not overflow because both upstream and downstream operators stop

processing and producing any tuples.

2.3.2 Fault tolerance with User Interactions

We begin by presenting an example that illustrates possible loss of user interactions (e.g., bug

fixes) when a failure occurs, as depicted in Figure 2.7. In this example, a user pauses a UDF

(user-defined function) operator after a data tuple D2 is processed. The user interacts with

the operator by sending three control messages: C1 to pause the execution, C2 to inspect the

operator’s internal state, and C3 to modify the operator’s logic in order to fix a discovered

bug. After resuming the execution, the subsequent data tuple D3 is processed using the

updated operator logic and is subsequently output to the user.

Inspect

Controller

Fix bug

D1 D2 D3

Checkpoint

C2 C3

Pause

C1

Roll Back

Crash

Figure 2.7: A scenario illustrating the impact of failure in the presence of user interactions:
a user pauses a UDF operator, inspects and fixes a bug, and resumes the execution before a
crash happens.

Consider the case where a failure happens to this operator after the data tuple D3 is processed.

Common approaches in most existing data processing systems, such as Spark, Hadoop, and

Flink, involve rolling back to the last checkpoint and rerunning the computation. This

method is effective when the data processing logic does not involve user interactions, as
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queries are often deterministic, and rerunning them produces the same result. However, in

Texera, simply rerunning the data computation without considering user interactions would

result in the loss of user interactions. As illustrated in Figure 2.8, if we do not rerun the

user control message C3, which updates the operator logic, data tuple D3 will be processed

using the old, buggy operator logic instead of the corrected logic.

Controller

D2

Restart from
Checkpoint user's commands

(C1, C2, C3) lost

D3

Figure 2.8: Recovery without considering user interactions: data tuple D3 is processed using
the old buggy operator logic

In the context of fault tolerance, we aim to provide an “output commit” guarantee, which

ensures that any result sent to the user remains committed and unchanged despite any

failures. This guarantee necessitates the reapplication of user control commands to the

operator during recovery. However, blindly reapplying user commands has issues. If the

controller resends user commands to the UDF operator during recovery, the timing of the

control commands arriving at the operator might differ from the previous run. For example,

the pause command might arrive after the data tuple D3 is processed, causing the recovery

run to produce an output different from the original run and violating the output commit

guarantee.

2.3.3 Texera’s Approach: Logging Non-determinism from User In-

teractions

We propose a solution, which logs all non-deterministic factors, including the timing of

user interactions and the content of users’ control commands, to effectively address the
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aforementioned issues.

Logging all input messages. A simple approach is to record all input messages received

by an operator worker. We assume that the processing logic of an operator is deterministic.

If an operator worker begins with the same initial state, processing the same sequence of

messages will deterministically modify its internal state and generate the same output mes-

sages. Consequently, a failed operator can be recovered from a log containing all its input

messages since the start of execution.

Figure 2.9 illustrates the logging process of an operator worker during execution. The log

stores data messages D1 and D2, control messages C1 and C2, followed by data message D3.

It is important to note that all user interactions are captured within the log. During this

process, each data/control message received by the operator is written to disk prior to being

processed by the worker. This results in a delay before the processing of each message, which

can lead to significant overhead in practice. One commonly adopted optimization involves

writing the message to the log and processing it concurrently, buffering the output of each

input message until the input message is persisted.

Report
Error Inspect

Controller

D1 D2

Checkpoint

C1

Log

CrashC2

Fix bug

D3

Figure 2.9: Naive logging for all input messages

Logging message arrival order. An alternative approach involves logging only the relative

arrival order of input messages, relying on upstream operators to regenerate message content

during recovery. This method effectively reduces the log size and the overhead of writing
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the log. However, this approach requires rolling back upstream operators to regenerate data

messages, as well as rolling back the controller to regenerate control messages. Restarting

the controller also requires regenerating all input control messages received from operators.

Since the controller serves as the central point of communication with all operators, this

action in turn results in rolling back all operators in the workflow. This cascading effect not

only significantly increases the recovery time, but also obstructs user interactions with the

controller during the rollback process.

D2

Checkpoint

C1

Log

Controller

C2 D3 D4

Restore
Restore

Upstream

RecoveredStart recovery

Upstream
Restore

Figure 2.10: Recovery process of operator workers in Texera

Hybrid message logging strategy. To address both the logging overhead and cascade

rollback issues mentioned earlier, we adopt a hybrid approach that treats data and control

messages differently. Specifically, we log the content and relative order of control messages,

while logging only the relative order of data messages. During recovery, we first restart

the failed operators. Then we analyze the dataflow graph to find all upstream operators of

the failed operators. These upstream operators need to be restarted as well to regenerate

the content of input tuples. For control messages, we do not need to restart the controller;

instead, we directly restore the content of the control messages from the log. Figure 2.10

illustrates the recovery process of the failed operator worker. It loads the previous checkpoint

and notifies the controller about its recovery status. The controller rolls back the upstream

operators to regenerate data tuples D2 and D3. The operator worker reprocesses D2 from

upstream, reads control messages C1, C2, and C3 from the log, and re-applies the bug fix
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before processing D3.

Each restarted operator receives the same set of data and control messages, enforces the

original order of processing using the log, and re-generates the same output messages, thus

satisfying the output commit requirement. This approach has a low logging overhead because

the content of control messages is typically much smaller than that of data messages. Ad-

ditionally, this method avoids the cascading rollback issue by only restarting the upstream

dependencies of the failed operators, rather than all the operators in the workflow. The

logging method used in Texera is reminiscent of the logical (operational) logging approach,

which can be found in algorithms in multi-level recovery [71], where the transaction oper-

ations or commands that lead to changes in system states are logged. In Texera, we log

and replay both data and control messages that the operators receive and processing these

messages in their original order upon restart. This is in contrary from the physical logging

method, such as in ARIES [78], where the physical changes made to the system state are

logged. In the event of a failure, the system can be restored by undoing or redoing operations

directly on the state. Texera employs a logical logging method to save the potential storage

cost of the a large amount of intermediate data or large operator sates.

2.3.4 Experiments

We conducted experiments to compare the runtime overhead and the recovery time of dif-

ferent logging methods. We used the workflow shown in Figure 2.11 in this experiment.

This workflow reads a tweet table containing one million tweets, filters the tweets, and then

joins the tweets with a geo-location table. Subsequent operations included searching for a

keyword in the tweets and aggregating the results. During the workflow execution, each

operator exchanged dummy control messages with the controller twice every second.

Figure 2.12 illustrates the execution time of the example workflow using different logging
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Figure 2.11: Example workflow to evaluate different logging methods.

methods, while Figure 2.13 displays the corresponding log size on disk. Table 2.1 provides

the recovery time given different operator failures and different logging methods.
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Figure 2.12: Execution time of the example workflow with different logging methods.

Without logging, the workflow completed in approximately 9.5 seconds. When all input

messages were logged, including both data and control messages, the execution time increased

to 11.2 seconds. This method resulted in the largest log size of around 1.6GB. However, it

also enabled the quickest recovery, as the failed operator could directly access the input data

from the log without restarting upstream operators. In contrast, the method of logging only

the arrival order of messages lowered the execution time to roughly 10.3 seconds, which had

less overhead compared to logging all messages. Moreover, it resulted in the smallest log size

of around 300KB. However, this method incurred the longest recovery time due to the need

for a complete workflow restart. The hybrid logging strategy resulted in a slightly larger
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Failed Operator log all inputs log arrival order hybrid logging
Filter 5.27 10.56 10.3
Join 10.12 10.52 10.17

Table 2.1: Recovery time of different logging methods.

log size of approximately 370 KB, and an execution time of around 10.5 seconds, both of

which were less than the method of logging all messages. As for recovery time, it was longer

than the method of logging all messages, but shorter than the method of logging only the

input order. Thus, this hybrid method provided a slightly more balanced solution between

runtime overhead and recovery speed.
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Figure 2.13: Storage overhead of the example workflow with different logging methods.
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2.4 Supporting a Collaborative User Interface

So far we have covered Texera’s rich user interaction features with low response time. In

this section, we discuss the collaborative features supported by Texera. We first discuss the

aspects of collaborative workflow editing and construction. We present a few design choices

to enable shared editing, and support easy-to-use features such as auto complete. Next,

we elaborate on how Texera can efficiently share execution state updates among all users,

synchronize execution controls, and support a new user joining an existing execution session.

2.4.1 Collaborative Workflow Construction

A key challenge in building a collaborative workflow editor is to resolve editing conflicts

between concurrent users and maintain data consistency. There are two popular techniques

to support distributed data consistency and real-time conflict resolution, namely Operational

Transformation [90] (OT), and Conflict-free Replicated Data Types [86] (CRDT). We refer

interested readers to know how these two technologies work behind the scenes to plenty of

online resources [58, 10].

Operational Transformation (OT). It is an approach that enables real-time collaborative

editing by transforming operations in such a way that they maintain consistency among

different replicas of shared data. In OT, when a user performs an action, this action is

transformed by other users before it is applied to the shared data. This transformation

ensures that the order of operations does not matter, and the final state of the shared

data remains consistent across all the replicas. In a system using OT, each user’s frontend

client maintains a local copy of the shared data and communicates with a central server for

synchronization. In an OT-based system, the central server plays a crucial role in maintaining

consistency among clients by transforming and coordinating operations. The server can host
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a workflow compiler that listens to changes in the shared data, providing smart auto-complete

and suggestions to the frontend clients. As the server maintains the ground truth of the data,

it can provide accurate auto-complete suggestions to all its connected clients.

Figure 2.14 illustrates this process with two users, Alice and Bob, concurrently editing a

workflow. In the first step, Alice and Bob make simultaneous edits, which are then trans-

mitted to a centralized OT server. Upon receiving these concurrent edits in the second step,

the OT server arranges them in the order they are received, transforms each edit to resolve

conflicts, and applies them to the workflow stored on the server. Finally, in the third step,

the OT server sends each workflow update to the workflow compiler, which recompiles the

user’s workflow and provides the most recent autocomplete suggestions to both Alice and

Bob via their respective web user interfaces.

Figure 2.14: Provide conflict resolution and autocomplete suggestions using Operational
Transformation (OT).

Conflict-free Replicated Data Types (CRDT). It is an alternative approach for main-

taining consistency in distributed systems. CRDTs are data structures designed to be repli-

cated across multiple nodes while allowing concurrent updates without coordination between

the nodes. The main idea behind CRDT is that it should always be possible to merge different

replicas of the shared data into a consistent state, even when updates happen concurrently.
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This is achieved by ensuring that all operations on the CRDT are commutative, associative,

and idempotent. In a system using CRDT, clients can update their local copies without

the need for coordinating with a central server, such as using a peer-to-peer communication

with other clients. Since CRDTs allow concurrent updates without coordination, it is more

challenging for the compiler inside the server since the server does not have the ground truth.

Figure 2.15 illustrates this process. In step 1, Alice and Bob make two concurrent edits.

Their respective web UIs exchange these edits directly, eliminating the need for a central

server to coordinate. In step 2, upon receiving the edits, Alice and Bob independently

resolve conflicts and update their documents. The CRDT algorithm ensures that both users’

documents will converge after the updates. In step 3, for each workflow update, Alice and

Bob’s clients independently send the new workflow to the workflow compiler, requesting the

most up-to-date autocomplete suggestions.

Figure 2.15: Provide conflict resolution and autocomplete suggestions using Conflict-free
Replicated Data Types (CRDT).

Comparing OT and CRDT. While Operational Transformation (OT) Conflict-free Repli-

cated Data Type (CRDT) mechanisms function differently, it’s worth noting that both sup-

port the majority of common edit operations. The disparities between the two primarily

stem from their respective implementations rather than from any foundational shortcomings

inherent in each mechanism [96, 11]. In terms of performance, OT-based implementations

are generally considered more efficient compared to CRDT-based implementations. However,
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it’s important to acknowledge that many recent CRDT implementations have significantly

improved, offering comparable efficiency and speed [6, 4].

In terms of adopting OT or CRDT in a data analytics system, these two approaches mainly

differ in their system architecture and coordination requirements. For example, in the OT

architecture, the workflow compiler recompiles the workflow only twice in this example, cor-

responding to each update sent from the OT server. However, in the CRDT architecture, the

workflow compiler recompiles the workflow four times, as both Alice and Bob independently

request autocomplete suggestions for two updates. This implies that in the OT architecture,

the time complexity is proportional to the number of changes, while in the CRDT archi-

tecture, the time complexity is the product of the number of changes and the number of

concurrent users. For instance, in an execution session involving 10 users, even if a single

user makes a single change, the workflow compiler must recompile the workflow 10 times.

Although an OT-based implementation may be more suitable for a data analytics system

that typically has a central server, Texera opts for a CRDT-based implementation due to its

superior open-source ecosystem and more robust frontend support. A survey of popular open-

source conflict resolution tools reveals that most OT-based tools are either deprecated or no

longer updated, whereas CRDT-based tools have richer features, more frequent updates, and

a thriving user base and community [82, 112].

To address the challenges presented in the CRDT-based architecture, specifically the higher

time complexity for the workflow compiler to recompile workflows for providing autocomplete

suggestions, we made the following optimizations to increase efficiency.

Optimization 1. First, we only recompile the query if it affects the autocomplete results.

This is achieved by distinguishing different types of edits. For instance, edits made purely

at the UI level, such as moving an operator to a different position, need to be synchronized

across frontends but do not affect the execution logic of the workflows. For these types of
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edits, the frontend does not send requests to the workflow compiler. Furthermore, for some

operators, only changes to certain properties affect the autocomplete suggestion results. For

example, a sentiment analysis operator requires two properties: InputColumn, the column

to perform sentiment analysis on, and OutputColumn, a new column name for storing the

result. If the user only changes the value of InputColumn, this does not affect the output

schema of this operator. Therefore, we only send requests to recompile the workflow when

the value of OutputColumn changes.

Optimization 2. Second, the workflow compiler maintains a cache of recently compiled

workflows and their corresponding schema propagation results. When a new request comes

in, the compiler compares the request with the cache. If a match occurs, this indicates

that this version of the workflow has been compiled before and the results in the cache

will be returned to the frontend. This optimization is especially useful in the CRDT-based

architecture. In the case of a single user making an edit, once the workflow compiler has

compiled this new version, when all other users request suggestions for this version, we can

retrieve the result from the cache and avoid recompiling again.

2.4.2 Collaborative Workflow Execution

In an interactive data processing system, there is a rich set of execution states that can be

shared by the users, as shown in Figure 2.16. The execution states include the status of

the workflow (e.g., initializing, running, paused, error, or completed), runtime statistics of

operators (input and output counts), user interaction history (e.g., user commands, system

responses, error messages, logs, and traces), and progressive execution results. Next, we

discuss how to share execution states in a collaborative data analytics setting, including

sharing execution state updates among users, allowing execution controls to be synchronized

among users, and supporting adding a new user to an execution session.
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Figure 2.16: Execution states shared by users: (1) workflow status, (2) operator running
statistics, and (3) user interaction history, including user commands to the system and
system’s output messages.

Shared Execution States

A key component of enabling collaborative workflow execution is the sharing of execution

states. When a user initiates a workflow, it is essential that other users sharing the same

workflow see its running status and receive frequent updates. For instance, suppose Alice and

Bob are collaboratively monitoring a workflow. They both should observe the workflow status

transitions, such as from ’ready’ to ’running’, and from “running” to “paused”. Figure 2.17

illustrates this process. The “Shared Execution Manager” component plays a crucial role

in maintaining this synchronicity. It periodically communicates with the Amber execution

engine, querying the status of the entire workflow and collecting operator statistics. Once it

obtains the latest state updates, it broadcasts these updates to all web UIs engaged in the

execution session. This ensures that all users remain informed and in sync with the ongoing

workflow process.

However, a naive approach of periodically sending the complete execution state snapshot to
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Figure 2.17: Sharing execution states in Texera. The shared execution manager periodically
queries the Amber execution engine for the latest execution states and broadcasts the state
updates to all web UIs.

the frontend is not viable due to the frontend’s limited processing power and the network

overhead. Additionally, the interaction history keeps growing as more user interactions

occur during execution, and progressive execution results can become large. To provide a

smooth user experience, we need incremental delta updates for various execution states. The

challenge lies in the fact that different execution states require different incremental methods

to be updated to the frontend. Next, we discuss various approaches to making incremental

delta updates to the frontend for different execution states.

Workflow Status and Operator Statistics. For the workflow state and operator status,

the backend sends only the status of the changed operators. Consider the example workflow

state shown in Figure 2.16. The two CSV File Scan operators and the Hash Join operator

have already completed their execution and their statistics will not change any more. In

this case, the server will not resend the statistics of these operators to the frontend. The

subsequent updates will only contain the new statistics for the Python UDF and the View

Results operators. On the frontend, whenever it receives updates of status changes, it
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simply replaces the old status value with the new one.

Interaction History. The interaction history works differently compared to operator sta-

tus. Since interaction history continually grows, only newly generated entries are sent.

Whenever the client sends a request to the engine, and the engine generates a response, both

the request and the response are added to the interaction history. In this case, only the

newly added entries are sent to the frontend. The frontend then appends the new entries to

the history list upon receiving an incremental update. As an example, refer to Figure 2.16

which shows a user interaction history. The Python UDF operator continually updates the

user about its progress after every 1000 tuples. Suppose it has already processed 55,000

tuples, thus generating 55 entries in the user interaction history. When another 1000 tuples

are processed, the new progress report at the 56,000-tuple mark gets added and sent to the

frontend. Note that only this additional entry gets transmitted, instead of transmitting all

56 entries from the interaction history.

Progressive Execution Results. Execution results can be extremely large, making it in-

feasible to send the entire result to the frontend. Naturally, a pagination method is adopted,

where the frontend only retains the content of the current page. In this scenario, the pagi-

nation metadata is still updating; therefore, only metadata updates are sent to the frontend.

Progressive computation has various output modes for early results. In an append-only

mode, the result only adds new entries as the execution continues. In this case, the backend

sends a number of results to the frontend. In a retractable mode, the earlier results could

be deleted or updated. An example is incrementally updating the results of a group-by ag-

gregation, such as a sum operation. In this case, the sum within each group keeps changing.

For example, the sum might be updated from 100 to 200. In this case, updates are sent to

the frontend to inform of row number of the dirty rows, meaning the content of the rows are

updated, and the frontend needs to re-fetch data from the backend to refresh the results.
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Shared Execution Control

In Texera, each collaborator should be able to control the execution, such as pausing and

resuming it. It is important for their actions to be immediately visible to other users.

For example, if Alice pauses the execution, Bob should instantaneously see on his browser

that the workflow is paused. Figure 2.18 illustrates the process of shared execution control.

Initially, Alice sends a Pause request to the Amber engine via the shared execution manager.

Once all operators are paused, Amber sends a Paused notification to the state manager. The

state manager then updates the current state and broadcasts this new state to all the web UIs.

As a result, every collaborator observes the workflow’s execution state changing to Paused.

Collaborators can inspect and modify the workflow, then resume or rerun it according to the

new logic. If any editing conflicts occur, these are resolved before the execution resumes.

Figure 2.18: When a user pauses a workflow, the states of all web UIs are updated.
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Adding a New Collaborator

A user should have the ability to invite a new collaborator to join an execution session at

any point, to help with the result analysis or troubleshooting. In this scenario, the execution

state should be seamlessly shared with the new collaborator’s frontend UI, i.e., any user can

attach or detach from the shared execution state at any time. For instance, if Alice invites

her colleague, Charlie, to help with investigating a buggy execution, Charlie then joins the

ongoing session as a new collaborator. At this point, Charlie should be able to access all the

information available to Alice and Bob, including the workflow status, operator statistics,

and past user interaction history. Charlie can also inspect the training metrics in detail and

evaluate expressions at the exact same execution state as Alice and Bob. Figure 2.19 depicts

the process of incorporating new collaborators into a workflow execution session.

Figure 2.19: (1) Shared Execution Manager receives delta updates from the Amber engine.
(2) A state snapshot is maintained by applying these delta updates. (3) A new user joins the
execution session. (4) The execution state snapshot is sent to the new user first to update
the new user’s web UI. (5) The new user’s web UI receives subsequent delta updates.

Consider the aforementioned method of sending incremental updates to clients. A problem

arises when a new user joins an execution session in the middle of an execution. If the

new user’s frontend only receives incremental updates from the moment they join, their
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frontend state will be incomplete. For example, the new user might only see interactions

made after they join, and not be able to view past interaction history, which could be critical

for investigating problems and analyzing results. To address this problem, the state manager

maintains the current state snapshot of the execution. Whenever the state manager receives

a new incremental update from the Amber execution engine, the snapshot stored in the

state manager is updated using the same method as the clients. When a new user such as

Charlie joins the execution session, the latest state snapshot and result snapshot are sent to

Charlie’s web UI to bring him up-to-date with the current execution progress. Afterward,

all subsequent incremental updates are directed to the new user, ensuring that they have

a complete and up-to-date view of the execution state. This architecture also allows an

existing user to safely leave the execution session and later reconnect to the execution.

2.4.3 Experiments

Figure 2.20: Example workflow to evaluate workflow re-compilations in a CRDT-based
architecture.

We conducted experiments to evaluate the effectiveness of the optimizations discussed in

Section 2.4.1. These optimizations aim to reduce the number of workflow re-compilations

within a CRDT-based architecture. The workflow used in the experiment, as shown in

Figure 2.20, involved joining a tweet table with a geo-location table, followed by a Python

UDF operator. Subsequent operations included filtering the data and displaying the results
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via a word cloud operator.

We designed a simulated collaborative editing session from a single user to four concurrent

users, each concurrently constructing different parts of a workflow. We maintained the total

number of editing steps made by all users at approximately the same value. This setup

allowed us to compare the count of workflow re-compilations by the workflow compiler, both

with and without the two above-mentioned optimizations.
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Figure 2.21: Number of workflow re-compilations with different number of users concurrently
constructing a workflow.

Figure 2.21 shows the evaluation results. Without any optimizations, the count of workflow

re-compilations increased linearly with the user count. For example, in a shared editing ses-

sion with two users, the workflow compiler performed a total of 70 re-compilations, whereas

the number increased to 156 with four users. With the first optimization, where only nec-

essary changes were sent to the workflow compiler, we observed a slower growth rate in

the number of workflow re-compilations as the user count increased. However, the growth

remained linear relative to the user count.

With the second optimization, the number of edits remained largely unaffected by the number

of concurrent users. This is because it is relatively rare to have race conditions involving

edits made by different users within a very short time span. Furthermore, users typically
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interacted with different components, which minimized conflicts. As a result, most requests

could be served directly from the cache, thus avoiding re-compilations. Upon combining

the two optimizations, we observed the least number of re-compilations, yielding the best

results.
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Chapter 3

Fries: Fast and Consistent Runtime

Reconfiguration in Dataflow Systems

with Transactional Guarantees
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3.1 Introduction

Big data systems are widely used to process large amounts of data. Each computation

job in these systems can take a long time to run, from hours to days or even weeks to

finish. Applications that require timely processing of input data often use pipelined dataflow

execution engines [35, 37, 103, 16], for example, in the scenarios of processing real-time

streaming data, or answering queries progressively to provide early results to users. In these

applications, when a long running job continuously processes ingested data, developers often

need to change the computing logic of the job without disrupting the execution, as illustrated

in the following example.

Consider a data-processing pipeline for payment-fraud detection shown in Figure 3.1. This

simplified dataflow resembles many real-world applications [95, 44]. A stream of payment

tuples is continuously ingested into the dataflow, with each tuple containing payment infor-

mation such as customer, merchant, and amount. The dataflow uses two machine learning

(ML) operators FC and FM to detect fraud based on customer and merchant information.

Source
Fraud


Detector

Customer

Sink
Fraud


Detector

Merchant

FC FM

Model

Combiner

MC
Input Stream

Figure 3.1: An example data-processing pipeline for fraud detection processing continuously
ingested data.

Consider two example use cases in this dataflow. Use case 1: fixing loopholes in operators.

After observing unexpected tuples from the Sink operator, the user identifies a loophole in the

operator FM . She wants to update this operator to incorporate new rules to fix the loophole,

without stopping the execution. Use case 2: handling surges of data arrival rate. Suppose the

data arrival rate at the source suddenly increases, and as a result, the end-to-end processing

latency becomes larger. The user finds that the ML operator FM is the bottleneck. To reduce
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the latency, she wants to “hot-replace” the expensive ML model (e.g., a deep neural network)

with a lightweight model (e.g., a decision tree) to improve its performance, thus reduce the

processing latency. Again, she wants to make the change without stopping the execution.

These examples show the importance of allowing developers to change the dataflow execution

“on the fly.” We call such changes runtime reconfigurations. This problem has gained a lot

of interest in the research areas of software engineering [89], mobile computing [61, 102],

and distributed systems [64, 72]. Recently, users of dataflow systems also show the need

for runtime reconfigurations [95, 47, 46] and more systems start supporting this important

feature [34], such as Amber [65], Chi [73], Flink [105], and Trisk [76].

Naturally there is a delay from the time a user requests a reconfiguration to the time its

changes take effect in the target operators. This delay is critical to the performance of the

system. For example, in use case 1, the user wants to fix the loophole as soon as possible

since a large reconfiguration delay can cause financial losses. In use case 2, a large delay

in mitigating the surge can cause the system to suffer longer in terms of long latency and

wasting of computing resources. Thus we want this delay to be as low as possible.

A main limitation of existing systems supporting runtime reconfigurations is that they could

have a long reconfiguration delay. In these systems, after a reconfiguration request is sub-

mitted, they need to wait for all the in-flight tuples to be processed by those target recon-

figuration operators, as well as those earlier operators in the dataflow, before the requested

changes can be applied on the target operators. This delay could be very long, when there

are many in-flight tuples, or some of these operators are expensive, especially for operators

using advanced machine learning models and those implemented as user-defined functions

(UDF’s).

In this paper, we develop a novel technique, called “Fries,” to perform runtime reconfigura-

tions with a low delay. It leverages the emerging availability of fast control messages in many

systems recently. A fast control message, “FCM” for short, is a message exchanged between
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the controller in the data engine and an operator without being blocked by data messages.

Figure 3.2 shows an example of handling a reconfiguration request of two operators FM

and MC using FCM’s. Upon a reconfiguration request, the controller sends an FCM to

each of the two operators, and each of them applies the new configuration immediately after

receiving the message. Since FCM’s are sent separately from data messages, these changes

can reach the target operators much faster.

Controller

Source
Fraud


Detector

Customer

Sink

User

Fraud

Detector

Merchant

FC FM

Model

Combiner

MC

ti

Reconfiguration
Request

FCM FCM

Figure 3.2: Handing a runtime reconfiguration of operators FM and MC using fast control
messages (FCM’s).

We will show in Section 3.4.1 that the naive way of using FCM’s can cause consistency issues

in Figure 3.2. It has unexpected side effects, e.g., producing incorrect results on the output

tuples, or even causing the operator MC to crash. This example shows several challenges in

developing Fries: 1) What is the meaning of “consistency” in this reconfiguration context?

2) How to ensure this consistency while reducing their delay? 3) How to deal with different

types of operators and support parallel executions? We study these challenges and make the

following contributions.

• We analyze epoch-based reconfiguration schedulers and show their limitations (Sec-

tion 3.3).

• We formally define consistency of a reconfiguration based on transactions (Section 3.4).

• We first consider a simple class of dataflows that have one-to-one operators only, and

develop a Fries scheduler that guarantees consistency (Section 3.5).
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• We then consider the general class of dataflows with one-to-many operators, and extend

the Fries scheduler (Section 3.6).

• We extend Fries to more general cases, such as dataflows with blocking operators and

multiple workers. We also discuss how to support fault-tolerance (Section 3.7).

• We conduct an extensive experimental study to evaluate Fries in various scenarios and

show its superiority compared to epoch-based schedulers (Section 3.8).

3.1.1 Related Work

Reconfiguration systems. Recently, many data-processing systems have started to sup-

port reconfigurations. Flink [35] supports reconfiguration by taking a savepoint [45], killing

the running job, then restarting the job with the new configuration. This approach is disrup-

tive to the dataflow execution. Spark Streaming [22, 116] uses a mini-batch-based execution

strategy and supports reconfiguration between mini-batches. Chi [73] enables runtime recon-

figuration by propagating epoch markers in its data stream. Trisk [76] provides an easy-to-use

programming API for reconfigurations. The approaches in these systems are all based on

epochs, which can have a long reconfiguration delay, as analyzed in Section 3.3. Fries relies

on FCM’s to perform reconfigurations with a low delay. Noria [51] is a system that uses

dataflows to incrementally maintain materialized views. The system supports reconfigura-

tions of view definitions, which require the new views to be recomputed from entire base

tables. In Fries, an update of a dataflow only affects the future tuples. The input tuples

that are already processed by the dataflow are not recomputed using the new configuration.

Re-scaling systems. Some systems [43, 57, 79] support updating the dataflow for re-

scaling. For example, Megaphone [57] based on timely dataflow [81] supports a fine-granularity

re-scaling and Rhino [79] based on Flink supports re-scaling with very large states. Fries
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focuses on reconfiguring the computation functions of operators, which is different from

re-scaling.

Transactions in dataflow systems. S-Store [77] and the work in [30] are systems that

allow streaming dataflows and OLTP workloads to access a shared mutable state. Although

both systems do not support reconfigurations directly, we could map a reconfiguration to

these systems. S-Store defines transactions on the processing of each input batch on a single

operator. This model cannot express our consistency requirements in reconfigurations. The

work in [30] treats a dataflow as a black box, thus it has the limitation of not being able to

utilize the properties of the dataflow and its operators to reduce the reconfiguration delay.

Fries can do so to achieve this reduction. Both earlier systems include a transaction scheduler

to manage the processing of data, which creates scheduling overhead even when there is no

reconfiguration. The Fries scheduler has no such overhead before receiving a reconfiguration

request. Additionally, both earlier systems are only on a single node, while the Fries scheduler

can run on a distributed engine on a cluster.

Transactions in database systems. Transactions are widely studied in traditional database

systems (e.g., [27, 109, 28]). A uniqueness in transactions in our work is that they treat op-

erations in a reconfiguration as a separate transaction, which is handled differently from

data transactions. In addition, Fries does optimizations by utilizing special properties in

our problem setting, including the DAG shape of a dataflow, and types of operators, e.g.,

one-to-one and one-to-many. Moreover, the Fries scheduler uses FCM’s and epoch markers

to schedule transactions without locking.
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3.2 Problem Settings

3.2.1 Data-Processing Model

A data-processing system runs a computation dataflow job represented as a directed acyclic

graph (DAG) of operators. Each operator receives tuples from its input edges, processes

them, and sends tuples through its output edges. An operator contains a computation

function f represented as

f : (s, t)→
(
s′, {(t′1, o′1), . . . , (t′n, o′n)}

)
.

The function processes a tuple t at a time with a state s of the operator, produces a set

of zero or more output tuples {t′1, . . . , t′n}, where each tuple t′i has a receiving operator o′i.

The operator also updates its state to s′. The system has a module called controller that

manages the execution of the job, handles requests from the user, and exchanges messages

with operators during the execution.

For simplicity, we first focus on dataflows under the following assumptions. (1) A dataflow

contains pipelined operators only, such as selection, projection, union, and other tuple-at-a-

time operators. We consider a class of join operators where the operator first collects all the

tuples from one input (e.g., the “build” input of a hash join), then starts processing tuples

from the other input (e.g., the “probe” phase of a hash join). We consider the processing of

tuples from the second input of join. (2) Each operator has a single worker. We relax these

assumptions in Section 3.7.

As an example, consider the data-processing pipeline for payment-fraud detection shown

in Figure 3.1. The example dataflow uses two machine learning (ML) operators for fraud

detection. The first one, denoted as FC, keeps a state of the 5 recent tuples of each customer.
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For each input tuple, FC updates the state and feeds the 5 recent tuples of the customer

into an ML model. The predicted probability pc(5) is attached as a new column of the tuple.

The second one, denoted as FM , keeps a state of the 5 recent tuples of each merchant.

Similarly, it uses an ML model to generate a predicted probability pm(5), and attaches it as

a new column of the tuple. Finally, the model combiner MC uses pc(5) and pm(5) of each

tuple to compute the final average probability with the weights [0.4, 0.6].

3.2.2 Runtime Reconfiguration

Definition 3.1 (Runtime reconfiguration). During the execution of a dataflow, an update

to the computation functions of its operators is a runtime reconfiguration of this execution.

Formally, a reconfiguration R is a set of operators with a function update µ(oi) for each

operator oi, i.e.,

R = {(o1, µ(o1)), . . . , (on, µ(on))}.

Each operator oi has a function-update operation µ(oi). This operation applies a pair
〈
f ′
oi
, Toi

〉
to the operator, where f ′

oi
is a new computation function of the operator. Toi is a state

transformation that converts the operator’s original state s to a new state s∗ = Toi(s), which

can be consumed by f ′
oi
. In this paper, we consider the case where there is one reconfiguration

at a time.

In the running example, suppose the user identifies a flaw in the dataflow and wants to

reconfigure the two operators FM and MC. Specifically, the user wants to change FM to

output an additional probability value pm(10), which is predicted using the 10 recent tuples

of each merchant. The operator MC needs to be updated to combine all three probabilities

(pc(5), pm(10), and pm(5)) with the new weights [0.4, 0.4, 0.2]. Table 3.1 shows the old and

new configurations of the two reconfiguration operators.
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FM ’s output MC weights
Old configuration pm(5) [0.4, 0.6]
New configuration pm(10), pm(5) [0.4, 0.4, 0.2]

Table 3.1: Operator executions during a reconfiguration.

Note that the new configuration of an operator can require a state different from that of

the old configuration. In this case, the reconfiguration can use a state transformation to

migrate the old state to the new one. In the running example, the old configuration of

operator FM uses a state with the last 5 payment tuples for each merchant. However, the

new configuration of FM needs a list of last 10 tuples for each merchant. The user provides

a state transformation T for operator FM , to instruct the system in transferring operator

FM ’s old state to the new one. In this example, the user chooses to fill the new state with

the 5 tuples from the old state and 5 additional null values.
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3.3 Epoch-Based Reconfiguration Schedulers and Limi-

tations

In this section, we explain epoch-based reconfiguration schedulers and show their limitation

of long delays.

3.3.1 Epoch-Based Schedulers

Dataflow epoch. A stream of tuples processed by the system can be divided into consec-

utive sets of tuples, where each set is called an epoch [32]. One way to create epochs is to

use epoch markers. At the start of a new epoch, an epoch marker is injected to each source

operator. The epoch marker is then propagated along the data stream using the following

protocol [32]. When an operator receives an epoch marker from an input channel, it per-

forms epoch alignment by waiting for all its inputs to receive an epoch marker, then sends

the marker downstream. As an example, Figure 3.3 shows two epochs during the execution

of the fraud-detection dataflow. An epoch marker injected between t4 and t5 divides the

input stream into two epochs. The epoch marker indicates the end of epoch 1 and the start

of epoch 2.

Fraud

Detector

Customer

Fraud

Detector

Merchant

FC FM

Model

Combiner

MC

t1
Source Sink

t2t3t4t5

Epoch 1
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data processed 

with new configuration

data processed 
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Figure 3.3: An epoch-based reconfiguration scheduler in Chi [73]. It uses an epoch barrier
to apply the new configuration to operators FM and MC at the start of Epoch 2.
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Definition 3.2 (Epoch-based Scheduler). An epoch-based scheduler schedules a recon-

figuration request between two epochs. That is, for each reconfiguration operator O, all the

tuples in the old epoch are processed with the old configuration of O, and all the tuples in the

new epoch are processed with the new configuration of O.

Considering the aforementioned method to generate epochs, the following is an implemen-

tation adopted by Chi [73]. We call this implementation “Epoch Barrier Reconfiguration”

scheduler, or “EBR” in short. Upon a reconfiguration request, the controller starts a new

epoch and piggybacks the reconfiguration in the epoch marker. When a reconfiguration

operator receives epoch markers from all its inputs, it applies the new configuration. The

operator then processes the input tuples in the next epoch using the new configuration. Fig-

ure 3.3 shows the process of handling a reconfiguration of operators FM and MC using the

EBR scheduler. When operator FM receives the epoch marker, it applies the new configu-

ration, and propagates the marker to operator MC. When operator MC receives the epoch

marker, it also applies the new configuration.

System Epoch creation Reconfiguration Strategy

Chi [73] Epoch makers Piggybacking control messages in epoch
markers

Flink [45] Epoch makers Stop-and-restart
Spark Streaming [22] Mini-batch Stop-and-restart

Table 3.2: Epoch-based reconfiguration schedulers.

Table 3.2 shows different epoch-based reconfiguration schedulers.

In Flink [45], upon a reconfiguration, a new epoch is immediately triggered using an epoch

marker. At the end of the old epoch, each operator saves its state into a checkpoint. After

the old epoch is processed by all the operators, Flink kills the execution, updates the dataflow

graph, loads the saved states, and restarts the dataflow. In Spark Streaming [22], epochs

are created by dividing the input data stream into small mini-batches, each of which is an

epoch. A mini-batch is processed one at a time by launching a separate computation job.
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Upon a reconfiguration, the system modifies the dataflow graph before starting the job of

the next mini-batch.

3.3.2 Limitations: Long Reconfiguration Delays

A major limitation of epoch-based reconfiguration schedulers is a long reconfiguration delay,

which is from the time a request is submitted to the time the new configuration takes effect in

the target operators. In particular, the system needs to process all the in-flight tuples before

the new epoch. Take the EBR scheduler in Figure 3.3 as an example. Operator FM needs

to finish processing the in-flight tuples t3 and t4. In general, this delay could be long due

to the following reasons. First, the dataflow can contain multiple expensive operators that

make the processing of an epoch slow. Second, the number of in-flight tuples could be large,

especially when the system is under high workload. We may want to reduce the number

of in-flight tuples by decreasing the buffer size. However, a smaller buffer can be easily

filled by a minor fluctuation in the input ingestion rate. When the buffer is full, the system

triggers back-pressure, which can decrease the throughput. Moreover, a small buffer size

causes the networking layer to transmit data in small batches, which introduces additional

transmission overhead. Compared to the EBR approach, the Flink approach suffers from an

additional delay of stopping and restarting the dataflow. Spark Streaming can also have a

long reconfiguration delay. The delay is determined by the processing time of a mini-batch,

with a predefined interval usually set to a few seconds. However, the delay can be higher

when the processing speed cannot keep up with a surge of the data ingestion rate.
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3.4 Scheduling Reconfigurations Using Fast Control Mes-

sages

In this section, we introduce a new type of reconfiguration schedulers based on fast control

messages (FCM’s). We present a naive scheduler and show its issues. We then formally

define consistency of a reconfiguration.

Definition 3.3 (Fast Control Message). A fast control message, “FCM” for short, is

a message exchanged between the controller and an operator without being blocked by data

messages.

There are many ways to implement fast control messages. For instance, to send an FCM

from the controller to the fraud detector in our running example, one approach is to set up

a new communication channel between the controller and the fraud detector. The channel

is separate from existing data channels, and the FCM can bypass data messages. Another

way is to transmit the FCM using existing data channels, but assigning a higher priority to

the FCM. The FCM is first sent to a source operator of the workflow, then propagated along

the edges to the fraud detector, and it bypasses data messages in each data channel.

3.4.1 FCM-based Schedulers

Naive FCM scheduler. A main benefit of using FCM’s to schedule reconfigurations com-

pared to epoch-based schedulers is that FCM’s have a much smaller delay. A naive scheduler

leverages this benefit as follows. The controller sends an FCM directly to each reconfiguration

operator. When an operator receives an FCM, it applies the new configuration immediately

after finishing the processing of its current tuple. We use Figure 3.2 to explain how the naive

scheduler works in a reconfiguration of two operators FM and MC. Using this scheduler,
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the controller sends an FCM directly to each of the two operators FM and MC. The FCM

carries the new function f ′ and the state transformation T of the corresponding operator.

These operators update their configuration after receiving their FCM.

While this naive scheduler has a low reconfiguration delay, it could generate an undesirable

reconfiguration schedule in this example. Notice that the scheduler does not coordinate the

updates to these two operators that run independently. Consider the in-flight tuple ti, which

is processed by FM using its old configuration. Suppose the MC switches to the new config-

uration before the arrival of ti. Then tuple ti is processed by MC using its new configuration.

The tuple contains two probability values pc(5) and pm(5), but the new configuration of MC

expects three probability values. This schema mismatch could have unexpected side effects,

such as an incorrect result on the produced output tuple, or even causing the operator MC

to crash. This example shows the importance for the reconfiguration to be performed in a

synchronized manner on the two reconfiguration operators. In particular, we want a tuple

to be processed by the two operators either using the old configuration or using the new

configuration.

FCM multi-version scheduler. To ensure a tuple is processed by the same configuration

of multiple operators, we can use the following FCM-based multi-version scheduler that

maintains multiple configurations of an operator at the same time. The controller first sends

an FCM to each reconfiguration operator. Each operator keeps both the old configuration

and the new one. After all operators have received the FCM, each source operator increments

its version number, which is tagged to each source tuple. For each input tuple, an operator

checks the tuple’s tagged version number, chooses the corresponding configuration version to

process the tuple, and tags the same version number to the output tuples. As an example,

in Figure 3.4, after the new configuration is sent to operator E, the source operators then

tag subsequent output tuples t3 and t4 with the new version v2.
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Figure 3.4: Using an FCM multi-version scheduler, an operator processes a tuple based on
its version tag.

This scheduler has two problems. First, each reconfigured operator may need to keep two

sets of states for two configurations, and these states could be very large (e.g., large hash

tables or machine learning models). Second, this scheduler still suffers from a possible high

reconfiguration delay. In particular, similar to the case of the EBR scheduler, there can be

a large amount of in-flight tuples that are already tagged with the old version and they still

need to be processed with the old configuration (e.g., t1 and t2 in Figure 3.4).

3.4.2 Reconfiguration Consistency

We formally define the consistency requirements in this context. At a high level, we treat

the processing of a single source tuple by multiple operators as one transaction, and a recon-

figuration as another transaction. We use conflict-serializability to define the consistency of

a schedule of a reconfiguration.

Definition 3.4 (Scope of a source tuple). The scope of a source tuple t of a dataflow W ,

denoted as S(W, t), is a pair (S,≼S), where S is a set of tuples and ≼S is a partial order on

S, defined as follows:

1. The source tuple is in S.

2. For each tuple s in S, if an operator processes the tuple s and produces zero or more

output tuples {s′1, . . . , s′n}, all the produced tuples are also in S. For each tuple s′i, we

have the order s ≺ s′i in ≼S .
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For instance, in Figure 3.5, a source tuple t is ingested into the dataflow from the source

operator A and processed by operators C, D, E, F , and H. The scope of t includes the

tuples on the highlighted edges and their partial order defined as their edges on the DAG.

G
D

FC H

B

E

t
t1 t3 t4

t2

t5A

Figure 3.5: Scope of a source tuple in a dataflow.

Definition 3.5 (Data operation). The data operation of a tuple s is the processing of s

by its receiving operator o, denoted as ϕ(s, o).

Definition 3.6 (Data transaction). For a dataflow W and a source tuple t in W , let

(S,≼S) be the scope of t. The data transaction of t is a pair (Φ,≼Φ), where Φ is the set of

data operations of the tuples in S, and ≼Φ is a partial order on Φ. For two data operations

ϕ(ti, oi) and ϕ(tj, oj) in Φ, we have ϕ(ti, oi) ≺ ϕ(tj, oj) in ≼Φ if and only if ti ≺ tj is in ≼S .

For instance, in Figure 3.2, tuple t has the following data transaction T1:

T1 : [ϕ(t, FC), ϕ(t, FM), ϕ(t,MC)].

In the data transaction, “ϕ(t, FC)” is a data operation representing the processing of this

tuple t by the FC operator.

Definition 3.7 (Function-update transaction). The function-update transaction of a re-

configurationR = {(o1, µ(o1)), . . . , (on, µ(on))} on a dataflow W is the set {µ(o1), . . . , µ(on)},

where each µ(oi) is a function-update operation in R.

For instance, the reconfiguration in Figure 3.2 has the following function-update transaction

T2:

T2 : {µ(FM), µ(MC)}.
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In the function-update transaction, “µ(FM)” is a function-update operation representing

that the operator FM switches to the new configuration. Note that the order of different

operations in a function-update transaction does not matter because they update different

operators and are independent of each other.

Definition 3.8 (Conflicting operations). A data operation ϕ(t, o) and a function-update

operation µ(o′) are said to be conflicting if o = o′, i.e., they are on the same operator. They

are said to be not conflicting if o ̸= o′.

For instance, in Figure 3.2, operations ϕ(t, FM) and µ(FM) are conflicting because they

are on the same operator. Operations ϕ(t, FC) and µ(FM) are not conflicting as they are

on different operators.

Definition 3.9 (Schedule). A schedule of a set of transactions T1, . . . , Tk is the set of all

the operations in those transactions with a partial order. The schedule is called serial if for

each pair of transactions Ti and Tj, Ti’s operations in the schedule are either all before those

in Tj or all after those in Tj.

In this thesis we only consider schedules that include one function-update transaction and

many data transactions.

Definition 3.10 (Conflict-equivalence). Two schedules S1 and S2 of the same set of trans-

actions are said to be conflict-equivalent if ∀oi, oj ∈ S1, if oi and oj are conflicting, and oi is

before oj in S1, then oi is also before oj in S2.

Definition 3.11 (Conflict-serializable). A schedule is said to be conflict-serializable if it

is conflict-equivalent to a serial schedule of the same set of transactions.

In the rest of the paper, when a partial order of a data transaction or a schedule defines a

total order, for simplicity, we just show the transaction or the schedule as a sequence. We

use the running example in Figure 3.1 to explain these concepts.
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• S1 is a schedule of the two transactions T1 and T2:

S1 : [ϕ(t, FC), µ(FM), ϕ(t, FM), µ(MC), ϕ(t,MC)].

• S2 is a serial schedule of the two transactions:

S2 : [µ(FM), µ(MC), ϕ(t, FC), ϕ(t, FM), ϕ(t,MC)].

In particular, all T2’s operations in this schedule are before those in T1.

• S1 and S2 are conflict-equivalent. For example, for the conflicting pair µ(FM) and

ϕ(t, FM), the former is before the latter in both schedules.

• S1 is conflict-serializable because it is conflict-equivalent to the serial schedule S2.

• S3 is not a conflict-serializable schedule:

S3 : [ϕ(t, FC), ϕ(t, FM), µ(FM), µ(MC), ϕ(t,MC)].

We can show that S3 is not conflict-equivalent to any serial schedule. Intuitively, it has

two pairs of conflicting operations, namely [ϕ(t, FM), µ(FM)] and [µ(MC), ϕ(t,MC)],

and their corresponding transaction orders are different.

S3 is the “bad” schedule generated by the naive FCM scheduler in Section 3.4.1, in which

tuple t is processed using the old configuration of FM and the new configuration of MC.

Schedule S1 is a “good” schedule since t is processed entirely using the new configurations

of both operators FM and MC and the aforementioned schema-mismatch issue does not

happen.

Consistency of epoch-based schedulers. Consider the example in Figure 3.1. The

aforementioned schedule S1 in Section 3.4.2 is produced by the EBR epoch-based scheduler,
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where the epoch marker is propagated before tuple t. We show that the EBR approach can

always produce a conflict-serializable schedule in Lemma 3.1. We also show that in general,

an epoch-based scheduler always produces conflict-serializable schedules in Lemma 3.2.

Lemma 3.1. Every schedule produced by the EBR epoch-based scheduler is conflict-serializable.

Proof. Let S be a produced schedule. We construct a serial schedule S ′ using the following

steps. Consider the function-update transaction U and each data transaction T for a tuple

t. Since the epoch marker serve as a barrier dividing the input stream into two epochs, t

can be in only one of the following two cases:

• t is before the epoch marker. For each conflict in S between a data operation ϕ in T

and a function-update operation µ in U , ϕ is before µ. We place T before U in S ′.

Thus, in S ′, ϕ is also before µ.

• t is after the epoch marker. Similarly, we place T after U in S ′. Each conflict order in

S remains the same in S ′.

For those data transactions before U , we order them in S ′ following the order of their first

data operations in S. For data transactions after U , we order them in S ′ following the

order of their first data operations in S. Notice that there are no conflicts between two data

transactions.

The schedule S is conflict-equivalent to the constructed serial schedule S ′ because all con-

flicting pairs in S have the same order in S ′. Therefore, S is conflict-serializable.

Lemma 3.2. Every schedule produced by a general epoch-based scheduler is conflict-serializable.

Proof. Consider a function-update transaction U and each data transaction T for a source

tuple t. For a general epoch-based scheduler, all the tuples in the scope of t are in one
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epoch Et and U is scheduled between two epochs Ei and Ei+1. We can compare Et with the

boundary between Ei and Ei+1 to determine the position of T in a serial schedule. We can

prove this claim using steps similar to those in the proof of Lemma 3.1.
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3.5 Dataflows with one-to-one Operators Only

In this section, we consider the case where a dataflow contains one-to-one operators only.

We propose a scheduler called Fries, which uses FCM’s to achieve low reconfiguration delay

and still guarantees conflict-serializability of produced schedules.

Definition 3.12 (One-to-one operator). An operator is called one-to-one if its processing

function emits at most one (tuple, receiving operator) pair for each input tuple.

This type includes operators such as projection, filter, map function, equi-join on key at-

tributes, and union.

Definition 3.13 (One-to-many operator). An operator is called one-to-many if its pro-

cessing function can emit more than one output (tuple, receiving operator) pair for an input

tuple.

This type includes operators such as join on non-key attributes and flatten function. In the

rest of this section, we consider dataflows where all operators in the dataflow are one-to-one.

3.5.1 Conflict-Serializable Schedules Produced by the Naive FCM-

based Scheduler

Section 3.4.1 shows an example dataflow and a reconfiguration where the naive FCM-based

scheduler produces a non-conflict-serializable schedule. Next we use an example to show that

the naive scheduler can still guarantee conflict-serializability for some types of dataflows and

reconfigurations.

Example 3.1. Suppose we want to use the naive FCM-based scheduler to handle a recon-

figuration of the two operators C and D as shown in Figure 3.6. Operator X is a one-to-one
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operator that route each output tuple to either operators C and D. In this case, we have a

data transaction T3 = [ϕ(t1, X), ϕ(t1, C]), another data transaction T4 = [ϕ(t2, X), ϕ(t2, D]),

and a function-update transaction U = [µ(C), µ(D)]. The controller sends two separate

FCM’s to C and D. Consider a possible schedule with T3, T4, and U :

S4 : [ϕ(t1, X), µ(C), ϕ(t1, C), ϕ(t2, X), µ(D), ϕ(t2, D)].

Schedule S4 is conflict-serializable because it is conflict-equivalent to the serial schedule

[U, T3, T4]. Interestingly, we can show that all schedules produced by the naive FCM-based

scheduler in Figure 3.6 are conflict-serializable.

Controller

X
C

DOne-
to-One

FCM

FCM t1

t2

Figure 3.6: An example dataflow with a reconfiguration on operators C and D. The naive
FCM-based scheduler always produces a conflict-serializable schedule.

One might wonder why the two examples in Figure 3.2 and Figure 3.6 are different in the

conflict-serializability of the produced schedules. The main reason is that in Figure 3.2, a

tuple can be processed by operators FM and MC, and both of them are in the reconfigura-

tion. But there is no synchronization between the data operations and the function-update

operations, causing the non-conflict-serializability. While in Figure 3.6, a tuple is processed

by only one of the two paths through either C or D. On each path, there is a single opera-

tor in the reconfiguration, thus the data operations and the function-update operations are

always synchronized.

Next, we introduce a concept called “minimal covering sub-DAG,” which is used to represent
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the synchronization components. We then describe the Fries scheduler using this concept,

and prove that this scheduler can always produce a conflict-serializable schedule.

3.5.2 Minimal Covering Sub-DAG (MCS)

Definition 3.14 (Minimal covering sub-DAG). Given a DAG G = (V,E), and a set of

vertices M ⊆ V , a minimal covering sub-DAG G′ = (V ′, E ′) is defined as follows:

1. M ⊆ V ′;

2. ∀A,B ∈M , if there is a path from A to B, then all the vertices and edges on the path

are in V ′ and E ′, respectively;

3. G′ is minimal, i.e., no proper sub-DAG of G′ can satisfy the above two conditions.

Lemma 3.3. There is a unique MCS given a DAG and a set of vertices.

Proof. Suppose G′
1 and G′

2 are two distinct MCS’s of a DAG and a set of vertices M .

Consider the sub-DAG G′
3 that is the “intersection” of G′

1 and G′
2, i.e., the vertices of G′

3 are

the intersection of the two sets of vertices in G′
1 and G′

2, the edges of G′
3 are the intersection

of the two sets of edges in G′
1 and G′

2. Since M is a subset of the sets of vertices in G′
1 and

G′
2, M is also a subset of the vertices in G′

3. Thus G′
3 satisfies property (1). ∀A,B ∈ M , if

there is a path p from A to B, p is also in both G′
1 and G′

2, so p is also in the G′
3. Thus G′

3

also satisfies property (2). Therefore, G′
3 is also an MCS, which contradicts the minimality

property (3) of G′
1 and G′

2.

Algorithm 1 shows an algorithm for finding the minimal covering sub-DAG (MCS) given a

DAG G and a set of vertices M . In lines 5- 10, we iterate through the DAG in a topological

order. For each vertex v, we mark v in “red” if v is in M or any parent vertex of v is marked
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in “red.” After this iteration, a vertex marked in “red” is either 1) in M , or 2) a descendant

of a vertex in M . Next in lines 11- 16, we iterate through the DAG in a reverse topological

order. For each vertex v, we mark v in “blue” if v is in M or any child of v is marked in

“blue.” After this iteration, a vertex marked in “blue” is either 1) in M , or 2) is an ancestor

of a vertex in M . Finally, in lines 18- 20, we add all the vertices marked in both “red” and

“blue” to the MCS because these vertices are either 1) in M , or 2) on a path between two

operators in M . Then we add all the edges connecting these vertices to the MCS.

The time complexity of this algorithm is O(V + E), specifically:

• The topological ordering in line 4 takes O(V + E) [41];

• The loop of marking “red” in lines 5- 10 takes O(V + E) because we iterate through

each vertex once and look at every edge once;

• Similarly, the loop of marking “blue” in lines 11- 16 also takes O(V + E);

• The loop in lines lines 18- 20 takes O(V ) and the loop in lines lines 22- 24 takes O(E).

Figure 3.7 shows the minimal covering sub-DAG for the dataflow graph in Figure 3.5 and

the set of operators {C,F,G} in the reconfiguration. The sub-DAG is: V ′ = {C,D,E, F,G}

and E ′ = {C→D,C→E,D→F,E→F}. In general, we can show that there is a unique MCS

given a DAG and a set of vertices, and we can compute the MCS using an algorithm with

an O(V + E) time complexity.

3.5.3 The Fries Scheduler

The Fries scheduler uses components of the MCS to schedule the reconfiguration. A com-

ponent is a maximal sub-DAG of the MCS where every pair of vertices in the component

are connected by a path, ignoring the direction of edges. For example, the sub-DAG in
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Algorithm 1 Find Minimal Covering SubDAG
Input: dataflow DAG G = (V,E)
Input: M = {m1, . . . ,mn}
1: D ← ∅
2: for each v ∈ V do
3: D[v]← ∅
4: let v1, . . . , v|V | be a topological ordering of G
5: for each v ← v1, . . . , v|V | do
6: if v ∈M then
7: add “red” to D[v]

8: for each incoming edge e of v do
9: if “red” ∈ D[e.from] then

10: add “red” to D[v]

11: for each v ← v|V |, . . . , v1 do
12: if v ∈M then
13: add “blue” to D[v]

14: for each outgoing edge e of v do
15: if “blue” ∈ D[e.to] then
16: add “blue” to D[v]

17: V ′ = {}
18: for each v ∈ V do
19: if D[v] = {“red”, “blue”} then
20: add v to V ′

21: E ′ = {}
22: for each e ∈ E do
23: if e.from ∈ V ′ ∧ e.to ∈ V ′ then
24: add e to E ′

25: return (V ′, E ′)

D
FCA H

GB

Controller

E

FCM

FCM

Figure 3.7: Two components of the minimal covering sub-DAG used in the Fries scheduler
are highlighted in red.
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Figure 3.7 has two components, each marked in a red box. The components of the MCS can

be also computed using an algorithm [42] with an O(V + E) time complexity.

The Fries scheduler is formally described in Algorithm 2. We first construct the minimal

covering sub-DAG from the original dataflow DAG and operators in the reconfiguration

(lines 1 and 2). We compute the components within the MCS (line 3). For each component

in the MCS, the controller sends an FCM to the “head” operators, i.e., those with no input

edges in the component. The head operators then start propagating an epoch marker within

the component (lines 4 to 6). Specifically, when an operator receives an epoch marker, it

performs marker alignment on the input edges in its component. An operator sends an epoch

marker only to its downstream operators in its component.

Algorithm 2 The Fries Scheduler (for dataflows with one-to-one operators only)
Input: G = (V,E)
Input: R = {(o1, U1), . . . , (on, Un)}
1: M ← {o1, . . . , on}
2: G′ ← findMCS(G,M)
3: C1, . . . , Cp ← findComponents(G′)
4: for each C ← C1, . . . , Cp do
5: send an FCM to the each head operator in C
6: start propagating an epoch marker within C

As an example, in Figure 3.7, the controller sends an FCM to operator C, which is the only

head operator of the first component. The controller also sends an FCM to operator G,

which is the only head operator of the second component. When C receives the FCM, it

applies the new configuration and starts propagating an epoch marker to operators D and

E. These operators then forward the marker to operator F . When F receives the marker

from both D and E, it applies the new configuration and stops the marker propagation.

When operator G receives the marker, it applies the new configuration and does not send

out an epoch marker.

Next, we show that the Fries scheduler can always produce a conflict-serializable schedule.
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Lemma 3.4. Consider a dataflow graph G with one-to-one operators only, with a reconfig-

uration R, and the MCS G′ generated by Algorithm 2. Each component of G′ contains at

least one reconfiguration operator.

Proof. By the construction of Algorithm 2, the set of reconfiguration operators M in R are

used to construct the MCS G′. Suppose all the vertices in a component C of G′ are not in

M . We construct a new DAG G′′ by removing all the vertices and edges in C from G′. Using

similar steps as in Lemma 3.3, we can show that G′′ is still a minimal covering sub-DAG of

G and M . This result contradicts the minimality property of G′.

Lemma 3.5. In dataflows with one-to-one operators only, consider a dataflow graph G with

a reconfiguration R, and the MCS G′ generated by Algorithm 2. For each source tuple, the

operators in its data transaction overlap with at most one component of G′.

Proof. Suppose the operators processing a tuple t overlap with two components C1 and C2

in the MCS. Based on Lemma 3.4, there is an operator A in C1 and another operator B in

C2, where A,B ∈ M . In dataflows with one-to-one operators only, tuple t goes through a

chain of operators and there must be a path between A and B in G. By Definition 3.14, the

path must also be in G′. By the definition of components, A and B must be in the same

component of G′, which contradicts the assumption.

Theorem 3.1. In dataflows with one-to-one operators only, the Fries scheduler in Algo-

rithm 2 always produces a conflict-serializable schedule.

Proof. Let S be a produced schedule. We can construct a serial schedule S ′ using the

following steps. Consider the function-update transaction U and each data transaction T

for a tuple t. Based on Lemma 3.5, T can be in only one of the following two cases. (1)

Operators in T do not overlap with any component in the MCS. In this case, T does not

have any conflict with U . We can place T before U in S ′. (2) Operators in T overlap with
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one component in the MCS. In this case, we place T in S ′ by comparing the position of a

tuple and the epoch marker of this component. In both cases, for those data transactions

before U , we order them in S ′ following the order of their first data operations in S. For data

transactions after U , we order them in S ′ following the order of their first data operations

in S. Notice that there are no conflicts between two data transactions. The schedule S

is conflict-equivalent to the constructed serial schedule S ′ because all conflicting pairs in S

have the same order in S ′. Therefore, S is conflict-serializable.

The reconfiguration delay of the Fries scheduler is decided by the size of each MCS compo-

nent, which is the number of edges in the component. Compared to the EBR scheduler, the

FCMs sent to the head of each MCS component are not blocked by the processing of data

by the upstream operators. Within each MCS component, the Fries scheduler still relies

on epoch markers. In the extreme case where the MCS covers the entire dataflow graph,

the Fries scheduler essentially becomes the epoch-based scheduler, where the FCMs are sent

to all source operators and the epoch markers need to be propagated through the entire

dataflow.
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3.6 Dataflows with One-to-Many Operators

In this section we consider dataflows with one-to-many operators.

3.6.1 Challenges

Figure 3.8 shows a part of a dataflow with a one-to-many Join operator, which joins each input

tuple with the Merchants table. When a tuple contains purchases from multiple merchants,

Join generates multiple output tuples. For instance, the tuple t1 joins with three merchants

and produces the tuples t2, t3, and t4. The Split operator splits the stream based on merchant

information and sends different tuples to the two merchant fraud-detector operators FMX

and FMY . The prediction results are combined by a Union operator.

Join

J

Fraud
Detector
Merchant

Fraud
Detector
Merchant

FMY

Union

U

Merchants

Source1

Source2
Fraud
Detector

FD

S1

S2

Split

DateTime
Parser

DP

SP

t t1 t2t3

t7

t5
t4

t6

t10

t8Fraud
Detector
Customer

t9

FC

FMX

Figure 3.8: Reconfiguration of operator FMX in a dataflow with a one-to-many Join oper-
ator. An incorrect MCS generated by Algorithm 2 is highlighted in blue. The correct MCS
generated by Algorithm 3 is highlighted in red.

Based on Definition 3.6, the source tuple t has the following data transaction T5.

Φ in T5 : {ϕ(FC, t), ϕ(J, t1), ϕ(SP, t2), ϕ(SP, t3), ϕ(SP, t4),

ϕ(FMX, t5), ϕ(FMX, t6), ϕ(FMY, t7), ϕ(U1, t8), ϕ(U1, t9), ϕ(U1, t10)}.
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We use an example to show that when reconfiguring a dataflow with one-to-many operators, a

naive adoption of the Fries scheduler in Algorithm 2 can produce a non-conflict-serializable

schedule. Consider a reconfiguration of operator FMX in Figure 3.8. Algorithm 2 adds

the only reconfiguration operator FMX to the set M and computes the MCS with one

component, which contains the operator FMX and no other edges. Algorithm 2 ignores the

Join operator because it is not in the reconfiguration. The method sends an FCM to FMX.

This operator does not propagate the FCM to its downstream operators because it is the

only operator in the MCS component. Suppose the FCM sent to operator FMX arrives after

the tuple t5 and before the tuple t6 in the same transaction. Then this scheduler produces

the following schedule with a total order of the data operations and the function-update

operations:

S5 : [ϕ(FC, t), ϕ(J, t1), ϕ(SP, t2), ϕ(SP, t3), ϕ(SP, t4),ϕ(FMX, t5),

µ(FD1),ϕ(FMX, t6), ϕ(FMY, t7), ϕ(U, t8), ϕ(U, t9), ϕ(U, t10)].

We can show that the schedule S5 is not conflict-serializable. Intuitively, as indicated in the

operations in bold, tuple t5 is processed by FMX with the old configuration, and tuple t6

in the same transaction is processed by FD2 with the new configuration.

3.6.2 Extending the Fries scheduler

We extend the Fries scheduler Algorithm 2 to produce a conflict-serializable schedule for a

dataflow with one-to-many operators and a function-update transaction. Intuitively, for a

one-to-many operator, each of its descendant operators could receive multiple input tuples

that belong to the same data transaction. In Figure 3.8, operator SP receives three tuples (t2,

t3, and t4), and operator FMX receives two tuples (t5 and t6) in the same data transaction.
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Consider a reconfiguration that includes the operator FD1. The function-update operation

µ(FD1) can be conflicting with the data operations of tuples t5 and t6 (in the same data

transaction) in the same operator. To guarantee a conflict-serializable schedule, these two

data operations must synchronize with µ(FMX) to ensure that both data operations are

either before µ(FMX) or after µ(FMX). In other words, µ(FMX) cannot be scheduled

in the middle of these two data operations. Notice that the Join operator is the earliest

ancestor one-to-many operator of the reconfiguration operator FMX. If an FCM is sent to

an operator O after the Join operator, since the operator O could possibly generate multiple

data operations for the same data transaction, the FCM can be injected in the middle of

these data operations, causing the schedule to be not conflict-serializable. Based on these

observations, to guarantee the conflict-serializability, we can start the synchronization from

the Join operator using an epoch marker. Recall that the Fries scheduler starts the epoch

marker propagation from the head operators of a component in the MCS. The MCS is

constructed using a set of operators M , which includes the reconfiguration operator FMX.

To make sure the Join operator is treated as a head operator in a component, we add the

operator to M before computing the MCS.

Algorithm 3 The Fries Scheduler (for general dataflows with one-to-many operators)
Input: A dataflow G = (V,E)
Input: A reconfiguration R = {(o1, U1), . . . , (on, Un)}
1: M = {o1, . . . , on}
2: for each reconfiguration operator oi in {o1, . . . , on} do
3: A ← set of ancestor one-to-many operators of oi
4: E ← computeEarliestAncestors(A)
5: M ←M ∪ E
6: . . . same as Algorithm 2 line 2-6

Algorithm 3 shows the extended Fries scheduler, with the part in the box showing the

differences compared to the original Fries scheduler in Algorithm 2. When constructing the

MCS, apart from adding the operators in the reconfiguration to M (line 1), we also add to

M all the earliest one-to-many ancestor operators of each reconfiguration operator oi (lines 2
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to 5). This step is done by first finding the set of ancestor one-to-many operators of oi,

denoted as A, then finding the earliest ones in A. Notice that a reconfiguration operator

could have more than one earliest ancestor one-to-many operator. For example, in Figure 3.8,

suppose the operators FMX and FMY are the only one-to-many operators in the dataflow.

Then the reconfiguration operator U has both FMX and FMY as its earliest ancestor one-

to-many operators according to the partial order of the DAG. We do the modification in the

box because we want to start the synchronization from these one-to-many operators with

the reconfiguration operators using epoch markers. The remaining steps are the same as in

Algorithm 2.

As an example, in Figure 3.8, the only one-to-many operator is the Join operator J . Because

the reconfiguration operator FMX’s earliest ancestor one-to-many operator is J , we add

J to M when constructing the MCS. The resulting MCS includes a single component with

operators J , SP , and FMX, together with their edges. The controller injects an FCM to

operator J , which propagates an epoch marker within the component to operator FMX.

We show that the extended Fries scheduler still guarantees conflict-serializability of its pro-

duced schedule.

Lemma 3.6. (Corresponding to Lemma 3.4.) Consider a dataflow graph G with a recon-

figuration R, and the MCS G′ generated by Algorithm 3. Each component of G′ contains at

least one reconfiguration operator.

Proof. Let M be the set of operators used in Algorithm 3 to compute the MCS in line 1.

Using steps similar to those in Lemma 3.4, we can show each component contains at least

one operator in M . By the construction in Algorithm 3, an operator P in M is either (1) a

reconfiguration operator, or (2) an earliest one-to-many ancestor operator of a reconfiguration

operator O. In the latter case, by the construction in Algorithm 3, O is also in G′. By the

definition of components, O is in the same component as P . Therefore, in both cases, each
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component of G′ contains at least one reconfiguration operator.

Lemma 3.7. (Corresponding to Lemma 3.5.) Consider a dataflow graph G with a reconfig-

uration R, and the MCS G′ generated by Algorithm 3. For each source tuple, the operators

in its data transaction overlap with at most one component of G′.

Proof. Suppose the operators processing a tuple t overlap with two components C1 and

C2 in the MCS. By Lemma 3.6, there is a reconfiguration operator A in C1 and another

reconfiguration B in C2. Let (S,≼S) be the scope of t. Let tA and tB be two tuples (in

S) processed by operators A and B, respectively. Notice that the partial order ≼S of the

scope forms a tree. Let tL be the latest common ancestor tuple of tA and tB in the tree. By

the definition of the scope (S,≼S), the receiving operator L of tL must be a one-to-many

operator because there is more than one child of tL in the tree. Notice that L is a common

ancestor of A and B because it has paths to both operators in G. For operator A, by the

construction in Algorithm 3, L is either (1) an earliest one-to-many operator of A, or (2) on

the path between A and an earliest one-to-many operator of A. In both cases, L is in G′.

By the definition of components, since L is in G′ and L is connected to both A and B, A

and B must be in the same component of G′, which contradicts the assumption.

Lemma 3.8. Consider a dataflow graph G with a reconfiguration R, and the MCS G′

generated by Algorithm 3. A head operator H in a component of G′ receives at most one

input tuple.

Proof. Let M be the set of operators used in 3 to compute the MCS. Suppose a head operator

H of a component in G′ is not in M . We construct a new sub-DAG G′′ by removing S and its

edges from G′. Using similar steps as in Lemma 3.3, we can show that G′′ is still a minimal

covering sub-DAG of G and M , which contradicts the minimality property of G′.

By the construction in Algorithm 3, operator H is either (1) a reconfiguration operator with

no ancestor one-to-many operators, or (2) an earliest one-to-many operator of a reconfigura-
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tion operator, which also has no ancestor one-to-many operators. Therefore, H can receive

at most one input tuple in T .

Theorem 3.2. (Corresponding to Theorem 3.1.) For a workflow possibly with one-to-many

operators and a reconfiguration request, Algorithm 3 always produces a conflict-serializable

schedule.

Proof. Consider the function-update transaction U of a reconfiguration R in the algorithm

and the data transaction T for a source tuple t. Lemma 3.7 shows that the operators in T

overlap with at most one component of the MCS G′ produced in the algorithm. Consider

a head operator H in a component of G′. Lemma 3.8 shows that a head operator H in a

component of G′ can receive at most one input tuple in T . We compare the position of the

epoch marker on H with a possible single input tuple of H to determine the position of T

in a serial schedule. We can prove this claim using steps similar to those in the proof of

Theorem 3.1.

3.6.3 Reducing delay by MCS pruning

For dataflows with one-to-many operators, the reconfiguration delay can be long when there

are many intermediate operators between the head of an MCS component and a reconfigura-

tion operator in the component. To address this limitation, we improve the Fries scheduler

in Algorithm 3 by using pruning rules to remove one-to-many operators that do not need

to be synchronized. Algorithm 4 shows the addition of a pruning step. In line 4, we call

a function pruneAncestors that applies pruning rules to each of the ancestor one-to-many

operators to decide it can be pruned.

Next, we introduce two pruning rules that are used in the improved Fries scheduler.

1. Edge-wise one-to-one pruning rule. Figure 3.9 (I) shows a part of a dataflow with a
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Algorithm 4 The Fries Scheduler with a Pruning Process
1: M = {o1, . . . , on}
2: for each reconfiguration operator oi in {o1, . . . , on} do
3: A ← set of ancestor one-to-many operators of oi
4: pruneAncestors(A)
5: E ← computeEarliestAncestors(A)
6: M ←M ∪ E
7: . . . same as Algorithm 2 line 2-6

Replicate operator, denoted as RE. This operator replicates each input tuple to produce two

output tuples and sends each of them to operators C and D. RE is a one-to-many operator

by Definition 3.13. Suppose all other operators in this dataflow are one-to-one operators.

Using Algorithm 3, the Fries scheduler includes operators RE, C, and E in the MCS, as

shown in the red box in Figure 3.9 (I). This is because RE is the earliest one-to-many

ancestor operator of the reconfiguration operator E.

RE
C

DReplicate

E

F
RE

C

DReplicate

E

F
RE

C

DReplicate

U
Union

X

(I) (II) (III)

Figure 3.9: Example reconfigurations on dataflows with a replicate operator. (I): The MCS
can be pruned. (II) and (III): the MCS’s cannot be pruned.

Although operator RE is a one-to-many operator, for an input tuple, the operator outputs a

single tuple on each edge. For the reconfiguration operator E, it only receives a single tuple

in each data transaction. Therefore, there is no need for operator E to synchronize with

operator RE. The MCS only contains operator E, as shown in the blue box in Figure 3.9.

Figure 3.9 (II) and (III) show dataflows where the MCS with a replicate operator cannot

be pruned. In Figure 3.9 (II), for each tuple processed by operator E, the corresponding

replicated tuple must be processed by the same version of operator F . We can achieve
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the goal by starting the synchronization from RE. In Figure 3.9 (III), operator X receives

all the replicated tuples in each data transaction. Therefore we also need to start the

synchronization from the one-to-many operator RE.

Next, we formally describe the pruning rule. We prune an ancestor one-to-many operator A

of a reconfiguration operator oi if the following conditions are true. (1) On each of its output

edges, A emits at most one tuple for each input tuple. (2) The A has only one output edge e

connected to a downstream reconfiguration operator, and this output edge e is connected to

oi. Intuitively, condition (1) ensures that A behaves like a one-to-one operator on each of its

output edges. Condition (2) ensures that the reconfiguration transaction of oi affects only

one output tuple of A sent on edge e. As analyzed in Section 3.6.2, a one-to-many operator

O needs to be included in the MCS to ensure multiple output tuples of O are processed

using the same configuration. In this case, only a single output tuple of A is affected by the

reconfiguration. Therefore, A can be pruned from the set of operators used to construct the

MCS.

2. Uniqueness pruning rule.

Next, we show another example of pruning an one-to-many operator. In Figure 3.10, suppose

we want to reconfigure operator E. Each input tuple is first replicated by operator RE. The

replicated tuples are sent to operators C and D. They are then combined to a single tuple

using a Self-Join operator SJ on the primary key. Algorithm 3 computes the sub-DAG from

operator RE to operator E as the MCS, as shown in the red box in Figure 3.10. However,

notice that operator SJ ensures that it generates at most one output tuple for input tuple

from the source. Therefore, RE does not need to be synchronized and the MCS only needs

to contain E without RE, as shown in the blue box. In general, we prune an ancestor

one-to-many operator A of a reconfiguration operator oi if on each path from A to oi, there

exists an operator O that has the following uniqueness property: operator O generates at

79



most one output tuple for each data transaction. In the running example, SJ is such an O

operator and RE can be pruned.

RE
C

DReplicate

A SJ E

Self-Join

Figure 3.10: Operator RE can be pruned from the set of operators used to construct the
MCS.
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3.7 Extensions

In this section, we consider how the Fries scheduler works in more general cases, including

the case of workflows with blocking operators and the case where an operator has multiple

workers. Moreover, we discuss how to support fault tolerance in the Fries scheduler.

3.7.1 Dataflows with Blocking Operators

We now consider how the Fries scheduler works on dataflows containing blocking operators,

such as aggregation and sort. Consider a blocking operator B. All operators before B

need to run to their completion before the operators after B start to run. In other words,

the operators before B and those after B never execute at the same time. Based on this

observation, we can use the blocking operators in a dataflow to divide the dataflow into

multiple sub-dataflows, with each of them containing pipelined operators only. Then we run

Fries on each sub-dataflow during its execution.

3.7.2 Multiple Workers for an Operator

In a parallel execution engine, each operator can have multiple workers, with each worker

processing a data partition. We map a single-worker dataflow G = (V,E) to a parallel

dataflow G∗ = (V ∗, E∗), where each operator v in V is mapped to multiple parallel workers

v1, . . . , vp in V ∗, where p is the number of workers of the operator. We map a reconfiguration

R specified on the single worker dataflow G to a new reconfiguration R∗ on the parallel

dataflow G∗ of G. Figure 3.11 shows part of a parallel dataflow based on Figure 3.8, where

each operator runs using two workers. For each function update µ(oi) on an operator oi in R,

we map it to a set of function updates on all the workers of oi, i.e., {(o1i , µ(oi)), . . . , (o
p
i , µ(oi))}

in R∗. For example, the reconfiguration on operator FMX is mapped to a reconfiguration
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on the corresponding workers FMX1 and FMX2.

S1


S2
 J1


J2


M2

SP1

SP2

FMX1


FMX2


FMY1


FMY2


U1


U2
M1

Figure 3.11: A reconfiguration on a parallel dataflow with two workers per operator.

Notice that the parallel dataflow G∗ is also a DAG. The Fries scheduler in Algorithm 4 can be

directly run on G∗ with R∗. The operators and edges in the generated MCS are highlighted

in red in Figure 3.8 The Fries scheduler treats a worker of an operator to have the same

property (one-to-one or one-to-many) as the operator in hash and range partitioning. For

example, both workers of the Join operator are treated as one-to-many operators. When

using the broadcast strategy, a worker broadcasts an output tuple to all its downstream

operators, same as the Replicate operator described in Section 3.6.3. In this case, the Fries

treats it as if a Replicate operator is added after the worker. The pruning techniques described

in Section 3.6.3 can still be used.

3.7.3 Fault Tolerance Using the Fries Scheduler

Fault tolerance requires that a system can recover to a consistent state in case of failures.

For a dataflow G and a reconfiguration R, the execution of the dataflow is not in a consistent

state if some operators in R are updated, and some operators in R are not. In an epoch-

based scheduler, fault-tolerance can be supported using epoch-based checkpointing [33, 32].

However, such checkpointing cannot guarantee fault tolerance for the Fries scheduler. Con-

sider the reconfiguration in Figure 3.7 and the following sequence of events: (1) G receives
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a checkpoint marker from B; (2) G and C receive the reconfiguration FCM’s; and (3) C

receives a checkpoint marker from A. The checkpoint contains the old configuration of G

and the new configuration of C, which is not in a consistent state. Next we discuss two

methods to support fault tolerance in Fries.

Checkpoint-based fault tolerance. When a reconfiguration request arrives at the con-

troller, the controller cancels all in-flight checkpoints because they could produce inconsistent

states. The controller then blocks any new checkpoints to be started until all head opera-

tors of each MCS component have received their FCM’s. In this way, the subsequent epoch

markers will always be after the FCM’s, thus the subsequent checkpoints only contain the

fully updated configuration. The blocking period is short because the FCM’s are not blocked

by any data messages.

Logging-based fault tolerance. The FCMs introduce non-determinism in the execution

of an operator. We can log all the non-determinism factors of each operator, including the

arrival order of data tuples and the FCMs. During recovery, each operator is deterministically

replayed and the FCMs are injected following the original order. We can leverage an existing

logging-based fault-tolerance approach such as the one in Clonos [93], which is built on top

of Flink. FCMs can be modeled as RPC calls received by an operator in Clonos, which are

recorded in the logs.
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3.8 Experiments

In this section, we present the results of experiments of different reconfiguration schedulers

and show the benefits of Fries.

3.8.1 Setting

Datasets. We used three datasets shown in Table 3.3. Dataset 1 had 24M tuples of credit

card payments with 12 attributes [85], such as the customer, merchant, date, amount, and

chip usage. Dataset 2 was constructed by grouping the credit card payments per user in

dataset 1. Each record had a user and a list of payments by the user. We used this dataset

to utilize a one-to-many unnest operator to split a payment list into multiple records. Dataset

2 was generated using the TPC-DS benchmark [104] with a scale factor of 100.

Workflows. We constructed workflows as shown in Figure 3.12. Workflow W1 simulated

a fraud detection application, and it detected fraud of a user based on the user’s historical

payment amounts. By default, the source operator read the payment table with a rate of

1,000 tuple/s. The user-based inference operator saved 10 most recent payment amounts for

each user as its internal state. For each input tuple, the operator updated the user’s state

and used an LSTM auto-encoder [110] to predict the probability of fraud. Workflow W2 was

constructed based on TPC-DS query 40. For all items with a price between 0.99 and 1.49,

this workflow computed the item id and location of the warehouse the item was delivered

from in a 60-day period. Workflow W3 was constructed based on TPC-DS query 71. It

produced the brands managed by a given manager that sold their products across three sales

channels at either breakfast or dinner time for a given month. All the join operators in these

workflows were one-to-one operators because they join a primary key with a foreign key. We

only considered the pipelined sub-DAG of each dataflow. For example, if a hash join has a

84



build phase and a probe phase, we only consider the pipelined probe phase. In Figure 3.12,

we highlighted all the pipelined edges considered in the experiment in red.

On top of W1, workflow W4 included an additional merchant-based inference operator for

users who made a large amount of payments. For each merchant, the inference operator

saved 50 most recent payments, and used a similar LSTM auto-encoder to do inference.

A payment record was processed by both inference operators. If one of them produced a

probability greater than a threshold, the payment record was flagged as fraud. Workflow W5

replicates the payment tuples to both the user-based inference operator and the merchant-

based operator. After each operator makes fraud predictions, a Self-Join operator is used to

combine the replicated tuples into a single one.

Dataset Table Attribute # Tuple #
1 Credit card payment 12 24M
2 Credit card payment aggregated per user 2 20K

3
Catalog sales 34 144M
Store sales 23 288M
Web sales 34 71M

Table 3.3: Datasets used in the experiments.

Reconfigurations. For workflow W1, we performed configurations with one operator. For

workflows W2, W3, and W4, we performed reconfigurations with multiple operators. The

methods of choosing reconfiguration operators will be described in each experiment.

Schedulers. We implemented two epoch-based schedulers. The first one performed a recon-

figuration with a savepoint, which was natively supported by Flink (described in Section 3.3).

The second one was the scheduler of Chi [73] (described in Section 3.3). As Chi was not open

source, we implemented this scheduler on top of Flink, and used Flink’s aligned checkpoint

barriers as epoch markers. The first scheduler always stopped and restarted the execution

after the propagation of checkpoint barriers to apply reconfiguration. The second scheduler

applied reconfiguration during the barrier propagation, and did not require an additional
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stop-and-restart of the system. As a consequence, the second scheduler always had a shorter

reconfiguration delay than the first, as verified in our experiments. Therefore, between these

two schedulers, we only report the results of the second, denoted as “Epoch scheduler.”

For fair-comparison purposes, we implemented Fries also on top of Flink. In the implementa-

tion, FCM’s between the controller and a specific worker of an operator were sent in special

network channels (available in Flink). For each MCS C computed in Fries for a reconfig-

uration, the controller sent FCM’s to the workers of C’s head operators. These workers

pushed checkpoint barriers to the workers of their downstream operators in C. To let every

operator know which downstream operators were in C, the checkpoint barrier also included

C and the reconfiguration operators in C. Every reconfiguration operator in C applied the

reconfiguration after receiving checkpoint barriers from all its upstream operators in C. The

reconfiguration for this MCS C completed after all C’s reconfiguration operators applied the

reconfiguration.

System environment. All the experiments were conducted on the Google Cloud Platform

(GCP). The execution was on a GCP dataproc cluster with 1 coordinator machine and 10

worker machines. All the machines were of type n1-highmem-4 with Ubuntu 18.04. The job

controller of Flink ran on the coordinator. The coordinator machine had a 2TB HDD, while

each worker machine had a 250GB HDD. To separate computation and storage, we stored

the datasets in an HDFS file system on another cluster with 6 e2-highmem-4 machines, each

with 4 vCPU’s, 32 GB memory, and a 500GB HDD. For all the schedulers, we used Flink

release 1.13 and Java 8.

3.8.2 Choke Point Analysis of Workflows

In the execution there were various choke points in the workflow where the reconfiguration

delay between two operators was very high. We analyzed these choke points in the experiment
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workflows by computing the average reconfiguration delay between two operators using the

epoch scheduler and showed the numbers on top of each edge in Figure 3.12. The numbers

represented the delay from the time when the upstream operator applied the reconfiguration

and sent checkpoint barriers to the time when the downstream operator aligned all the

checkpoint barriers and applied the reconfiguration. Some edges are marked as N/A because

the two connected operators were fused to a single operator chain in Flink. Edges marked

with a number perform re-partition operations, thus the two connected operators are not

chained.

We had the following observations. 1) Expensive operators usually created choke points

in the workflow. For example, in W4, both inference operators applied the reconfiguration

from U1 after the checkpoint barriers were sent out for around 140s. The inference operators

accumulated input tuples in their input data channel, which blocked the checkpoint barrier

to be processed. 2) Stragglers also created choke points. For example, in W5, there was

a delay of 877.4s between FD3 and S1, because one of the FD3 workers was a straggler.

Recall that due to the epoch alignment step, S1 had to receive all the checkpoint barriers

before applying the reconfiguration. S1 was blocked when waiting for the straggler FD3

worker to finish. 3) If operators had similar costs, choke points depended on the amount

of data in each operator’s input data channel. For example, in both W2 and W3, the first

several joins had larger delays of reconfiguration. This is because the data was filtered by

every join, and the joins near the sink received less data so they had a lower reconfiguration

delay.

88



3.8.3 Benefits of Short Reconfiguration Delay: Reducing End-to-

end Tuple Latency

A main advantage of Fries was its short reconfiguration delay compared to epoch-based

schedulers. To show the benefits of this advantage, we considered a scenario for W1 as

shown in Figure 3.13, where the developer needed to hot-replace the model in the user-based

inference operator FD during the execution to deal with a sudden surge of input data. In W1,

we set the number of workers for operators (except for the source and sink) to 40 to utilize

all the cores in the cluster. The time for FD to process a tuple was about 25ms, and the

maximum throughput of this operator was around 1, 600 tuple/s. We used a single worker

of the source operator and another single worker of the sink operator on the same machine

so that they can use the same clock. The source operator started with an initial ingestion

rate of 1, 000 tuples/s. After 100 seconds, we increased the ingestion rate to 2, 000 tuples/s.

The developer saw an increasing trend of the end-to-end tuple latency. He requested a

reconfiguration to replace the original LSTM auto-encoder model in FD with another LSTM

auto-encoder with fewer parameters at t = 120s to speed up the processing. The developer

continuously monitored the end-to-end tuple latency. After another 100 seconds, we further

increased the rate to 9, 000 tuples/s. The developer decided to further decrease the cost of

FD to reduce the latency. At t = 220s, he requested another reconfiguration to replace the

LSTM auto-encoder model with a simple decision-tree model.

To compute the end-to-end latency of each input tuple, we attached a timestamp at the

moment when the source operator generated this tuple. When the tuple was received by

the sink operator, the latency was computed as the difference between the current time and

the attached timestamp. Figure 3.13 shows the average end-to-end latency of output tuples

received for every 10-second sliding window. (1) For the case without reconfiguration, after

100 seconds, the end-to-end latency began to increase because FD was not fast enough to

process all the incoming tuples. Many tuples were buffered in the network channel. The
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Figure 3.13: Effect of mitigating surges of data-ingestion rate by different schedulers (W1

on dataset 1).

latency increased continuously and stabilized at around 70s when backpressure from FD

was propagated to the source operator to slow down the data ingestion rate. (2) For the

case of using the Epoch scheduler, the latency rapidly increased to above 60 seconds until

around t = 135s due to the surge. The main reason for the increase in the end-to-end latency

was the blocking in the epoch alignment step. Since the sink operator had only one worker,

it needed to wait until all 40 upstream FD workers completely processed all tuples in the

old epoch before it could process any tuples in the new epoch. Note that the delay was

determined by the slowest FD worker. We observed that the average delay of all workers

was 30 seconds. However, there were two straggler workers that took 58 seconds and 69

seconds to finish processing the old epoch, respectively. The two straggler workers suffered

from data skew. On average, each worker processed 35,000 tuples in the old epoch. However,

the slowest worker processed 62,000 tuples.

(3) For the case of using the Fries scheduler, the latency immediately decreased after t =

120s, indicating that FD applied the reconfiguration and was able to quickly process the
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buffered tuples. Compared to Epoch, Fries required less time to mitigate the surge. In this

reconfiguration, the MCS component contained operator FD only. Therefore, FCMs are

directly sent to all FD workers and no epoch markers were propagated to any downstream

operators. This eliminated the aforementioned delay caused by the epoch alignment step.

3.8.4 Benefits of Short Reconfiguration Delay: Reducing Wasted

Computing Resources

Another benefit of a short reconfiguration delay can be illustrated in the following scenario.

When processing data with unexpected content or formats, the workflow can produce invalid

output tuples to be collected and reprocessed. A large number of invalid output tuples not

only wastes computation in the current execution, but also requires more resources in the

future. A short reconfiguration delay can effectively reduce the amount of wasted computing

resources. To illustrate the benefit, we considered workflow W1, and attached a version

number V 1 to every source tuple. The user-based inference operator FD had another version

number V 2 for its processing logic. For every input tuple, FD expected V 1 of the tuple to

match with V 2; otherwise, the operator produced an invalid output tuple. For every 50

seconds, we increased V 1, and the developer realized the version changed 20 seconds after

that. Then, he requested a reconfiguration of FD to also increase its version V 2. We

measured the number of invalid output tuples produced by the workflow over time under

different reconfiguration schedulers as a metric of wasted computing resources.

Figure 3.14 showed the result. (1) For the case without reconfiguration, all the output tuples

after the first input version update were invalid. Thus the number of invalid tuples increased

continuously. After 300 seconds, the number of invalid tuples reached 302K. (2) For the case

of using the Epoch scheduler, operator FD had to process all the tuples prior to the epoch

marker before applying the reconfiguration. So all the tuples after the input version update
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Figure 3.14: Effect of schedulers on the number of invalid output tuples (W1 on dataset 1).

and prior to the marker were invalid. The workflow produced many invalid tuples after each

input version update, resulting in reprocessing of 176K tuples after 300 seconds.(3) For the

case of using the Fries scheduler, the operator quickly applied the reconfiguration, so fewer

invalid tuples were generated for each input version change. At the end, only 67K tuples

needed to be reprocessed.

3.8.5 Effect of Data Ingestion Rates on Reconfiguration Delays

Next we evaluated the effect of different factors on the delay. We first considered data-

ingestion rate. For workflow W1, we gradually increased the rate at the source operator from

500 tuples/s to 2, 500 tuples/s. For each configuration, after the execution of 120 seconds,

we applied a dummy reconfiguration on operator FD and measured the delay under the two

schedulers. As shown in Figure 3.15 (with a log scale for the y-axis), when the ingestion

rate increased, the delay of the Epoch scheduler also increased due to the larger amount of

in-flight tuples prior to the epoch marker. Since the Fries scheduler sent FCM’s directly to

FD, its delay grew much slower than the Epoch scheduler.
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Figure 3.15: Effect of data ingestion rate on the reconfiguration delay (with 95% confidence
intervals) (W1 on dataset 1).

3.8.6 Effect of Operator Costs on Delays

To evaluate the effect of operator cost on the reconfiguration delay, for workflow W1, we

gradually increased the cost of the user-based inference operator FD to process each input

tuple. The FD operator maintained a bounded queue of recent payment amounts of each

user. When an input tuple was received by FD, the operator passed the payment amounts

in the queue to its ML model. In different runs of experiments, we gradually increased the

size of this queue from 10 to 50 so that the operator took more time to process each input

tuple. Again, for each configuration, after the execution ran for 120 seconds, we applied

a dummy reconfiguration on FD and measured the delay under the two schedulers. As

shown in Figure 3.16, when the FD’s cost increased, the delay of the Epoch scheduler also

increased because each in-flight data tuple prior to the epoch marker took more time to be

processed. On the other hand, the delay of the Fries scheduler grew much slower than the

Epoch scheduler.
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Figure 3.16: Effect of operator cost on the reconfiguration delay with 95% confidence inter-
vals (W1 on dataset 1).

3.8.7 Effect of Reconfigurations on Delays

We wanted to evaluate the effect of reconfigurations on the delay under the two schedulers.

We varied the number of reconfiguration operators in both workflows W2 and W3. For both

workflows, we used 40 workers for each operator. For every 10 seconds, we requested a

reconfiguration and measured the average reconfiguration delay. The results are shown in

Table 3.4. For each reconfiguration, we show its operators, the MCS components generated

by the Fries scheduler, the length of a longest path of each component, the delay of using

the Fries scheduler, and the delay of using the Epoch scheduler. We reported the path length

because it affected the delay in the Fries scheduler.

We have the following observations from the results. (1) The delay of the Fries scheduler was

always significantly lower than the delay of the Epoch scheduler. For example, for the W2

configuration including J1 and J4, the delay of the Fries scheduler was 1, 702ms, compared

to 12, 361ms of the Epoch scheduler. (2) For reconfigurations with multiple operators, if each

operator formed a component in MCS, the delay of Fries was very low. For example, for

the W3 reconfiguration of J5 and J6, each of them formed their own component. The Fries
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scheduler had a delay of 127ms, comparable to 87ms in the case with J5 as the only recon-

figuration operator. This low delay was because the Fries scheduler sent FCM’s separately

to both operators and their reconfiguration happened in parallel. (3) When the length of

the longest path in a component increased, as expected, the delay of the Fries scheduler also

increased. For example, for the reconfiguration of J1 and J3, the longest path in their MCS

had a length of 2, and the delay was 1, 664ms. For the reconfiguration of J1 and J4, the

longest path in their MCS had a length of 3, and the delay increased to 1, 702ms.

Workflow Reconfiguration oper-
ators MCS components

Longest
path

length

Fries
Scheduler

delay (ms)

Epoch
Scheduler

delay (ms)

W2

J1 {J1} 0 46 11,432
J2 {J2} 0 44 11,709
J1, J3 {J1, J2, J3} 2 1,664 12,339
J1, J4 {J1, J2, J3, J4} 3 1,702 12,361
J3, J4 {J3, J4} 1 387 13,767

W3

J5 {J5} 0 87 4,127

J5, J6 {J5} 0 127 8,352{J6} 0

J5, J6, J7, J8 {J5, J6, J7, U1,
J8} 3 447 19,608

J5, J6, J7, J9 {J5, J6, J7, U1,
J8, J9} 4 526 19,717

J7, J8, J9 {J7, U1, J8, J9} 3 1,340 20,532

Table 3.4: Reconfiguration operators, corresponding MCS, and reconfiguration delay in W2

and W3 on dataset 3. Head operators in each component are highlighted in bold.

3.8.8 Reconfiguration Delays in Workflows with One-to-many Op-

erators

We used workflow W4 to evaluate the effect of reconfiguration operators on the reconfig-

uration delay in workflows with a one-to-many operator U2. This operator split all the

payments of a user and sent them to both FD1 and FD2. Table 3.5 shows the results. We

have the following observations. (1) The delay of the Fries scheduler was still always lower

than the Epoch scheduler. (2) The reconfiguration of FD1 took a long time (47,892ms) in
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Fries because FD1 was not the head operator of its component. The epoch markers had to

go through the data channels of FD1 (from multiple workers). Since FD1 processed tuples

slowly, many of its input tuples were buffered in its data channels, which delayed the prop-

agation of the epoch markers. (3) The reconfiguration of F2 took a long delay (221, 353ms)

in Fries because its generated MCS contained every operator on the path from U2 and F2

with the one-to-many U2 operator and both FD1 and FD2 were slow.

Reconfiguration op-
erators MCS components Longest path

length
Fries Scheduler

delay (ms)
Epoch Scheduler

delay (ms)
F1, U2 {F1, U2} 1 69 151
FD1 {U2, FD1} 1 47,892 131,103

F2 {U2, FD1, FD2,
F2} 5 221,353 236,153

Table 3.5: Reconfiguration operators, corresponding MCS, and reconfiguration delay in W4

on dataset 2. Head operators in each component are highlighted in bold.

3.8.9 Effect of MCS Pruning on Delays in Workflows with One-to-

many Operators

We used workflow W5 to evaluate the effect of the MCS pruning method proposed in Sec-

tion 3.6.3 on the reconfiguration delay in workflows with a one-to-many Replicate operator

and a Self Join operator. For each reconfiguration, we compare the Fries scheduler with the

pruning step turned on and turned off. Table 3.6 shows the results. We have the following

observations. (1) In general, when pruning is possible, the size of MCS components was

reduced and the delay with pruning was significantly lower than the delay without prun-

ing. For example, the reconfiguration of operator FD4 and the reconfiguration of operator

F3 benefited from the edge-wise one-to-one pruning rule. (2) In the case of reconfiguring

both FD3 and FD4, the pruning rules could not prune the one-to-many Replicate operator.

Therefore the delays were similar. (3) The reconfiguration of operator E1 benefited from

the uniqueness pruning rule. This reconfiguration had the largest benefit in delay because
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Reconfigura-
tion
operators

MCS
with pruning

MCS
without pruning

Fries with
pruning delay
(ms)

Fries without
pruning delay
(ms)

FD4 {FD4} {RE, F4, FD4} 158 450,149
F3 {F3} {RE, FD3, S1, F3} 94 383,781
F4 {F4} {RE, F4} 10 446
FD3, FD4 {RE, FD3, F4, FD4} {RE, FD3, F4, FD4} 661,892 663,460

E1 {E1} {RE, FD3, S1, F3,
F4, FD4, SJ, E1} 85 1,122,686

Table 3.6: The effect of MCS pruning on delays in W5.

the number of edges in the MCS reduced from eight to zero, which greatly reduced the

synchronization time.

3.8.10 Effect of Multiple Workers on Delays

To evaluate the effect of the worker number per operator on the reconfiguration delay, we

considered workflow W2 and increased the worker number per operator from 1 to 40. After

the workflow ran for 20 seconds, we requested a dummy reconfiguration of J1 and J4. We

measured the reconfiguration delay of the two schedulers.

Epoch	Scheduler
Fries	Scheduler

R
ec
on
fig
ur
at
io
n	
de
la
y(
s)

0

2.5

5

7.5

10

12.5

Number	of	workers	per	operator
1 4 12 20 40

Figure 3.17: Effect of worker number on reconfiguration delay with 95% confidence intervals
(W2 on dataset 3).

As shown in Figure 3.17, as the worker number increased, the delay increased for both
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schedulers. This was because between each pair of join operators, the data was shuffled and

every join worker needed to receive an epoch marker from all its upstream workers. So the

number of data channels between the joins was the product of their numbers of workers.

When each worker number increased, the number of epoch markers to collect also increased.

The fact that the delay of Fries scheduler was again lower than the Epoch scheduler can

be explained using Table 3.7. In particular, the Fries scheduler propagated epoch markers

only through the data channels between MCS workers, while the Epoch scheduler had to

propagate epoch markers through all the data channels. The table shows that the number

of channels between MCS workers was always less than the number of channels between all

workers.

Worker # per
operator

Total # of data channels between
all workers

Total # of data channels between
MCS workers

1 5 3
4 68 48

12 588 432
20 1,620 1,200
40 6,440 4,800

Table 3.7: Effect of number of workers on data channels for reconfiguration of J1 and J4
(W2 on dataset 3).
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3.9 Conclusions

In this paper we studied the problem of runtime configurations in data-intensive workflow

systems with a low delay. We showed limitations of existing epoch-based reconfiguration

schedulers on the delay. We developed a new technique called Fries that uses fast control

messages to do reconfigurations. We formally defined consistency in runtime reconfigura-

tions, and developed a Fries scheduler with consistency guarantee. The technique also works

for parallel executions and supports fault tolerance. Our experimental evaluation showed

the advantages of this technique compared to epoch-based schedulers.
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Chapter 4

Tempura: a General Cost-based

Optimizer Framework for Incremental

Data Processing
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4.1 Introduction

Data analytics often involves handling large datasets and complex queries. Processing such

massive amounts of data traditionally could be time-consuming, leaving users without feed-

back on results until the very end. This lack of real-time visibility can impede user experience,

as users cannot view results, identify workflow issues, or implement quick fixes and iterations

to improve the data workflows. As a result, it is crucial for the system to provide progressive

updates and allow users to observe and interact with the operators during execution [70].

Incremental computation is a technique that can be used to allow systems to deliver prelimi-

nary results swiftly based on a subset of the data, refining them over time as more data gets

processed. These incremental updates enable users to inspect the results and monitor the

workflow’s progress in real time, potentially expediting insights and enhancing efficiency.

New advancements in big data systems make data ingestion more real-time and analysis

increasingly time sensitive, which boost the adoption of the incremental processing model.

Beyond the use case of interactive data analytics, incremental processing is widely used in

many other scenarios. Another emerging application that relies on incremental processing is

Progressive Data Warehouse [108]. Enterprise data warehouses usually have a large amount

of data that need to be collected, enriched, and analyzed by various business logic. For

example, at a large corporation such as Alibaba, daily report queries are scheduled after 12

am when the previous day’s data has been fully collected, and the results must be delivered

by 6 am sharp before the bill-settlement time. Some routine analysis jobs are handled using

batch processing, causing dreadful “rush hour” scheduling patterns. This approach puts

pressure on resources during traffic hours, and leaves the resources over-provisioned and

wasted during the off-traffic hours. Incremental processing can answer routine analysis jobs

progressively as data gets ingested, and its scheduling flexibility can be used to smoothen the

resource skew. Incremental processing can be adapted in several ways. One approach involves

running jobs periodically [106]. Alternatively, raw data can be processed incrementally as it
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arrives in real-time using streaming systems such as Apache Flink [35]. Another strategy is to

process data just-in-time in response to interactive queries, as demonstrated in JENNER [50]

and EnrichDB [49].

Incremental processing has also been adopted in various application domains such as database

incremental view maintenance (IVM) [40, 56, 67, 14], stream processing [21, 12, 48, 80, 100],

active databases [15], resumable query execution [36], approximate query processing [38, 117,

60], etc. A key problem behind these applications is how to generate an efficient

incremental plan for a query while satisfying the unique requirements of differ-

ent applications. We can identify these distinctions primarily through the expected query

results to be delivered in each incremental run, as well as the frequency at which updates are

expected. Figure 4.1 illustrates the different frequency requirements for incremental updates

in the context of streaming applications, interactive data analytics (Texera), and progressive

data warehouses. We delve further into these distinctions in the following analysis.

Figure 4.1: A comparison of different incremental update frequency requirements in different
applications.

In the context of stream processing, the streaming query results need to be updated and

delivered in real-time, whenever new data arrives. The on-demand nature of stream pro-

cessing requires immediate result update, ideally on a millisecond scale. In the context of

incremental view maintenance, the system must promptly update the view as per the view
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definition whenever alterations occur in a base table. In terms of update frequency, the

view maintenance system responds rapidly to any changes, keeping the view as up-to-date

as possible.

In contrast, in interactive data analytics, all data is readily available at the beginning. A

data processing system such as Texera [70] can compute and deliver any part of the result to

the user progressively. However, the output from each run also needs to cater to the user’s

practical needs. For example, the output must be substantial enough to provide meaningful

information for the user, avoiding too few results that may not be useful. In terms of update

frequency, a data analyst interacting with a workflow in this context usually requires updates

at a slower pace, typically on a scale of seconds rather than milliseconds. This ensures that

the user has ample time to interpret each new set of results, without being overwhelmed.

Progressive data warehouses have another different set of requirements. In terms of results,

the warehouse may compute only a part of a query and may not need to produce output

after each computation. This is attributed to the business logic, which primarily demands the

final results by the specified deadline, with no requirement for any intermediate outcomes.

In terms of update frequency, the data is ingested into the warehouse on a much coarser time

scale, often ranging from minutes to even hours. Similarly, incremental queries also run at a

slower pace, such as every hour.

As different applications have unique requirements about the expected results and the fre-

quency of incremental updates, it is challenging to generate an efficient incremental plan

that can adapt to such varied requirements. Note that there exists a plethora of incremental

computation algorithms. The choice among them is not a simple one-size-fits-all decision

and no algorithm is always optimal, since the optimal plan is data dependent and application

dependent. As an example, consider a routine analysis job as described in Example 4.1,

which reports the gross revenue by consolidating sales orders with returned ones. Figure 4.2

illustrates the workflow of this job.
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Example 4.1 (Reporting consolidated revenue).

summary =

WITH sales_status AS (

SELECT sales.o_id, category, price, cost

FROM sales LEFT OUTER JOIN returns

ON sales.o_id = returns.o_id )

SELECT category, SUM(IF(cost IS NULL, price, -cost))

FROM sales_status GROUP BY category

Figure 4.2: An example workflow to calculate gross revenue by joining data from sales and
returned orders.

This query can be incrementally computed in different ways as the data in tables sales

and returns becomes available gradually. Consider two basic methods used in IVM and stream

computing. (1) A typical view maintenance approach (denoted as IM-1) treats summary as

views [40, 55, 56, 117]. It always maintains summary as if it is directly computed from the

data of sales and returns seen so far. Therefore, even if a sales order will be returned in the

future, its revenue is counted into the gross revenue temporarily. Figure 4.3(a) shows the

execution plan using this approach. In Figure 4.3, each vertical line represents a relation

that evolves over time and each horizontal line represents a specific time point. At time t1,

the plan computes the left-outer join and aggregation results. After the new data from t1 to

t2 arrive, the query plan computes the incremental left-outer join and aggregation results.

Finally, the results at t1 and the incremental results from t1 to t2 of the aggregation are
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combined to produce the final results.

(2) A typical stream-computing method (denoted as IM-2) avoids such retraction [59, 68,

74, 99]. It holds back sales orders that do not join with any returns orders until all data

is available. Figure 4.3(b) shows the execution plan using this approach. At t1, the plan

computes only the aggregation results of an inner join instead of a left-outer join. After the

data from t1 to t2 arrive, the plan incrementally updates the aggregation results of the inner

join. Next, the complete aggregation results of a left-anti join are computed using all input

data up to t2. Finally, the results of inner join aggregation and left-anti join aggregation are

combined to produce the final results.

In the progressive data warehouse scenario, if returned orders are rare, IM-1 can maximize

the amount of early computation and thus deliver better resource-usage plans. Otherwise,

if there are many returned orders, IM-2 can avoid unnecessary re-computation caused by

retraction and thus be better. (See Section 4.2.2 for a detailed discussion.) In the interac-

tive data analytics scenario, if returned orders are rare, IM-2 holds the output results and

does not output any retractions to the user. This approach might yield limited meaningful

information in each incremental output, making IM-1 a more preferred option. Otherwise, if

returned orders are common, IM-2 is able to consistently provide substantial results in each

incremental run and can still be more efficient than IM-1. This analysis shows that different

data statistics and application requirements can lead to different preferred methods.

Since the optimal plan for a query given a user-specified optimization goal is data and appli-

cation dependent, a natural question is how to develop a principled cost-based optimization

framework to support efficient incremental processing. To the best of our knowledge and also

to our surprise, no such a framework in the literature has been explored. In particular, exist-

ing solutions still rely on users to empirically choose from individual incremental techniques,

and it is not easy to combine the advantages of different techniques and find the plan that is

truly cost optimal. When developing this framework, we face more challenges compared to
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(a) Incremental query plan produced by approach IM-1. This plan actively maintains
the most recent view results on each update.

{{ } }

(b) Incremental query plan produced by approach IM-2. This plan avoids retractions by
only computing the delta of inner joins. When all data is available, left anti join results
are added to compute the final results.

Figure 4.3: Comparison of incremental query plans produced by approach IM-1 and approach
IM-2. The symbol ▷◁lo refers to left outer join and the symbol ▷◁la refers to left anti join.
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traditional query optimization [54, 94] (see Section 4.2.2): (1) Incremental query planning

requires tradeoff analysis on more dimensions than traditional query planning, such as dif-

ferent incremental computation methods, data arrival patterns, which states to materialize,

etc. (2) The plans for different incremental runs are correlated and may affect each other’s

optimal choices. It is essential to jointly consider the runs across the entire timeline.

In this thesis we propose a unified cost-based query optimization framework, which allows

users to express and integrate various incremental computation techniques and provides a

turn-key solution to decide optimal incremental execution plans subject to various objectives.

We make the following contributions.

• We propose a new theory called the TIP model on top of time-varying relation (TVR) that

formulates incremental processing using TVR. The TIP model describes a formal algebra

for TVRs, which includes a definition of TVRs on top of relations, semantics of querying

on TVRs, and basic operations on TVRs such as TVR difference and merge operations

(Section 4.3). This model serves as a theoretical foundation of our optimization framework.

• We provide a rewrite-rule framework under the TIP model to describe different incremen-

tal computation techniques, and unify them to explore in a single search space for an

optimal incremental plan (Section 4.4). This framework allows these techniques to work

cooperatively, and enables cost-based search among possible plans.

• We build a Cascade-style optimizer named Tempura. It supports cost-based optimization

for incremental query planning based on the TIP model. We discuss how to explore the

plan space (Section 4.5) and search for an optimal incremental plan (Section 4.6).

• We give a detailed specification on how to integrate Tempura into a traditional optimizer

(Section 4.7).

• We propose multiple techniques to improve the query planning speed, such as template

copying (Section 4.8.1), plan space pruning (Section 4.8.2), and optimizations of the rule

engine (Section 4.8.3).
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• We discuss how to practically integrate Tempura into existing systems, particularly in the

cases of inaccurate data statistics estimation in (Section 4.9). We elaborate how Tempura

can initially conduct several incremental runs for statistics collection and then perform

dynamic re-optimization of incremental plans.

• We conduct a thorough experimental evaluation of the Tempura optimizer in various

application scenarios. The results show the effectiveness and efficiency of Tempura (Sec-

tion 4.10).
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4.2 Problem Formulation

In this section we formally define the problem of cost-based optimization for incremental

computation. We elaborate on the running example to show that execution plans generated

by different algorithms have different costs. We then illustrate the challenges.

4.2.1 Incremental Query Planning

Despite the different requirements in various applications, a key problem of cost-based incre-

mental query planning (IQP) can be modeled uniformly as a quadruple (T⃗ , D⃗, Q⃗, c̃), where:

• T⃗ = [t1, . . . , tk] is a vector of time points when we can carry out incremental computation.

Each ti can be either a concrete physical time, or a discretized logical time.

• D⃗ = [D1, · · · , Dk] is a vector of data, where Di represents the input data available at time

ti, e.g., the delta data newly available at ti, and/or all the data accumulated up to ti. For

a future time point ti, Di can be expected data to be available at that time.

• Q⃗ = [Q1, . . . , Qk] is a vector of queries. Qi defines the expected results that are supposed

to be delivered by the incremental computation carried out at ti. If there is no required

output at ti, then Qi is a special empty query ∅.

• c̃ is a cost function that we want to minimize.

The goal is to generate an incremental plan P = [P1, . . ., Pk] where Pi defines the task (a

physical plan) to execute at time ti, such that (1) ∀1 ≤ i ≤ k, Pi can deliver the results

defined by Qi, and (2) the cost c̃(P) is minimized. Next we use a few IQP scenarios to

demonstrate how they can be modeled using the above definition. Note that we discuss

the problem in a static setting for simplicity. In this setting, the optimizer generates a

complete incremental plan using static information about the incrementally arrived data and

the query requirement. Discussions about extending the optimizer’s capability to perform
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re-optimizations in a dynamic setting will be deferred to Section 4.9

Incremental View Maintenance (IVM-PD). Consider the problem of incrementally main-

taining a view defined by query Q. Instead of using any concrete physical time, we can use

two logical time points T⃗ = [ti, ti+1] to represent a general incremental update at ti+1 of the

result computed at ti. We assume that the data available at ti is the data accumulated up

to ti, whereas at ti+1 the new delta data (insertions/deletions/updates) between ti and ti+1

is available, denoted by D⃗ = [D,∆D]. At both ti and ti+1 we want to keep the view up to

date, i.e., Q⃗ is defined as Qi = Q(D), Qi+1 = Q(D + ∆D). As the main goal is to find the

most efficient incremental plan, we set c̃ to be the cost of Pi+1, i.e., the execution cost at ti+1.

(For a formal definition see c̃v in Section 4.6.2.) Note that if Q involves multiple tables and

we want to use different incremental plans for updates on different tables, we can optimize

multiple IQP problems by setting ∆D to the delta data on only one of the tables at a time.

Progressive Data Warehouse (PDW-PD). We model this scenario by choosing T⃗ as physical

time points of the planned incremental runs. Note that we only require the incremental plan

to deliver the results defined by the original analysis job Q at the last run, that is, at

the scheduled deadline of the job, without requiring output during the early runs. Thus,

Q⃗ = [∅, · · · , ∅, Q]. We set c̃ as a weighted sum of the costs of all plans in P (see c̃w(O) in

Section 4.6.2).

4.2.2 Plan Space and Search Challenges

We elaborate different plans to answer the query in Example 4.1 using the PDW-PD definition.

Suppose the query summary is originally scheduled at t2, but the progressive data warehouse

decides to schedule an early execution at t1 on partial inputs. Assume the records visible at t1

and t2 in sales and returns are those in Fig. 1(a). In this IQP problem, we have T⃗ = [t1, t2] and

Q⃗ = [∅, q], where q is the summary query, D⃗ is shown in Fig. 1(a), and c̃ is the cost function
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that takes the weighted sum of the resources used at t1 and t2. Many existing incremental

methods (e.g., view maintenance, stream computing, mini-batch execution [40, 56, 14, 21])

can be used here. Consider two common methods IM-1 and IM-2.

records visible at C1 and C2 in sales and returns are those in Fig. 1(a).
In this IQP problem, we have ®) = [C1, C2] and ®& = [∅, @], where
@ is the summary query, ®� is shown in Fig. 1(a), and c̃ is the cost
function that takes the weighted sum of the resources used at C1
and C2. Many existing incremental methods (e.g., view maintenance,
stream computing, mini-batch execution [3, 8, 18, 24]) can be used
here. Consider two commonly used methods IM-1 and IM-2.
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Figure 1: (a) Data arrival patterns of sales and returns, (b)
results of sales_status and summary at C2, (c) incremental re-
sults of sales_status produced by IM-1 at C1 and C2, and (d)
incremental results of sales_status produced by IM-2 at C1, C2.

Method IM-1 treats sales_status and summary as views, and uses
incremental computation to keep the views up to date with respect
to the data seen so far. The incremental computation is done on the
delta input. For example, the delta input to sales at C2 includes tuples
{>5, >6, >7}. Fig. 1(c) depicts sales_status’s incremental outputs at
C1 and C2, respectively, where # = +/−1 denote insertion or deletion
respectively. Note that a returns record (e.g., >2 at C2) can arrive
much later than its corresponding sales record (e.g., the shaded >2
at C1). Therefore, a sales record may be output early as it cannot
join with a returns record at C1, but retracted later at C2 when the
returns record arrives, such as the shaded tuple >2 in Fig. 1(c).
Method IM-2 can avoid such retraction during incremental com-
putation. Speci�cally, in the outer join of sales_status, tuples in
sales that do not join with tuples from returns for now (e.g., >2,
>3, and >4) may join in the future, and thus will be held back at C1.
Essentially the outer join is computed as an inner join at C1. The
incremental outputs of sales_status are shown in Fig. 1(d).

In addition to these two, there are many other methods as well.
Generating one plan with a high performance is non-trivial due
to the following reasons. (1) The optimal incremental plan is data
dependent, and should be determined in a cost-based way. In the
running example, IM-1 computes 9 tuples (5 tuples in the outer join
and 4 tuples in the aggregate) at C1, and 10 tuples at C2. Suppose the
cost per unit at C1 is 0.2 (due to fewer queries at that time), and the
cost per unit at C2 is 1. Then its total cost is 9 × 0.2 + 10 × 1 = 11.8.

IM-2 computes 6 tuples at C1, and 11 tuples at C2, with a total cost
of 6 × 0.2 + 11 × 1 = 12.2. IM-1 is more e�cient, since it can do
more early computation in the outer join, and more early outputs
further enable summary to do more early computation. On the
contrary, if retraction is often, say, with one more tuple >4 at C2,
then IM-2 is more e�cient, as it costs 12.2 versus 13.8 of IM-1. This
is because retraction wastes early computation and causes more
recomputation. Notice that the performance di�erence of these two
approaches can be arbitrarily large.

(2) The entire space of possible plan alternatives is very large.
Di�erent parts within a query can choose di�erent incremental
methods. Even if early computing the entire query does not pay
o�, we can still incrementally execute a subquery. For instance, for
the left outer join in sales_status, we can incrementally shu�e the
input data once it is ingested without waiting for the last time. IQP
needs to search the entire plan space ranging from the traditional
batch plan at one end to a fully-incrementalized plan at the other.

(3) Complex temporal dependencies between di�erent incremental
runs can also impact the plan decision. For instance, during the con-
tinuous ingestion of data, query sales_status may prefer a broadcast
join at C1 when the returns table is small, but a shu�ed hash join
at C2 when the returns table gets bigger. But the decision may not
be optimal, as shu�ed hash join needs data to be distributed by
the join key, which broadcast join does not provide. Thus, di�erent
join implementations between C1 and C2 incur reshu�ing overhead.
IQP needs to jointly consider all runs across the entire timeline.

Such complex reasoning is challenging, if not impossible, even
for very experienced experts. To solve this problem, we o�er a
cost-based solution to systematically search the entire plan space
to generate an optimal plan. Our solution can unify di�erent incre-
mental computation techniques in a single plan.

3 THE TIP MODEL
The core of incremental computation is to deal with relations chang-
ing over time, and understand how the computation on these re-
lations can be expanded along the time dimension. In this section,
we introduce a formal theory based on the concept of time-varying
relation (TVR) [8, 11, 37], called the TVR-based Incremental query
Planning (TIP) Model. The model naturally extends the relational
model by considering the temporal aspect to formally describe in-
cremental execution. It also includes various data-manipulation
operations on TVRs, as well as rewrite rules of TVRs in order for a
query optimizer to de�ne and explore a search space to generate an
e�cient incremental query plan. To the best of our knowledge, the
proposed TIP model is the �rst one that not only uni�es di�erent
incremental computation methods, but also can be used to develop
a principled cost-based optimization framework for incremental
execution. We focus on de�nitions and algebra of TVRs in this
section, and dwell on TVR rewrite rules in §4.

3.1 Time-Varying Relations
Definition 2. A time-varying relation (TVR) ' is a mapping

from a time domain T to a bag of tuples belonging to a schema.

A snapshot of ' at a time C , denoted 'C , is the instance of ' at
time C . For example, due to continuous ingestion, table sales (()
in Example 1 is a TVR, depicted as the blue line in Fig. 2. On the

16

Figure 4.4: (a) Data arrival patterns of sales and returns, (b) results of sales_status and
summary at t2, (c) incremental results of sales_status produced by IM-1 at t1 and t2, and (d)
incremental results of sales_status produced by IM-2 at t1, t2.

Method IM-1 treats sales_status and summary as views, and uses incremental computation

to keep the views up to date with respect to the data seen so far. The incremental compu-
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tation is done on the delta input. For example, the delta input to sales at t2 includes tuples

{o5, o6, o7}. Fig. 1(c) depicts sales_status’s incremental outputs at t1 and t2, respectively,

where # = +/− 1 denote insertion or deletion respectively. Note that a returns record (e.g.,

o2 at t2) can arrive much later than its corresponding sales record (e.g., the shaded o2 at t1).

Therefore, a sales record may be output early as it cannot join with a returns record at t1,

but retracted later at t2 when the returns record arrives, such as the shaded tuple o2 in Fig.

1(c).

Method IM-2 can avoid such retraction during incremental computation. Specifically, in

the outer join of sales_status, tuples in sales that do not join with tuples from returns for

now (e.g., o2, o3, and o4) may join in the future, and thus are held back at t1. Essentially

the outer join is computed as an inner join at t1. The incremental outputs of sales_status

are shown in Fig. 1(d).

In addition to these two, there are many other methods as well. Generating one plan with

a high performance is non-trivial due to the following reasons. (1) The optimal incremental

plan is data dependent, and should be determined in a cost-based way. In the running ex-

ample, IM-1 computes 9 tuples (5 tuples in the outer join and 4 tuples in the aggregate) at

t1, and 10 tuples at t2. Suppose the cost per unit at t1 is 0.2 (due to fewer queries at that

time), and the cost per unit at t2 is 1. Then its total cost is 9 × 0.2 + 10 × 1 = 11.8. IM-2

computes 6 tuples at t1, and 11 tuples at t2, with a total cost of 6 × 0.2 + 11 × 1 = 12.2.

IM-1 is more efficient, since it can do more early computation in the outer join, and more

early outputs further enable summary to do more early computation. On the contrary, if

retraction is often, say, with one more tuple o4 at t2, then IM-2 is more efficient, as it costs

12.2 versus 13.8 of IM-1. This is because retraction wastes early computation and causes

more recomputation. Notice that the performance difference of these two approaches can be

arbitrarily large.

(2) The entire space of possible plan alternatives is very large. Different parts within a query
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can choose different incremental methods. Even if early computing the entire query does not

pay off, we can still incrementally execute a subquery. For instance, for the left outer join in

sales_status, we can incrementally shuffle the input data once it is ingested without waiting

for the last time. IQP needs to search the entire plan space ranging from the traditional

batch plan at one end to a fully-incrementalized plan at the other.

(3) Complex temporal dependencies between different incremental runs can also impact the

plan decision. For instance, during the continuous ingestion of data, query sales_status may

prefer a broadcast join at t1 when the returns table is small, but a shuffled hash join at t2

when the returns table gets bigger. But the decision may not be optimal, as shuffled hash

join needs data to be distributed by the join key, which broadcast join does not provide.

Thus, two join implementations between t1 and t2 incur reshuffling overhead. IQP needs to

jointly consider all runs across the entire timeline.

Such complex reasoning is challenging, if not impossible, even for very experienced experts.

To solve this problem, we offer a cost-based solution to systematically search the entire plan

space to generate an optimal plan. Our solution can unify different incremental computation

techniques in a single plan.
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4.3 The TIP Model

The core of incremental computation is to deal with relations changing over time, and un-

derstand how the computation on these relations can be expanded along the time dimension.

In this section, we introduce a formal theory based on the concept of time-varying relation

(TVR) [21, 25, 91], called the TVR-based Incremental query Planning (TIP) Model . The

model naturally extends the relational model by considering the temporal aspect to formally

describe incremental execution. It also includes various data-manipulation operations on

TVRs, as well as rewrite rules of TVRs in order for a query optimizer to define and explore

a search space to generate an efficient incremental query plan. To the best of our knowl-

edge, the proposed TIP model is the first one that not only unifies different incremental

computation methods, but also can be used to develop a principled cost-based optimization

framework for incremental execution. We focus on definitions and algebra of TVRs in this

section, and dwell on TVR rewrite rules in Section 4.4.

4.3.1 Time-Varying Relations

Definition 4.1. A time-varying relation (TVR) R is a mapping from a time domain T

to a bag of tuples belonging to a schema.

A snapshot of R at a time t, denoted Rt, is the instance of R at time t. For example,

due to continuous ingestion, table sales (S) in Example 4.1 is a TVR, depicted as the blue

line in Fig. 4.5. On the line, tables 1○ and 2○ show the snapshots St1 and St2 respectively.

Traditional data warehouses run queries on relations at a specific time, while incremental

execution runs queries on TVRs.

Definition 4.2 (Querying TVR). Given a TVR R on time domain T , applying a query

Q on R defines another TVR Q(R) on T , where [Q(R)]t = Q(Rt),∀t ∈ T .
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Figure 4.5: Example TVRs and their relationships. We denote left outer-join as ▷◁lo, left
anti-join as ▷◁la, left semi-join as ▷◁ls, and aggregate as γ.

In other words, the snapshot of Q(R) at t is the same as applying Q as a query on the

snapshot of R at t. For instance, in Fig. 4.5, joining two TVRs sales (S) and returns (R)

yields a TVR (S ▷◁lo R), depicted as the green line. Snapshot (S ▷◁lo R)t1 is shown as table

3○, which is equal to St1 ▷◁
lo Rt1 . We denote left outer-join as ▷◁lo, left anti-join as ▷◁la, left

semi-join as ▷◁ls, and aggregate as γ. For brevity, we use “Q” to refer to the “TVR Q(R)”

when there is no ambiguity.

4.3.2 Basic Operations on TVRs

Besides as a sequence of snapshots, a TVR can be encoded from a delta perspective using the

changes between two snapshots. We denote the difference between two snapshots of TVR R

at t, t′ ∈ T (t < t′) as the delta of R from t to t′, denoted ∆Rt′
t , which defines a second-order

TVR.
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Definition 4.3 (TVR difference). ∆Rt′
t defines a mapping from a time interval to a bag

of tuples belonging to the same schema, such that there is a merge operator “+” satisfying

Rt +∆Rt′
t = Rt′ .

Table 4○ in Fig. 4.5 shows ∆(S ▷◁lo R)
t2
t1
, which is the delta of snapshots (S ▷◁lo R)t1 and

(S ▷◁lo R)t2 . Here multiplicities (#) represent insertion and deletion of the corresponding

tuple, respectively. The merge operator + is defined as additive union on relations with bag

semantics, which adds up the multiplicities of tuples in bags.

Interestingly, a TVR can have different snapshot/delta views. For instance, the delta ∆γsum
t2
t1

can be defined differently as Table 5○ in Fig. 4.5. Here the merge operator + directly sums

up the partial SUM values (the gross attribute) per category. For category c1, summing up

the partial SUM’s in γsumt1 and ∆γsum
t2
t1 yields the value in γsumt2 , i.e., 280 + ( − 15) = 265.

To differentiate these two merge operators, we denote the merge operator for S ▷◁lo R as

+#, and the merge operator for γsum as +sum. This observation shows that the way to define

TVR deltas and the merge operator + is not unique. In general, as studied in previous

research [66, 117], the difference between two snapshots Rt and Rt′ can have two types:

(1) Multiplicity Perspective. Rt and Rt′ may have different multiplicities of tuples. Rt may

have less or more tuples than Rt′ . In this case, the merge operator (e.g., +#) combines the

same tuples by adding up their multiplicities.

(2) Attribute Perspective. Rt may have different attribute values in some tuples compared to

Rt′ . In this case, the merge operator (e.g., +sum) groups tuples with the same primary key,

and combines the delta updates on the changed attributes into one value. Aggregation op-

erators usually produce this type of snapshots and deltas. Formally, distributed aggregation

in data-parallel computing platforms is often modeled using four methods [114]:

1. Initialize: It is called once before any data is supplied with a given key to initialize
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the aggregate state.

2. Iterate: It is called every time a tuple is provided with a matching key to combine the

tuple into the aggregate state.

3. Merge: It is called every time when combining two aggregate states with the same key

into a single aggregate state.

4. Final: It is called at the end on the final aggregate state to produce a result.

The snapshots/deltas are the aggregate states computed using Initialize and Iterate

on partial data; the merge operator +γ is defined using Merge; at the end, the attribute-

perspective snapshot is converted by Final to produce the multiplicity-perspective snapshot,

i.e., the final result.1 Note that for aggregates such as MEDIAN whose state needs to be the

full set of tuples, Iterate and Merge degenerate to no-op.

Furthermore, for some merge operator +, there is an inverse operator −, such that Rt′−Rt =

∆Rt′
t . For instance, the inverse operator −sum for +sum is defined as taking the difference of

SUM values per category between two snapshots.

1Note that Final also needs to filter out empty groups with zero contributing tuples. We omit this detail
for simplicity.
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4.4 TVR Rewrite Rules

Rewrite rules expressing relational algebra equivalence are the key mechanism that enables

traditional query optimizers to explore the entire plan space. As TVR snapshots and deltas

are simply static relations, traditional rewrite rules still hold within a single snapshot/delta.

However, these rewrite rules are not enough for incremental query planning, due to their

inability to express algebra equivalence between TVR concepts.

To capture this more general form of equivalence, in this section, we introduce TVR rewrite

rules in the TIP model, focusing on logical plans. We propose a trichotomy of TVR rewrite

rules, namely TVR-generating rules, intra-TVR rules, and inter-TVR rules, and show how to

model existing incremental techniques using these three types of rules. This modeling enables

us to unify existing incremental techniques and leverage them uniformly when exploring the

plan space; it also allows IQP to evolve by adding new TVR rewrite rules.

4.4.1 TVR-Generating and Intra-TVR Rules

Most existing work on incremental computation revolves around the notion of a delta query

that can be described as Eq. 4.1 below.

Q(Rt′) = Q(Rt +∆Rt′
t ) = Q(Rt) + dQ(Rt,∆Rt′

t ) (4.1)

Intuitively, when an input delta ∆Rt′
t arrives, instead of recomputing the query on the new

input snapshot Rt′ , one can directly compute a delta update to the previous query result

Q(Rt) using a new delta query dQ. Essentially, Eq. 4.1 contains two key parts—the delta

query dQ and the merge operator +, which correspond to the first two types of TVR rewrite
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Figure 4.6: Examples of TVR-generating and Intra-TVR rules. Eq. 4.2: incrementally
compute the delta of S ▷◁lo R. Eq. 4.3: incrementally compute the delta of γ(S ▷◁lo R) from
the delta of S ▷◁lo R. Eq. 4.4 and 4.5: merge a snapshot at t1 and a delta to a generate a
new snapshot at t2.

rules, namely TVR-generating rules and intra-TVR rules.

TVR-Generating Rules. Formally, TVR-generating rules define for each relational op-

erator on a TVR, how to compute its deltas from the snapshots and deltas of its input

TVRs. In other words, TVR-generating rules define dQ for each relational operator Q such

that ∆Qt′
t = dQ(Rt,∆Rt′

t ). Many previous studies on deriving delta queries under different

semantics [29, 31, 40, 55, 56] fall into this category. Some example TVR-generating rules

used by IM-1 in Example 4.1 are shown as follows:

∆(S ▷◁lo R)t2t1 = ∆S+ ⋊⋉lo Rt2 + St2 ⋊⋉ ∆R+

+(St1 −∆S−) ⋊⋉ls (∆R− ⋊⋉la Rt2)−∆S− ⋊⋉lo Rt1

+ (St1 −∆S−) ⋊⋉ls (∆R− ⋊⋉la Rt2)−∆S− ⋊⋉lo Rt1 ,

(4.2)

∆γ(S ⋊⋉lo R)t2t1 = γ(∆(S ⋊⋉lo R)t2t1).
(4.3)

In the rules, we denote left outer-join as ▷◁lo and left semi-join as ▷◁ls. The rules for left
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outer-join (Eq. 4.2) and aggregate (Eq. 4.3) are from [55] and [56], respectively. In the

rules, we use ∆S− and ∆R− to denote deletions in the delta, and ∆S+ and ∆R+ to denote

insertions in the delta for simplicity. In Eq. 4.2, for brevity, padding nulls to match outer

join’s schema is omitted in Fig. 4.6 and Fig. 4.8. This padding can simply be implemented

using a project operator. The blue lines in Fig. 4.6 demonstrate these TVR-generating rules

in a plan space.

Intra-TVR Rules. Intra-TVR rules define the conversions between snapshots and deltas

of a single TVR. As in Eq. 4.1, the merge operator + defines how to merge Q’s snapshot Qt

and delta ∆Qt′
t into a new snapshot Qt′ . Other examples of intra-TVR rules include rules

that take the difference between snapshots/deltas if the merge operator + has an inverse

operator −, e.g., Rt′ −Rt = ∆Rt′
t . In Fig. 4.6, the intra-TVR rules by IM-1 in Example 4.1

are marked as red lines. These rules are shown as follows:

(S ⋊⋉lo R)t2 = (S ⋊⋉lo R)t1 +
# ∆(S ⋊⋉lo R)t2t1 (4.4)

γ(S ⋊⋉lo R)t2 = γ(S ⋊⋉lo R)t1 +
sum ∆γ(S ⋊⋉lo R)t2t1 (4.5)

Note that when merging the snapshot/delta of S ▷◁lo R, we use +# (Eq. 4.4), whereas when

merging the snapshot/delta of γ(S ▷◁lo R) (query summary), we use +sum (Eq. 4.5).

4.4.2 Inter-TVR Rules

There are incremental methods that cannot be modeled using the two aforementioned types

of rules alone. The IM-2 approach in Example 4.1 is such an example. Different from IM-1,

approach IM-2 does not directly deliver the snapshot of S ▷◁lo R at t1. Instead, it delivers

only the tuples that will not be retracted in the future, essentially the results of S ▷◁ R. At t2
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{ } { }

Figure 4.7: Examples of inter-TVR equivalence rules in IM-2. Each operator in original
query Q is decomposed into two parts: QP (positive-only updates) and QN (possibly negative
updates).

when the data is known to be complete, IM-2 computes the rest part of S ▷◁lo R, essentially

S ▷◁la R, then pads with nulls to match the output schema.

This observation shows another family of incremental methods: without computing Q di-

rectly, one can incrementally compute a set of queries {Q′
1, · · · , Q′

k}, and then apply another

query P on their results to get Q, formally described as Eq. 4.6. The intuition is that

{Q′
1, · · · , Q′

k} may be more amenable to incremental computation:

Q(R) = P (Q′
1(R), · · · , Q′

k(R)). (4.6)

Eq. 4.6 describe a general family of methods: they all rely on certain rewrite rules describing

the equivalence between snapshots/deltas of multiple TVRs. We summarize this family of

methods into inter-TVR rules. Next we demonstrate using a couple of existing incremental

methods how they can be modeled by inter-TVR rules.

(1) IM-2: Let us revisit IM-2 using the terminology of inter-TVR rules. Formally, Q = S ▷◁lo
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R is decomposed into QP and QN :

QP
t = St ▷◁ Rt, Q

N
t = St ▷◁

la Rt, Qt = QP
t +

# QN
t (4.7)

where QP is a positive part that will not retract tuples if both S and R are append-only,

whereas QN represents a part that could retract tuples. The inter-TVR rule in Eq. 4.7

states that any snapshot of Q can be decomposed into snapshots of QP and QN at the

same time. Similar decomposition holds for the aggregate γ in summary too, just with a

different merge operator +sum. Fig. 4.7 depicts these rules in a plan space. As it is easier

to incrementally compute inner join than left outer join, QP can be incrementalized more

efficiently than Q with rules in Section 4.4.1, whereas QN cannot be easily incrementalized,

and is not computed until the completion time.

(2) Outer-join view maintenance (OJV): Larson et al. [67] proposed a method to incrementally

maintain outer-join views.

Query decomposition. The main idea is to decompose a query into three parts given an

update to a single input table: a directly affected part QD, an indirectly affected part QI ,

and an unaffected part QU . Intuitively, an insertion (deletion) in the input table will cause

insertions (deletions) to QD and deletions (insertions) to QI , but leave QU unaffected. These

parts are formally defined using the join-disjunctive normal form of Q and its subsumption

graph. We refer the readers to [67] for details. This decomposition can be expressed using

the following inter-TVR rule:

Qt = QD
t +

# QI
t +

# QU
t. (4.8)
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Figure 4.8: Supporting outer-join view maintenance. A virtual timepoint t′ is inserted to
model updating one base table at a time. Eq. 4.9, 4.10: decompose the query into QD and
QI . Eq. 4.11, 4.12: compute the delta of directly affected parts. Eq. 4.14: compute the delta
of indirectly affected parts.

Take query sales_status as an example. As the algorithm in [67] considers updating one

input table at a time, we insert a virtual time point t′ between t1 and t2 to model that R

and S are updated separately at t′ and t2. The query sales_status is decomposed as follows:

QD
t′ = St′ ⋊⋉ Rt′ , QI

t′ = St′ ⋊⋉la Rt′ , QU
t′ = ∅, (4.9)

when R is updated at t′,

QD
t2 = St2 ⋊⋉lo Rt2 , QI

t2 = ∅, QU
t2 = ∅ (4.10)

when S is updated at t2.

Note that there is no unaffected part in this example. Unaffected parts only exist when a

query joins three or more tables according to the algorithm in [67].

Delta computation. The outer-join view maintenance algorithm maintains the directly
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affected parts and the indirectly affected parts separately.

To compute the delta of the directly affected parts for the query sales_status, OJV applies

the TVR-generating rules shown as follows:

∆QDt′

t1 = St1 ▷◁lo ∆Rt′
t1

= {(o2, c2, 150, 20,+1)},
(4.11)

∆QDt2
t′ = ∆S

t2
t′ ⋊⋉ Rt′

= {(o5, c2, 300, null,+1),

(o6, c1, 150, 15,+1),

(o7, c2, 220, null,+1)}.

(4.12)

Recall that insertions into the base table will cause insertions to the directly affected parts.

Note that the delta tuples of each QD part are all insertions.

To compute the delta of the indirectly affected parts, OJV combines the delta of QD and the

previous snapshot of Q, as shown in Eq. 4.13. Compared to computing the detla directly

from the base tables, this algorithm can reuse the already computed delta of the directly

affected parts. This rule can be expressed using the following inter-TVR rule:

∆QI t
′

t = P (∆QDt′

t , Qt). (4.13)

In the query sales_status, the delta of the indirectly affected part at t′ is computed using a

filter and a semi-join, as shown as follows:
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∆QI t
′

t1 = −[σcost=null(Qt1) ⋊⋉ls ∆QDt′

t1 ] (4.14)

= {(o2, c2, 150, null,−1)}.

This is equivalent to incrementally computing the left-anti join from the base tables. Recall

that insertions into the base table will cause deletions to the indirectly affected parts. Note

that the delta tuple o2 of the QI part is a deletion.

Note that for the query sales_status, both IM-2 and OJV leverage the fact that an left-outer

join can be decomposed into an inner join and a left-anti join. However, IM-2 and OJV use

this decomposition in very different ways:

• IM-2 considers updating all tables at the same time. It decomposes the query into two

parts, QP and QN .

• OJV considers updating one base table at a time. It decomposes the query into a finer

granularity of three parts: QD
t′ on updating R, QI

t′ on updating R, and QD
t2 on

updating S.

• In IM-2, each QP part contains the tuples that will never be retracted if the base tables

are append-only. As an example, ∆QP t2
t1

contains only two tuples, o2 and o5.

• In OJV, each QD part contains the tuples that are positive when its corresponding base

table is updated. As an example, ∆QDt2
t′ contains tuples o5, o6, and o7. Tuples o5 and

o7 could potentially be retracted in the future.

• IM-2 computes the delta using the TVR-generating rules. OJV introduces a new rule

(Eq. 4.14) to compute the delta of indirectly affected parts.
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(3) Higher-order view maintenance: [14, 83] proposed a higher-order view-maintenance al-

gorithm, which can also be expressed by inter-TVR rules. The main idea is to treat the

deltas of a query Q as another TVR, and continue applying TVR rewrite rules to incremen-

tally compute it. Formally, considering a query Q and updates to one of its inputs R, the

algorithm can be summarized as the following inter-TVR rule:

∆Qt′
t = dQ(Rt,∆Rt′

t ) = P (Mt,∆Rt′
t ). (4.15)

The rule decomposes the delta query into two parts: the delta update ∆Rt′
t , and an update-

independent subquery M that does not involve ∆Rt′
t . The two parts are combined using a

query P to get the delta of Q. If M is a query involving input relations other than R, it can

be further decomposed again with respect to updates to each of its input relations according

to Eq. 4.15, until it becomes a constant. We refer the readers to [14] for a detailed algorithm.

Take the summary query and updates to sales (S) as an example (we denote returns as R).

Applying Eq. 4.15, we can decompose it as

∆Qt′

t = γcategory;SUM(r)(∆St′

t ▷◁lo Mt),

where Mt = γo_id;total=SUM(cost)(Rt),

r = IF(total IS NULL, price,−total).

(4.16)

M essentially preprocesses returns by computing the total cost per o_id,2 and P computes

the gross revenue per category by summing up the precomputed total cost in M or the prices
2Here we do not assume o_id as the primary key of returns. Say returns could contain multiple records

for a returned order due to different costs such as shipping cost, product damage, inventory carrying cost,
etc.
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Figure 4.9: The combined incremental plan space of Example 4.1.

of the new orders added to S. Then M is materialized as a higher-order view and can be

further incrementally maintained with respect to updates to returns by repeatedly applying

the inter-TVR rule to generate higher-order views.

4.4.3 Putting Everything Together

The above TVR rewrite rules lay a theoretical foundation for our IQP framework. Different

TVR rules can be extended individually and work together automatically. For example,

TVR-generating rules can be applied on any TVR created by inter-TVR rules. By jointly

applying TVR rewrite rules and traditional rewrite rules, we can explore a plan space much

larger than any individual incremental method. Fig. 4.9 shows an example plan space by

overlaying Fig. 4.6 and 4.7. Any tree rooted at γ(S ▷◁lo R)t2 is a valid incremental plan for

Example 4.1, e.g., IM-2’s plan is shown in red.

In the next two sections, we discuss how to build an optimizer framework based on the TIP

model, including plan-space exploration (Section 4.5) and selecting an optimal incremental

plan (Section 4.6).
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4.5 Plan-Space Exploration

In this section we study how Tempura explores the incremental plan space. Existing query

optimizers explore plans only for a specific time. For incremental processing, we need to

explore a much bigger plan space by considering not only relations at different times, but

also transformations between them. We illustrate how to incorporate the TIP model into

a Cascades-style optimizer [52, 54], and develop a cost-based optimizer framework for IQP

called Tempura.

We focus on the key adaptations on two main modules. (1) Memo: it keeps track of the ex-

plored plan space, i.e., all plan alternatives generated, in a succinct data structure, typically

represented as an AND/OR tree, for detecting redundant derivations and fast retrieval. (2)

Rule engine: it manages all the transformation rules, which specify algebraic equivalence

laws and physical implementations of logical operators, and monitors new plans generated

in the memo. Whenever there are changes, the rule engine fires applicable transformation

rules on the newly-generated plans to add more plan alternatives to the memo.

4.5.1 Memo: Capturing TVR Relationships

The memo in the traditional Cascades-style optimizer only captures two levels of equivalence

relationship: logical equivalence and physical equivalence. A logical equivalence class groups

operators that generate the same result set; within each logical equivalence class, operators

are further grouped into physical equivalence classes by their physical properties such as sort

order, distribution, etc. The “Traditional Memo” part in Fig. 4.10(a) depicts the traditional

memo of the sales_status query. For brevity, we omit the physical equivalence classes. For

instance, LeftOuterJoin[0,1] has Groups G0 and G1 as children, and it corresponds to the

plan tree rooted at ▷◁lo. G2 represents all plans logically equivalent to LeftOuterJoin[0,1].
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However, the above two equivalences are not enough to capture the rich relationships in the

TIP model. For example, the relationship between snapshots and deltas of a TVR cannot be

modeled using the logical equivalence due to the following reasons. Two snapshots at different

times produce different relations, and the snapshots and deltas do not even have the same

schema (deltas have an extra # column). To solve this problem, on top of logical/physical

equivalence classes, we explicitly introduce TVR nodes into the memo, and keep track of the

following relationships, shown as the “Tempura Memo” part in Fig. 4.10(a): (1) Intra-TVR

relationship specifies the snapshot/delta relationship between logical equivalence classes of

operators and the corresponding TVRs. The traditional memo only models scanning the

full content of S, i.e., St2 , represented by G0, while the Tempura memo models two more

scans: scanning the partial content of S available at t1 (St1), and scanning the delta input

of S newly available at t2 (∆St2
t1 ), represented by G3 and G5. The memo uses an explicit

TVR-0 to track these intra-TVR relationships. (2) Inter-TVR relationship specifies the

relationship between TVRs described by inter-TVR equivalence rules. For example, the IM-2

approach decomposes S ▷◁lo R (TVR-2) into two parts QP (TVR-3) and QN (TVR-4) as

in Section 4.3. Note that the above relationships are transitive. For instance, as G7 is the

snapshot at t2 of TVR-3, and TVR-3 is in turn the QP part of TVR-2, G7 is also related to

TVR-2.

4.5.2 Rule Engine: Enabling TVR Rewritings

As the memo of Tempura strictly subsumes a traditional Cascades memo, traditional rewrite

rules can be adopted and work without modifications. Besides, the rule engine of Tempura

supports TVR rewrite rules. Tempura allows optimizer developers to define TVR rewrite

rules by specifying a graph pattern on both relational operators and TVR nodes in the memo.

A TVR rewrite rule pattern consists of two types of nodes and three types of edges: (1) op-

erator operands that match relational operators; (2) TVR operands that match TVR nodes;
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(3) operator edges between operator operands that specify the traditional parent-child rela-

tionship of operators; (4) intra-TVR edges between operator operands and TVR operands

that specify intra-TVR relationships; and (5) inter-TVR edges between TVR operands that

specify inter-TVR relationships. All nodes and intra/inter-TVR edges can have predicates.

Once fired, TVR rewrite rules can register new TVR nodes and intra/inter-TVR relation-

ships.

Fig. 4.11(a)-4.11(b) depict two TVR rewrite rules, where solid nodes and edges specify the

patterns to match, and dotted ones are newly registered by the rules. In the figures, we

also show an example match of these rules when applied on the memo in Fig. 4.10(a). Rule

1 is the TVR-generating rule to delta compute an inner join. It matches a snapshot of

an InnerJoin, whose children L, R each have a delta sibling L′, R′. The rule generates a

DeltaInnerJoin taking L, R, L′, R′ as inputs, and register it as a delta sibling of the original

InnerJoin. Rule 2 is an inter-TVR rule of IM-2. It matches a snapshot of a LeftOuterJoin,

whose children L, R each have a QP snapshot sibling L′, R′. The rule generates an InnerJoin

of L′ and R′, and register it as the QP snapshot sibling of the original LeftOuterJoin.

Fig. 4.10(b) demonstrates the growth of a memo in Tempura. For each step, we only draw

the updated part due to space limitation. The memo starts with G0 to G2 and their cor-

responding TVR-0 to TVR-2. In step 1, we first populate the snapshots and deltas of the

scan operators, e.g., G3 to G6, and register the intra-TVR relationship in TVR-0 and TVR-

1. We also populate their QP and QN inter-TVR relationships as in IM-2 (for base tables

these relationships are trivial). In step 2, in Fig. 4.11(b). rule 2 matches the tree rooted at

LeftOuterJoin[0,1] in G2, generates the inner join of G7, and registers G7 to TVR-3 as the

snapshot at t2, and TVR-3 to TVR-2 as QP . In step 3, rule 1 matches InnerJoin[0,1] in G7

in Fig. 4.11(a) and generates DeltaInnerJoin[3,4,5,6] as the delta of TVR-3. By applying

other TVR rewrite rules, we eventually get the memo in Fig. 4.10(a).
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Traditional Memo Tempura Memo

(a) An example memo of subquery sales_status. Compared to the traditional
memo, the Tempura memo: (1) maintains more equivalence groups of snapshots at
earlier time points and deltas, and (2) has additional TVR nodes to keep track of
the intra-TVR and inter-TVR relationships.
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(b) A step-wise illustration of the growth of the memo. Step 1: for each source
operator, its TVR, snapshots, and deltas are populated. Step 2: Rules of IM-2
decompose left outer join to an inner join. Step 3: TVR-generating rules generate
the operators to incrementally compute the inner join.

Figure 4.10: Examples of the memo structure in Tempura.
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(a) A TVR-generating rule pattern
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(b) An inter-TVR rule pattern

Figure 4.11: Example TVR rewrite-rule patterns in Tempura.
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4.6 Selecting an Optimal Plan

In this section we discuss how Tempura selects an optimal plan in the explored space. The

problem differs from existing query optimizers in the following ways:

1. In a traditional query plan, all physical operators are executed at the same time point in

a single query. In Tempura, physical operators in an incremental plan might be executed

at different time points. In Section 4.6.1, we discuss how to assign a valid execution time

point of each physical operator.

2. Similarly, in a traditional query plan, the cost function represents the cost of a single time

point. In Section 4.6.2, we discuss how to extend the cost function to consider the costs

at different time points.

3. Finally, an incremental plan often needs to maintain intermediate states between the

executions of different time points. In Section 4.6.3, we discuss how to find the optimal

states to materialize.

4.6.1 Time-Point Annotations of Operators

Costing the plan alternatives is not trivial because the temporal dimension is involved.

Fig. 4.12(a) depicts one physical plan rooted at (S ▷◁lo R)t2 , as shown in red in Fig. 4.9.

This plan only specifies the concrete physical operations taken on the data, but does not

specify when they are executed. Actually, each operator in the plan usually has multiple

choices of execution time. In Fig. 4.12(a), the time points annotated alongside each operator

shows the possible temporal domain of its execution. For instance, snapshots St1 and Rt1

are available at t1, and thus can execute at any time after that, i.e., t1 or t2. Deltas ∆Rt2
t1

and ∆St2
t1 are not available until t2, and thus any operators taking it as input, including the

IncrHashInnerJoin, can only be executed at t2. The temporal domain of each operator O,
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denoted t-dom(O), can be defined inductively: (1) For a base relation R, t-dom(R) is

the set of execution time points that are no earlier than the time point when R is available.

(2) For an operator O with inputs I1, . . . , Ik, t-dom(R) is the intersection of its inputs’

temporal domains: t-dom(R) = ∩1≤j≤kt-dom(Ij).

To fully describe a physical plan, one has to assign each operator in the plan an execution

time from the corresponding temporal domain. We denote a specific execution time of an

operator O as τ(O). We have the following definition of a valid temporal assignment.

Definition 4.4 (Valid Temporal Assignment). An assignment of execution time points to

a physical plan is valid if and only if for each operator O, its execution time τ(O) satisfies

τ(O) ∈ t-dom(O) and τ(O) ≥ τ(O′) for all operators O′ in the subtree rooted at O.

Fig. 4.12(b) demonstrates a valid temporal assignment of the physical plan in Fig. 4.12(a).

At t1, the plan computes HashInnerJoin of St1 and Rt1 , and shuffles St1 and Rt1 to prepare

for IncrHashInnerJoin. At t2, the plan shuffles the new deltas ∆St2
t1 and ∆Rt2

t1 , finishes

IncrHashInnerJoin, and unions the results with that of HashInnerJoin computed at t1.

Note that if an operator O and its input I have different execution time points, then the

output of I needs to be saved first at τ(I), and later loaded and fed into O at τ(O), e.g.,

Union at t2 and HashInnerJoin at t1. The cost of Save and Load needs to be properly

included in the plan cost. It is worth noting that some operators save and load the output

as a by-product, for which we can spare Save and Load, e.g., Exchange of St1 , Rt1 at t1 for

IncrHashInnerJoin.

4.6.2 Time-Point-Based Cost Functions

The cost of an incremental plan is defined under a specific assignment of execution time

points. Therefore, the optimization problem is formulated as: given a plan space, find a
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Figure 4.12: Examples of (a) the temporal plan space, and (b) a temporal assignment for
subquery sales_status’s plan.

physical plan and temporal assignment that achieve the lowest cost. In this section, we

discuss the cost model and optimization algorithm for this problem without considering

sharing common sub-plans. We will discuss the problem of how to decide which states to

materialize in Section 4.6.3.

As an incremental plan can span across multiple time points, the cost function c̃ in an IQP

problem (as in Section 4.2.1) is extended to a function taking into consideration of costs at

different time points. For the cost at each time point, we inherit the general cost model

used in traditional query optimizers, i.e., the cost of a plan is the sum of the costs of all its

operators. Below we give two examples of c̃. We denote traditional cost functions as c, and

ci is the cost at time ti. As before, c can be a number, e.g., estimated monetized resource

cost, or a structure, e.g., a vector of CPU time and I/O.

1. c̃w(O) =
∑

i=1..T wi · ci(O). The extended cost of an operator is a weighted sum of its cost
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at each time ti. For the example setting in Section 4.2.2, w1 = 0.2 for t1 and w2 = 1 for

t2.

2. c̃v(O) = [c1(O), . . . , cT (O)]. The extended cost is a vector combining costs at different

time points. c̃v can be compared entry-wise in a reverse lexical order. Formally, c̃v(O1) >

c̃v(O2) iff ∃j s.t. cj(O1) > cj(O2) and ci(O1) = ci(O2) for all i, j < i ≤ T .

Consider the plan in Fig. 4.12(a) as an example. To get the result of HashInnerJoin at t2, we

have two options: (i) compute the join at t2; or (ii) as in Fig. 4.12(b), compute the join at t1,

save the result, and load it back at t2. Assume the cost of computing HashInnerJoin, saving

the result, and loading it are 10, 5, 4, respectively. Then for option (i) (c1, c2) = (0, 10), for

option (ii) (c1, c2) = (15, 4). Say that we use c̃w as the cost function. If w1 = 0.6 and w2 = 1

then option (i) is better, whereas if w1 = 0.2 and w2 = 1, option (ii) becomes better.

Dynamic programming (DP) used predominantly in existing query optimizers [92, 69, 54]

also need to be adapted to handle the cost model extensions. In existing query optimizers,

the DP state space is the set of all operators in the plan space, represented as {O}. Each

operator O records the best cost of all the subtrees rooted at O. We extend the state

space by considering all combinations of operators and their execution time points, i.e.,

{O}× t-dom({O}). Instead of recording a single optimum, each O records multiple optima,

one for each execution time τ(O), which represents the best cost of all the subtrees rooted at

O if O is generated at τ . During optimization, the state-transition function is the following:

c̃[O, τ ] = min∀ valid τj

(∑
j

c̃[Ij, τj] + cτ (O)
)
. (4.17)

That is, the best cost of O if executed at τ is the best cost of all possible plans of computing

O with all possible valid temporal assignments compatible with τ .

We have the following observation of the above DP algorithm: the optimization problem
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under cost functions c̃w and c̃v without sharing common sub-plans satisfies the property of

optimal substructure, and dynamic programming is applicable. In general, we can apply

DP to the optimization problem for any cost function satisfying the property of optimal

substructure.

4.6.3 Deciding States to Materialize

In an incremental plan, a delta computation often requires intermediate states to be saved

from earlier computation. As an example, in Fig. 4.12(b), the incremental hash join at

t2 needs to use the saved intermediate states Shuffle(St1) and Shuffle(Rt1). However, an

alternative plan is to re-compute these states from base tables instead of reusing materialized

states. Whether to save the intermediate states or to recompute the states needs to be

decided in a cost-based manner.

We model the problem of choosing the optimal intermediate states to materialize as a multi-

query optimization problem by treating the plan at each time point as an independent

mini-query and finding sharing states between the mini-queries at different time points. In

the example in Fig. 4.12, we treat the whole incremental query as two independent mini-

queries at two time points: query1 computes the join result at t1 and query2 computes the

delta join result from t1 to t2. These two mini-queries both need the states Shuffle(St1) and

Shuffle(Rt1): query1 uses the states to produce the hash join result at t1, and query2 uses

these states to compute the incremental hash join result at t2. The parts 1○ and 2○ circled in

dashed lines in Fig. 4.12(a) depict the shareable candidates. Therefore, computing the shuffle

once and materializing these states once can benefit two reuse opportunities and reduce the

overall cost of the incremental plan. Note that materializing a state is not always beneficial

because the overhead of materialization might be higher than the cost of re-computing it.

In order to choose the best sub-plans to materialize, we feed query1 and query2 together to
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a multi-query optimization (MQO) algorithm [88, 118, 62]. In other words, a materialized

shared sub-plan between two mini-queries Qi and Qj at two time points of an incremental

plan is essentially an intermediate state that is saved by Qi and reused by Qj.

In this chapter, we extend the MQO algorithm in [62], which proposes a greedy framework

on top of Cascade-style optimizers for MQO. For the sake of completeness, we list the al-

gorithm in Algo. 5, by highlighting the extensions for progressive planning. The algorithm

runs in an iterative fashion. In each iteration, it picks one more candidate from all possi-

ble shareable candidates, which if materialized can minimize the plan cost (line 4), where

bestP lan(S) means the best plan with S materialized and shared. The algorithm termi-

nates when all candidates are considered or adding candidates can no longer improve the

plan cost. As IQP needs to consider the temporal dimension, the shareable candidates are

no longer solely the set of shareable sub-plans, but pairs of a shareable sub-plan s and a

choice of its execution time τ(s). Pair ⟨s, τ(s)⟩ means computing and materializing the sub-

plan s at time τ(s), which can only benefit the computation that happens after τ(s). For

instance, considering the physical plan space in Fig. 4.12(a), the sharable candidates are

{⟨ 1○, t1⟩, ⟨ 1○, t2⟩, ⟨ 2○, t1⟩, ⟨ 2○, t2⟩}. The optimizations in [62] are still applicable to Algo. 5.

Algorithm 5 Greedy Algorithm for Choosing Optimal States to Materialize
1: S = ∅
2: C = shareable candidate set consisting of all shareable nodes and their potential execution

time points {⟨s, τ(s)⟩}
3: while C ̸= ∅ do
4: Pick ⟨s, τ(s)⟩ ∈ C that minimizes c̃(bestP lan(S′)) where S′ = {⟨s, τ(s)⟩} ∪ S
5: if c̃(bestP lan(S′)) < c̃(bestP lan(S′)) then
6: C = C− {⟨s, τ(s)⟩}
7: S = S′
8: else
9: C = ∅

10: return S

As expanded with execution time options, the enumeration space of the shareable candidate

set becomes much larger than the original algorithm in [62]. Interestingly, we find that

under certain cost models we can reduce the enumeration space down to a size comparable

to the original algorithm, formally summarized in Theorem 4.1. This theorem relies on
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the fact that materializing a shareable sub-plan at its earliest possible time subsumes other

materialization choices.

Theorem 4.1. For an extended cost function c̃w satisfying wi < wj if i < j, or an extended

cost function c̃v satisfying the property that an entry i has a lower priority than an entry j

if i < j in the lexical order, we only need to consider the earliest valid execution time for

each shareable sub-plan. That is, for each shareable sub-plan s, we only need to consider the

shareable candidate ⟨s,min(t-dom(s))⟩ in Algorithm 5.

Proof. Materializing a shareable sub-plan at its earliest possible time subsumes other mate-

rialization choices, as any reuse opportunities can always choose between using or not using

the materialized sub-plan. Therefore, the reuse cost of the shareable sub-plan does not in-

crease. On the other hand, as the extended cost function strictly prefers an earlier execution

time by assignment resources at an earlier time with a lower cost, the materialization over-

head of the shareable sub-plan also does not increase. Combining these two points, one can

see the shareable candidate ⟨s,min(t-dom(s))⟩ subsumes other candidates ⟨s, ·⟩.
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4.7 Integrating into Traditional Query Optimizers

In this section, we give a detailed specification on how to integrate Tempura into a traditional

Cascades-style query optimizer. Specifically, we focus on how to represent TVRs in the memo

structure.

We implemented Tempura based on Apache Calcite. Without loss of generality, we use

Calcite’s terminologies in this section: an operator is called a RelNode, and a logically

equivalent group of operators is called a RelSet. A Trait represents a physical property of

physically equivalent classes. On top of these, Tempura introduces a new data structure

called TvrMetaSet to store relevant information about a TVR: the time domain of the TVR,

Intra-TVR relationships, and Inter-TVR relationships. Next we elaborate more on these

using the subquery sales_status from Example 4.1 as an example.

TVR Time Points and Intervals By now we used single time points to identify data

versions, in which all (intermediate) results are computed from input relations all at the

version of the same time point. Whereas in many computing methods, one need to reason

about results computed from input relations at different time points. For instance in both

Outer-Join View Maintenance and Higher-Order View Maintenance (both described earlier

in Section 4.4.2), to model a partial update of relation S from t1 to t2 in S ▷◁lo R with R

unchanged, we need to represent the join result of S at t2 and R at t1, or vice versa.

Consequently, Tempura keeps track of the time version of every input relations respectively

to allow for incremental computation using combinations of input relations at different time

points. For a query with k input relations [I1, · · · , Ik], we define a TVR time point to be

a vector t⃗ = [t1, · · · , tk]. Each time point in the vector represents the time version of the

k-th input relation. For example, for a query with two input relations R and S, the TVR

time point [tR1 , t
S
2 ] represents a state where the result is computed from R in version t1 and

S in version t2. A TVR time interval is defined as (⃗t, t⃗′), the interval between two TVR time
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Figure 4.13: Partial memo of subquery sales_status from Example 4.1 in Tempura.

points t⃗ = [t1, · · · , tk] and t⃗′ = [t′1, · · · , t′k], where ∀i ti ≤ t′i. When the context is clear, we

use t⃗ to denote the TVR time point t⃗ = [t, · · · , t]. For instance in Fig. 4.13, all five TVRs

contain two TVR time points t⃗1 = [tR1 , t
S
1 ] and t⃗2 = [tR2 , t

S
2 ].

Time Domain of a TVR The time domain T of a TVR (introduced earlier in Section 4.3.1)

defines relevant time points of the TVR. Specifically, it consists of a list of valid TVR time

points and intervals, specified in a data structure called TvrMetaSetType. Tempura allows a

TVR to have an incomplete time domain, which means not all TVR time points and intervals

are required to be present in a TVR.

With two input relations R and S and three time points of [t1, t2, t3], Fig. 4.14 visualizes

two types of TVR meta set: Default and Partial, where each blue point is a valid TVR time

point and each yellow arrow is a valid TVR time interval in the time domain of the TVR.

1. The Default TvrMetaSetType only allows TVR time points where all input relations are
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at the same time version. On top of that, it only allows TVR time intervals involving

adjacent TVR time points to avoid a combinational number of delta intervals. For example

in Fig. 4.14(a), there are three TVR time points [tR1 , t
S
1 ], [tR2 , t

S
2 ], and [tR3 , t

S
3 ], and two

intervals ([tR1 , tS1 ], [tR2 , tS2 ]) and ([tR2 , tS2 ], [tR3 , tS3 ]). This policy has a complexity linear to

number of time points, which helps limit exploration space and improve optimization

speed.

2. The Partial TvrMetaSetType of certain input relation (e.g. R or S) only allows TVR

time intervals where only the corresponding input relation is updated. For example,

assuming R is always updated before S in very time step, then Fig. 4.14(b) shows the

partial TvrMetaSetType on updating relation R only, where only two TVR time intervals

([tR1 , t
S
1 ], [t

R
2 , t

S
1 ]) and ([tR2 , t

S
2 ], [t

R
3 , t

S
2 ]) are allowed. Similarly, Fig. 4.14(c) shows the partial

TvrMetaSetType on updating relation S only. Note that although each partial type is

incomplete, the two partial types can work together to constitute a valid update path

from [tR1 , t
S
1 ] to [tR3 , t

S
3 ]. This policy is useful for incremental computation algorithms that

only consider updating one input relation at a time, such as Outer-Join View Maintenance

and Higher-Order View Maintenance.

In the memo example in Fig. 4.13, all TvrMetaSets are of the Default TvrMetaSetType, with

two TVR time points t⃗1 and t⃗2, and one interval (t⃗1, t⃗2).

Intra-TVR traits A TVR has a mapping from its time domain T to many relations, e.g.

snapshots and deltas. A TvrMetaSet stores these Intra-TVR relationships using Intra-TVR

traits, which are bidirectional edges between a TvrMetaSet and a RelSet. For example,

Fig. 4.13 plots Intra-TVR traits in blue dotted lines, which connect TvrMetaSets to their

related RelSets. Custom Intra-TVR traits can be defined and used by various incremen-

tal computing methods. Earlier in Section 4.3 we described the multiplicity and attribute

perspectives of a TVR. They corresponds to the example Intra-TVR traits as follows.

1. SetSnapshot. This Intra-TVR trait represents that a RelSet is a multiplicity perspective
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(a) (b) (c)

Figure 4.14: TvrMetaSetType Examples: (a) Default, (b) Partial updating R only, and (c)
Partial updating S only. Each blue point is a valid TVR time point and each yellow arrow
is a valid TVR time interval in the time domain of the TVR.

snapshot at a TVR time point of the connecting TvrMetaSet. The specific TVR time

point is stored in the SetSnapshot trait.

2. SetDelta. This Intra-TVR trait represents that a RelSet is a multiplicity perspective

delta for a TVR time interval. The specific TVR time interval is stored in the Intra-

TVR trait. Additionally, SetDelta has two variations, namely positive-only SetDelta and

retractable SetDelta. Each variation has a different merge function (see Definition 4.3

in Section 4.3.2) for snapshots and deltas. For retractable delta, the information of the

specific column that encodes insertion or deletion is stored in the SetDelta trait.

3. ValueSnapshot. This Intra-TVR trait represents that a RelSet is an attribute perspective

snapshot at a TVR time point. An attribute perspective snapshot is produced by an

aggregation operator. It can be converted to a SetSnapshot by applying the Final ag-

gregation function (see Section 4.3.2). The information of the conversion is stored in the

ValueSnapshot trait, including the group-by keys and the Final aggregation functions.

4. ValueDelta. This Intra-TVR trait represents that a RelSet is an attribute perspective

delta for a TVR time interval. Similar to SetDelta, there are positive-only ValueDelta and

retractable ValueDelta. Similar to ValueSnapshot, necessary information on conversions

to SetSnapshot is also stored in ValueDelta.

Inter-TVR Trait. A TvrMetaSet stores Inter-TVR relationships using Inter-TVR traits,
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which are directed edges between two TvrMetaSets. Custom Inter-TVR traits can be defined

to annotate the information needed by an incremental computation algorithm. For example

in Fig. 4.13, the green QP and QN edges are two Inter-TVR traits used in the IM-2 approach.

TVR Equivalence and Anchor Time Point. Tracing equivalent operators and merging

them into logically equivalent classes is an important step in Cascades style optimizers.

Similarly, we need to merge two TVRs if they are found equivalent.

If we know two TVRs are equivalent, then the snapshots on each time point are also equiva-

lent. However, if we only know that two snapshots at a specific time point are equivalent, we

cannot infer if their corresponding TVRs are equivalent. The following example shows such

a scenario. Consider a simple query σ(S) with two time points t1 and t2. The query has two

TVRs: the TVR of the scan operator S and the TVR of the filter operator σ(S). Suppose

the base table S is empty at t1. Applying a filter on an empty table is also empty. The

optimizer detects the logical equivalence between the two empty snapshots St1 and σ(St1).

Apparently, this does not imply that the two TVRs S and σ(S) are equivalent at all time

points. At t2, data might arrive at the base table S and the two snapshots St2 and σ(St2)

are not equivalent anymore. The rule for discovering whether a table is empty at a specific

time point is a time-dependent rule, which means it does not apply at all time points.

A strict way to detect if two TVRs are equivalent is to check that at all the time points, the

corresponding snapshots of the two TVRs are equivalent. However, this detection mechanism

is impractical in a real-world query optimizer implementation for two reasons. First, TVR

equivalence can only be detected after regular logical rewriting rules are fired on all the

time points. During this process, many TVRs could be created but their equivalence cannot

be detected. The redundant TVRs can slow down the query optimization speed. Second,

the optimizer cannot guarantee that all snapshots at all time points can be fully generated

because some operators in the memo might be pruned during the search process. In this

case, some TVR equivalence might never be detected.
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We introduce a practical mechanism of detecting TVR equivalence by designating a special

anchor time point. Tempura only allows time-independent rules to be fired on this special

time point. In this way, any snapshots at the anchor time point can be generalized to all time

points in the TVR. If two snapshots at the anchor points are equivalent, their corresponding

TVRs are also equivalent. In the meantime, we still allow time-independent rules to fire at

all other time points, increasing the potential to find a better plan.

Formally, two TVRs R and R′ are equivalent if they have the same time domain and their

snapshots are the same at all valid TVR time points.

R′ = R ⇐⇒ T (R′) = T (R) ∧R′
t = Rt, ∀t ∈ T .

If R′
t is equivalent to Rt at a specific time point t, it does not imply that both TVRs are

identical.

∃t ∈ T s.t. R′
t = Rt ≠⇒ R′ = R.

Tempura designates one time point as the special anchor time point t⌣ of a TVR. The anchor

time point must ensure that all rules applied at the anchor time point are time-independent

and can be generalized to all time points of a TVR.

R′
t⌣ = Rt⌣ ∧ T (R

′) = T (R) =⇒ R′ = R.

Tempura chooses to use the last time point in the time domain as the anchor time point

because it produces the final result. Two TVRs are considered equivalent if and only if 1)

they share the same logical equivalent class for the anchor snapshot and 2) they have the

same TvrMetaSetType. Note that for the same RelSet at the anchor time, Tempura allows

multiple TVRs with different TvrMetaSetTypes to co-exist.
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4.8 Improving Query Optimization Speed

As Tempura explores a much bigger plan space, if implemented naively, incremental planning

can be much slower than traditional query planning. In this section, we discuss several

techniques to speed up the optimization process, which help Tempura achieve comparable

optimization latency as traditional optimizers.

4.8.1 Translational symmetry of TVRs

Generating a plan for many time points imposes a challenge for the optimization speed. With

an increasing number of time points, the memo size and the overhead of the rule pattern

matching and firing grows larger. We have an observation that the TVR rules generate the

same patterns when applied on operators of different time points of the same TVR. For

instance, in Fig. 4.11(b), if we let t′ = t1 instead, L′ (R′) matches G0 (G1) instead of G3

(G4), and we generate the InnerJoin in G7 instead of G8. In other words, InnerJoin[0,1]

in G7 and InnerJoin[3,4] are translation symmetric, modulo the fact that G0, G1, and G7

(G3, G4, and G8) are all snapshot t1 (t2) of the corresponding TVRs.

Most traditional rewriting rules, such as filter pushdown, are time-independent and have the

same behavior on different time points. By leveraging this symmetry, instead of repeatedly

firing these rules on all snapshots/deltas of the same set of TVRs, we can apply them on just

one snapshot/delta and copy the structures to the rest of the times. This helps eliminate

the expensive process of pattern matching and applying the same rule behavior on different

time points in the memo. We first present the process of using translational symmetry to

copy the memo, then discuss how Tempura handles rules that are non-translational, e.g.

time-dependent.

Template Copying. Before the copying starts, we need to first decide a template and a
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copy mapping. Out of all time points and intervals, we first choose one consecutive pair

of a time point t for snapshot and a time interval (t, t′) for delta as the copying template.

Then we define a copy mapping from the template time point/interval to the rest of time

points/intervals. For example, if there are three time points [t1, t2, t3] and two time intervals

[(t1, t2), (t2, t3)], we could choose t1 as the template time point and (t1, t2) as the template

time interval. The copying mapping for time point is t1 7→ {t2, t3} and the mapping for

time interval is (t1, t2) 7→ {(t2, t3)}. Next, we explain the template generation phase and the

copying phase step-by-step.

1. Template Generation Phase. We seed the TVRs of the leaf operators (usually Scan

operators) with the snapshot/delta in the template time point/interval. We run the opti-

mizer to populate the memo. Note that all rules except some non-translational symmetric

rules discussed later are enabled. This includes the majority of TVR rewrite rules, tradi-

tional logical and physical rules. After the rule firing is completed, we record the template

operator tree for copying in the next phase.

2. Copying Phase. Next, we disable the pattern matching and firing of the rules enabled

earlier and copy the template operators to their corresponding mapped time points/in-

tervals. We traverse the template operator tree bottom up in topological order. For each

template operator, we find its time point/interval using the intra-TVR link, then copy the

operator to all other time points/intervals according to the mapping. After each operator

is copied, we record their copied instances at each time point so that the copy of its parent

operator can locate the corresponding input.

Non-Translational Symmetric Rules. There are two kinds of non-translational rules

that are not fired in the copying process: time-dependent rules and rules across more than

two time points beyond the template.

Time-dependent rules generates operators that are based on time-specific properties that

vary across time. For example, an input relation being empty at time point t1 does not
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imply that the relation will be empty for at all times. If an empty pruning rule is applied to

an operator at t1, it cannot be generalized to the entire TVR. As a result, time dependent

rules cannot be fired when constructing the template. Tempura defers the firings of time-

dependent rules after the copying phase has ended. Recall that the rule engine performs

rule matching for every structrual change in the memo. Tempura always enables such rules

for pattern matching during the template generation and copying phase, but any successful

matches are put into a separate queue for deferred firing after the copying phase has ended.

Rules across many time points can match multiple operators beyond the template time

point/interval. For example, an union merge rule that combines multiple union operators

at more than two time points into a single union operator. Such rules might match and

generate new patterns during the copy. These rules are also enabled for pattern matching,

but deferred for firing after the copying phase.

By leveraging translational symmetry, Tempura is able to scale with many time points be-

cause most traditional and TVR rules only need to be matched and fired on one single time

point and interval. Moreover, Tempura ensures the completeness and correctness of the

memo by a special process of matching and deferred firing of non-translational symmetric

rules.

4.8.2 Pruning Plan Exploration Space.

Pruning non-promising alternatives. There are multiple ways to compute a TVRs

snapshot or delta, within which certain ways are usually more costly than others. We can

prune the non-promising alternatives. For instance, to compute a delta, one can take the

difference of two snapshots, or use TVR-generating rules to directly compute from deltas of

the inputs. Based on the experience of previous research on incremental computation [63], we

know that the plans generated by TVR-generating rules are usually more efficient. Therefore,
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for operators that are known to be easily incrementally maintained, such as filter and project,

we assign a lower importance to intra-TVR rules for generating deltas to defer their firing.

Once we find a delta that can be generated through TVR-generating rules, we skip the

corresponding intra-TVR rules altogether. To implement this optimization, we can give this

subset of intra-TVR rules a lower priority than all other rules, and thus other TVR rewrite

rules and traditional rewrite rules will always be ranked higher. Each intra-TVR rule also

has an extra skipping condition, which is tested to see whether the target delta is already

generated before firing the rule. If so, the rule is skipped.

Guided exploration. Inside a TVR, snapshots and deltas consecutive in time can be

merged together, leading to combinatorial explosion of rule applications. However, the merge

order of these snapshots and deltas usually do not affect the cost of the final plan. Thus,

we limit the exploration to a left-deep merge order. Specifically, we disable merging of

consecutive deltas, and only allow patterns that merge a snapshot with its immediately

consecutive delta. In this way, we always use a left-deep merge order.

4.8.3 Optimization of the Rule Engine

In a traditional Cascades-style optimizer, the memo structure is an AND-OR tree. Most

rewriting rules are of tree structures specifying the parent-child relationship of a few op-

erators. However in Tempura, the memo becomes a complex graph. The TVR rules are

also graphs that need to match multiple operators, TvrMetaSets, and several types of edges

among them. Thus we upgraded the rule engine from supporting tree matching to graph

matching. Note that the upgraded rule API is fully backward compatible, all existing rules

can work as is.

For example, the TVR-generating rule in Fig. 4.11(a) matches five operators, three TvrMetaSets,

and seven edges. The inter-TVR rule in Fig. 4.11(b) matches five operators, five TvrMetaSets,
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and nine edges. Rule matching in Tempura is a subgraph isomorphism problem that matches

the given rule pattern against the memo graph. The subgraph isomorphism problem is NP-

complete and could bring a major performance overhead. In this section, we first explain

the general rule matching and firing process in Tempura, then show how Tempura speeds up

the rule matching process using techniques including indexing, pre-compliation, and multiple

heuristics on match order.

In Tempura, the rule matching process is triggered by any structural changes in the memo,

for example, adding a new operator, TvrMetaSet, or edge, including intra/inter-TVR edges

and edges between operators. Merging of RelSets or TvrMetaSets is also a structural change.

For each rule, Tempura tries to match it starting from the location of the triggering change.

As shown in Fig. 4.11(b) starting from the example triggering TvrMetaSet vertex, Tempura

follows a depth first search (DFS) matching order in the rule pattern. Whenever the matching

fails at one point, it backtracks and moves on to the next candidate in the traversal. Upon

finding a successful match, the rule with all matched vertices and edges are added to a rule

queue, waiting to be applied.

Pre-compilation of Rule Patterns. Tempura offline analyzes the matching patterns of all

user-provided rules and compiles them into data structures specific for subgraph matching.

The compilation phase happens before optimizing a query and it consists of two major steps.

In the first step, it determines a linear matching order with respect to each vertex and edge

as the triggering point. Whenever a rule pattern is triggered during runtime, the matching

process just follows the pre-determined matching order without the need to compute the

matching order every time. We’ll cover how Tempura determines the match order later in

this subsection. In the second step, it analyzes the predicates for all vertices and edges,

as well as the predicates on multiple vertices or edges, and pre-process and simplify the

matching conditions as much as possible.

Determining Matching Order. The matching order has a major impact on optimizer
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Figure 4.15: A possible matching order of the rule in Fig. 4.11(b) starting from a TVR
vertex.

speed and we want to choose an order that can quickly prune the search space and abort

as early as possible upon match failure. Next, we list the different options that can lead

to different match orders when the backtracking process reaches each type of vertices and

edges. We also present the heuristics of our choice to determine a matching order and give

the rationale behind the heuristics.

1. Operator Vertex : At an operator vertex, we can either match connected operators or

connected TVRs. Tempura prioritizes on matching operators. It first follows Calcite’s

traversal order for matching the operator tree, which is to travel up to root and then a pre-

order traversal for the rest of the operators. When the operator tree is fully matched, it

then follow the intra-TVR edges to expand the search to connected TVRs. The rationale

is that operators associated with many predicates are less likely to find a match and thus

can abort early.

2. TVR Vertex : At a TVR vertex, we can either match operators belong to this TVR,

or other connected TVRs via inter-TVR edges. Tempura prioritizes checking the inter-

TVR trait and the connected TVRs. After matching all inter-TVR edges and connected

TVRs, we then traverse the inter-TVR edges to match operators. This is because inter-

TVR traits are less likely to find a match, which can cause the rule matching to terminate

earlier.
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3. Intra-TVR Edge: At an Intra-TVR edge, which connects an operator and a TVR, we

need to choose the match order when both connected operator and TVR are not matched

yet, i.e. the Intra-TVR edge itself is the triggering point. In this case, we can either

match the connected operator first, or the connected TVR first. Tempura prioritizes on

matching the connected TVR because this enables expanding the inter-TVR edges faster.

4. Inter-TVR Edge: At an Inter-TVR edge, which connects two TVRs, we need to prioritize

which side to match first. Tempura compares the number of inter-TVR edges of the two

TVRs, and prioritizes the TVR with more inter-TVR edges.

Fig. 4.15 shows a possible match order of the example rule starting from a TVR vertex.
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4.9 Tempura in Action

In this section, we discuss a few important considerations when applying Tempura in practice.

Dynamic re-optimization of incremental plans. We have studied the IQP problem

assuming a static setting, i.e., in (T⃗ , D⃗, Q⃗, c̃) where T⃗ and D⃗ are given and fixed. In many

cases, the setting can be much more dynamic where T⃗ and D⃗ are subject to change. Tempura

can be adapted to a dynamic setting using re-optimization. Generally, an incremental plan

P = [P1, · · · , Pi−1, Pi, · · · , Pk] for T⃗ = [t1, · · · , ti−1, ti, · · · , tk] is only executed up to ti−1,

after which T⃗ and D⃗ change to T⃗ ′ = [ti′ , · · · , tk′ ] and D⃗′ = [Di′ , · · · , Dk′ ]. Tempura can adapt

to this change by re-optimizing the plan under T⃗ ′ and D⃗′. We want to remark that during

re-optimization, Tempura can incorporate the materialized states generated by P1, · · · , Pi−1

as materialized views. In this way Tempura can choose to reuse the materialized states

instead of blindly recomputing everything.

Data statistics estimation. IQP scenarios usually involve planning for future logical

times (e.g., IVM-PD) or physical times (e.g., PWD-PD) as described in Section 4.2.1, for which

estimating the data statistics becomes very challenging. Since these scenarios typically

involve recurring queries, we can use historical data arrival patterns to estimate future data

statistics. Having inaccurate statistics is not a new problem to query optimization, and

many techniques have been proposed [113] to tackle this issue. Note that we can always

re-optimize the plan when we find that the previously estimated statistics is not accurate.

Also, techniques such as robust planning [24, 53, 111] can be adopted to IQP too. These are

out of the scope of this thesis.
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4.10 Experiments

In this section, we study the effectiveness and efficiency of Tempura. We used the query opti-

mizer of Alibaba Cloud MaxCompute [18], which was built on Apache Calcite 1.17.0 [19], as a

traditional optimizer baseline. We implemented Tempura on the optimizer of MaxCompute.

We integrated four commonly used incremental methods into Tempura using TVR-rewrite

rules: (1) IM-1 in Section 4.2.2, (2) IM-2 in Section 4.2.2 and Section 4.4.2, (3) OJV

the outer-join view maintenance algorithm in Section 4.4.2, (4) HOV the higher-order view

maintenance algorithm in Section 4.4.2. By default, Tempura jointly considered all four

methods in planning. In the experiments, we used Tempura to simulate each method by

turning off the inter-TVR rules of the other methods.

We used two incremental processing scenarios, PDW-PD and IVM-PD described in Section 4.2.1,

to demonstrate Tempura. PDW-PD uses the cost function c̃w(O) (in Section 4.6.2), where ci

was a linear function of the estimated CPU/IO/memory/network costs, and wi ∈ [0.25, 0.3]

for early runs and wi = 1 for the last run. The weight values for early runs are determined

based on the typical resource utilization of cluster at non-peak hours Alibaba. This is done

to simulate the execution of early computations during off-peak periods.

We used the TPC-DS benchmark [101] (1TB) to study the effectiveness (Section 4.10.1) and

performance (Section 4.10.3) of Tempura. To further demonstrate the effectiveness of the

plans, in Section 4.10.2 we used two real-world analysis workloads consisting of recurrent

daily jobs from Alibaba’s enterprise data warehouse, denoted as W-A and W-B.

Table 4.1 shows statistics of the two workloads.

Table 4.1: Statistics of two workloads at Alibaba

# Queries Avg. Avg. # Queries # Queries
# Joins # Aggregates (≥ 1 join) (≥ 2 joins)

W-A 274 1.14 1.77 167 83
W-B 554 1.18 1.99 357 144
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Query optimization was carried out single-threaded on a machine with an Intel Xeon Plat-

inum 8163 CPU @ 2.50GHz and 512GB memory, whereas the generated query was executed

on a cluster of thousands of machines shared with other production workloads.

4.10.1 Effectiveness of IQP

We first evaluated the effectiveness of IQP by comparing Tempura with four individual in-

cremental methods IM-1, IM-2, OJV, and HOV, in both the PDW-PD and IVM-PD scenarios. We

controlled and varied two factors in the experiments: (1) Queries. We chose five representa-

tive queries covering complex joins (inner-, left-outer-, and left-semi-joins) and aggregates.

(2) Data-arrival patterns. We controlled the amount of input data available in each incre-

mental run by varying the ratio r = |D1|/|D2|, where D1 is the amount of input data arriving

at the first time point, and D2 is the amount of newly arrived input data at the second time

point. We chose four data-arrival patterns. Two data arrival patterns have append-only

input data: delta-big (r = 1) and delta-small (r = 4). We varied the amount of input data

arriving at the second time point to test the effect of different delta sizes. Two data arrival

patterns have retractions: delta-R(r = 2) and delta-RS(r = 2). Delta-R has retractions in

the sales table, whereas delta-RS has retractions in both sales and returns tables. Queries

with retractions at the base tables are usually more expensive to incrementally compute be-

cause additional states need to be saved to handle retractions. Note that the IM-2 method

cannot support these two arrival patterns because it cannot handle retractions from the base

tables. As the accuracy of cost estimation is orthogonal to Tempura, to isolate its inter-

ference, we mainly compared the estimated costs of plans produced by the optimizer, and

reported them in relative scale (dividing them by the corresponding costs of IM-1) for easy

comparison. We reported the real execution costs as a reference later, and the trend was

consistent with the planner’s estimation. We reported the most significant entries in the cost

vector of c̃v for IVM-PD.
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Figure 4.16: (a)(b) The optimal estimated costs of incremental plans in IVM-PD for different
queries and data-arrival patterns. (c)(d) The optimal estimated costs of incremental plans
in PDW-PD for different queries, data-arrival patterns and cost weights.

IVM-PD. We first fixed the data-arrival pattern to delta-big and varied the queries. The

optimal-plan costs are reported in Fig. 4.16(a). As shown, different queries prefer different

incremental methods. For example, IM-1 outperformed both OJV and HOV for complex queries

such as q35. This is because OJV computed QI by computing the left-semi join of the delta

of QD with the previous snapshot (Section 4.4.2), and a bigger delta incurred a higher cost

of computing QI . Whereas for simpler queries such as q80, OJV degenerated to a similar

plan as IM-1, and thus had similar costs. Note that HOV costs much less than both OJV and

IM-1, due to the fact that the maintained higher-order views avoid many repeated joins (e.g.,

catalog_sales inner joining warehouse, item and date_dim) as in OJV and IM-1.

Next we chose q10 as a complex query with multiple left outer joins, and varied the data-

arrival patterns. The results are plotted in Fig. 4.16(b). Again, the data-arrival patterns

affected the preference of incremental methods. For example, IM-2 could not handle input

data with retractions. Compared to delta-big, HOV and OJV started to outperform IM-1 by
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a large margin in delta-small, as both of them could use different join orders when applying

updates to different input relations, and joining a smaller delta earlier could significantly

reduce the join cost.

For both experiments, Tempura consistently delivered the best plans. For q40 in Fig. 4.16(a)

and the delta-small case in Fig. 4.16(b), Tempura delivered a plan 5-10X better than others.

Tempura combines all three of HOV, IM-2 and IM-1 to generate a mixed optimal plan, and

thus leveraged all their advantages. E.g., in q40 Tempura used a similar incremental plan to

HOV, but Tempura used the IM-2 approach to join the higher-order views M and ∆R, and

applied IM-1 to incrementalize the QN part in IM-2.

PDW-PD. For the PDW-PD scenario, we conducted the same experiments as in IVM-PD,

and in addition tried different weights used in the cost functions (w1 = 0.3 vs. w1 = 0.7).

We have similar conclusions as in IVM-PD, and the results are reported in Figures 4.16(c)

and 4.16(d). We make two remarks. (1) Since PDW-PD did not require any outputs at

earlier runs, Tempura automatically avoided unnecessary computation, e.g., IM-2 avoided

computing the QN part, and thus performed better for q10, q35, q40 than in IVM-PD. (2)

The cost function can also affect the choice of the optimizer. For instance, in Fig. 4.16(d),

q10 preferred HOV to OJV when w1 = 0.3, but the other way when w1 = 0.7. This was because

with the cost of early execution increasing, it was less preferable to store many intermediate

states as in HOV. Tempura exploited this fact and adjusted the computation in each run, and

moved some early computation from the first incremental run to the second.

Real CPU Costs. We reported the real CPU costs in Fig. 4.17(a)-4.17(d) for the ex-

periments in Fig. 4.16(a)-4.16(d). The CPU costs are in the unit of number_of_cores ·

time_of_each_core_in_minutes (“CPU·Min” in short). As an example, if a query runs

with 2 cores for 3 minutes, the total CPU cost is 6 CPU·Min’s. In the PDW-PD experiments

(Figs. 4.17(c) and 4.17(d)), the CPU costs were weighted with the cost function in PWD-PD.
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Figure 4.17: (a)(b) The optimal real CPU costs of different incremental plans in IVM-PD for
different queries and data-arrival patterns. (c)(d) The optimal real CPU costs of different
incremental plans in PDW-PD for different queries, data-arrival patterns and cost weights.

Note that Fig. 4.17(a) and 4.17(c) are plotted in log scale due to the huge differences in

CPU costs for different queries. As we can see, the real CPU costs agreed with the planner’s

estimation (Fig. 4.16(a)-4.16(d)) pretty well. Some of the real costs were different from the

estimated ones because of the inaccuracy of the cost model. But note that Tempura consis-

tently delivered the best plans with the lowest CPU consumption across all experiments.

Real Wall-clock Execution Time. We reported the real wall-clock execution time (in

seconds) in Fig. 4.18 in the IVM-PD scenario. Due to the huge differences in execution time

for different queries, each query is plotted with a separate scale on the y-axis. We noticed

that the initial runs of a few jobs failed and the jobs were restarted by the fault-tolerance

mechanism of the platform. To make the comparison fair, we only counted the execution time

of successful runs and excluded the additional time of the failed runs. The real wall-clock

execution time was mostly similar to the real CPU costs (Figs. 4.17(a)-4.17(b)). Tempura
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(a)

(b)

Figure 4.18: (a) The wall-clock execution time in IVM-PD for different queries (corresponding
to Fig. 4.17(a)). (b) The wall-clock execution time in IVM-PD for different data-arrival
patterns for TPC-DS q10 (corresponding to Fig. 4.17(b)).

still consistently delivered the lowest wall-clock execution time across all experiments. Some

of the wall-clock execution times were different from the CPU costs because some plans were

easier to be parallelized and the query optimizer assigned a higher degree of parallelism to

such queries. In such a case, although the wall-clock execution time was lower, the total

CPU costs could be similar as more cores were used.

State Sizes. In this set of experiments, we study the storage costs of materialized states

between Tempura and each individual incremental methods. We first fixed the data-arrival

pattern to delta-big and tested different queries under IVM-PD settings respectively. The re-
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Figure 4.19: (a)(b) The state sizes of different incremental plans in IVM-PD for different
queries and data-arrival patterns. (c) The plan quality of Tempura under inaccurate car-
dinality estimation. (d) The comparison between TDW and PDW on the CPU cost of all
queries in W-A and W-B, and (e) a detailed comparison of 30 randomly sampled queries in
W-A and W-B.

sults are reported in Fig. 4.19(a). As shown, for most queries, the sizes of states materialized

by Tempura were smaller than or comparable to each individual incremental algorithms.

This is due to the fact that Tempura is able to reuse the shuffled data as the states without

incurring additional storage overheads (see Section 4.6.1). Thus, we further reported the

sizes of the shuffled data reused by Tempura in the figures. Next we chose query q10 and

varied the data-arrival patterns. The results are reported in Fig. 4.19(b). Again, the stor-
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age costs of Tempura were lower than or comparable to that of each individual incremental

algorithms.

Sensitivity to Inaccurate Estimates. Next, we evaluated the sensitivity of Tempura to

inaccurate cardinality estimation. We used q10 in the IVM-PD scenario. We gave Tempura the

estimation of delta-small when running q10 with input delta-big, and gave the estimation of

delta-big when running q10 with input delta-small. Fig. 4.19(c) reported the real CPU costs.

For delta-big, Tempura with the inaccurate estimation ran slower compared to Tempura with

accurate estimation. This is expected because Tempura chose a plan that is optimal to the

inaccurate cost model. Nevertheless, Tempura was still faster than IM-1, OJV, HOV, and

comparable to IM-2. For delta-small, inaccurate estimation had a small impact on execution

time, and Tempura was still faster than each individual incremental method.

Conclusion. The optimal incremental plan is affected by many factors and does need to be

searched in a cost-based way. Tempura can consistently find better plans than incremental

methods alone.

4.10.2 Case Study: Progressive Data Warehouse

To validate the effectiveness of Tempura in a real application, we conducted a case study

of the PDW-PD scenario using two real-world analysis workloads W-A and W-B at Alibaba.

We compared the resource usage of these workloads in two ways: (1) Traditional (TDW),

where we ran the workloads at 24:00 according to a schedule using the plans generated by a

traditional optimizer; and (2) Progressive (PDW), where besides 24:00, we also executed

the workloads at 14:00 and 19:00 using the incremental plans generated by Tempura. These

two time points were chosen to simulate the observed cluster usage pattern at Alibaba, as

the cluster was often under-utilized at these times.
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(a) (b)

Figure 4.20: (a)(b) The PDW-to-TDW ratio of the real total CPU cost and CPU cost at
24:00 for the data warehouse workloads respectively.

Fig. 4.20(a) shows the real CPU cost of executing the workloads (scored using the cost

function in the PDW-PD setting), where we plotted the cumulative distribution of the ratio

between the CPU cost in PDW versus that in TDW. We can see that PDW delivered better

CPU cost for 80% of the queries. For about 60% of the queries, PDW was able to cut the

CPU cost by more than 35%. Remarkably, PDW delivered a total cost reduction of 56.2%

and 55.5% for W-A and W-B, respectively. Note that Tempura searched plans based on the

estimated costs which could be different from the real execution cost. As a consequence, for

some of the queries (less than 10%) we see more than 50% cost increase. Accuracy of cost

estimation is not within the scope of the thesis. We further reported the PDW-to-TDW

ratio of the CPU cost at 24:00 in Fig. 4.20(b), as this ratio indicated the resource reduction

during the “rush hours.” As shown, for both workloads, PDW reduced the resource usage at

peak hours for over 85% of the queries, and for over 70% of the queries we can see significant

reduction of more than 25%.

We also reported the absolute values of CPU costs of W-A and W-B. However, as W-A and W-B

have 274 and 554 queries each, it is not realistic to show all of them. Instead we reported the

total CPU cost breakdowns for TDW and PDW in Fig. 4.19(d). Specifically for PDW, we

reported the absolute values of CPU costs at each time, and the total CPU costs weighted

according to the cost function in PDW-PD. As we can see, Tempura indeed picked better plans

with less resource consumption: PDW saved 38.7% and 32.6% CPU costs compared to TDW
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for W-A and W-B respectively. On the other hand, with incremental computation, PDW had

relatively low overheads compared to TDW, 19.6% and 37.6% for W-A and W-B respectively.

The PDW overheads are computed by summing up the absolute values of CPU costs at each

time, minus the CPU costs of TDW. We further randomly selected 15 queries from W-A and

W-B respectively, and reported their CPU costs in TDW and PDW in Fig. 4.19(e). Again,

for most queries PDW reduced the CPU costs by a significant amount.

4.10.3 Performance of IQP

Next, we evaluated the performance of Tempura. IQP has two salient characteristics: (1) In

Plan-Space Exploration (PSE) phase, IQP explores a larger plan space. (2) IQP has a new

State Materialization Optimization (SMO) phase to decide the intermediate states to share.

We will present performance results on these two phases.

We used PDW-PD as the IQP problem definition. Unless otherwise specified, we set |T⃗ | = 3.

We tested Tempura on the TPC-DS queries. Besides the overall performance study, we also

present a detailed study on four aspects:

Table 4.2: Statistics of selected representative queries

Query Q22 Q20 Q43 Q67 Q27 Q99 Q85 Q91 Q5 Q33
# Joins 2 2 2 3 4 4 6 6 7 9

# Aggregates 1 1 1 1 1 1 1 1 4 4
# Sub-Queries 0 0 0 2 0 0 0 0 7 7

(1) Query complexity : How does Tempura perform when queries become increasingly com-

plex, e.g., with more joins or subqueries? (2) Size of IQP : How does Tempura perform when

|T⃗ | changes? (3) Number of incremental methods : How does Tempura perform when users

integrate more incremental methods into it? (4) Optimization breakdown: How effective are

the speed-up optimizations in Section 4.8?

To study the above four aspects, we selected ten representative TPC-DS queries with different
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Figure 4.21: Comparing overall planning performance on all TPC-DS queries between tra-
ditional and incremental query planning.

numbers of joins, aggregates, and subqueries. The selected queries are shown in Table 4.2.

Overall Planning Performance. We first studied the overall planning performance by

comparing Tempura with traditional planning. Fig. 4.21 shows the end-to-end planning time

on all TPC-DS queries. As shown, although planned a much bigger plan space, Tempura

still delivered high planning performance: IQP finished within 3 seconds for 80% queries,

and for all queries finished within 14 seconds. For over 80% queries, the IQP optimization

time was less than 24X of the traditional planning time. Even though slower than traditional

planning at optimization time, IQP generated much better incremental plans that brought

significant benefit in resource usage and query latency. We can further reduce the planning

time by adopting a parallel optimizer [94].

As a reference, we also reported the real CPU cost used by TDW, the CPU costs saved by
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PDW compared to TDW, and the planning time in Fig. 4.22. We can see that for most

queries, the CPU time on planning was 2-3 orders of magnitude smaller than the saved CPU

costs. This shows that the planning cost is negligible compared to the execution cost. Thus

the benefit of a better plan outweighs the extra time spent on planning.
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Figure 4.22: Real resource consumption of Tempura’s plan as in Fig. 4.21 on all queries in
the 1T TPC-DS benchmark.

Query Complexity. To study the impact of query complexity, we reported the planning

time break-down on the selected TPC-DS queries in Table 4.2 in Fig. 4.23(a). As shown,

the planning time increased when the query complexity increased, because the plan space

grew larger for complex queries. The time spent on PSE was less than that spent on SMO in
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Figure 4.23: Impact of query planning performance of various factors: (a) query complexity,
(b) (c) the size of IQP, and (d)(e) the number of incremental methods. (f) Effectiveness of
the speed-up optimization techniques. Note that the selected queries are ordered by their
query complexity(as listed in Table 4.2).

general, and also grew with a slower pace. This shows that query complexity has a smaller

impact on PSE.

Size of IQP. To study the impact of the size of the planning problem, we gradually increased

the number of incremental runs planned from 3 to 9, and reported the time on PSE and

SMO in Fig. 4.23(b) and 4.23(c). As depicted, the time on PSE stayed almost constant

as the size of IQP changed. E.g., when the number of incremental runs grew 3X, the time

for q33 only slightly increased by 20%. This was mainly due to the effective speed-up

optimization techniques introduced in Section 4.8. In comparison, the SMO time increased
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superlinearly with increasing number of incremental runs, due to the time complexity of the

MQO algorithm we chose [62].

Number of Incremental Methods. To study the impact of more incremental methods,

we gradually added methods IM-1, IM-2, HOV and OJV into Tempura. Fig. 4.23(e) and 4.23(f)

show the time on PSE and SMO, respectively. As illustrated, the time on both PSE and

SMO increased with more incremental methods, due to the increased plan space. There

are two interesting findings. (1) The PSE time did not grow linearly with the number of

incremental methods, but rather the the plan space size that each method newly introduces.

E.g., the increase of PSE time at adding HOV was bigger than that at adding OJV. This was

because both HOV and OJV update a single relation at a time, which are very different from

IM-1 and IM-2 that update all relations each time. (2) The number of incremental methods

had less impact than the size of the IQP problem, which can be observed on the SMO time.

This is because the plan space explored by different incremental methods often have overlaps,

whereas the plan spaces of different incremental runs do not.

Exploration Optimization Breakdown.

We evaluated the effectiveness of the speed-up optimizations of exploring the plan space

discussed in Section 4.8, i.e., translational symmetry (TS), pruning non-promising alterna-

tives (PNA), and guided exploration (GE). Fig. 4.23(f) reports the PSE times of different

combinations of the speed-up optimizations. We compared the implementations with no

optimization (Baseline), with each individual optimization (Baseline+TS, +PNA, +GE),

and with all three optimizations (Tempura). The optimizations together brought up to

20X speed-up, among which the most effective ones were PNA and TS, bringing 5-12X and

1.5-2.5X improvements each.

Effect of Exploiting TVR Translational Symmetry. We evaluated the memo-copying

process using the TVR translational symmetry in Section 4.8.1. Fig. 4.24 shows the break-
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Figure 4.24: Time breakdown of three steps in the memo copying process: template gener-
ation, template copying, and firing non-translational symmetric rules after copying.

down of planning time of the three steps used in the copying process, with two time points

in the initial template-generation phase, and three additional time points in the template-

copying phase. We have the following observations: 1) the time of the template-generation

phase varied and it was determined by the complexity of each query; 2) the time spent on

copying the template to three additional time points was much less than generating the

template on two time points; and 3) the time taken by firing non-translational symmetric

rules after the copying were usually small, but it took a long time in a few queries. This is

because the new operators generated by non-translational symmetric rules further triggered

many traditional rewrite rules such as enforcer rules.
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Figure 4.25: Effect of different rule engine optimization techniques on overall planning per-
formance: (a) pre-compilation of rule patterns and (b) different match order heuristics.

Effect of Rule Engine Optimizations. We study the effect of the optimization tech-

niques to speed up the rule-matching process of the rule engine in Section 4.8.3. Fig. 4.25(a)
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Operator Vertex
prioritize

TVR/operator

TVR Vertex
prioritize

TVR/operator

Intra-TVR edge
prioritize

TVR/operator

Inter-TVR edge
prioritize TVR w/
more/less edges

1 TVR operator operator less
2 operator operator operator less
3 operator TVR operator less
4 operator TVR TVR less
5 operator TVR TVR more

Table 4.3: Configurations of different match order heuristics used in Fig. 4.25(b).

shows the benefit of pre-compilation of rule patterns. We observed that the pre-compilation

optimization introduced performance gains on almost all queries tested. Recall that pre-

compilation can avoid re-computing the match order on each rule firing. Since the number

of rule firings was very large, this optimization cumulatively saved a large amount of time.

Fig. 4.25(b) shows the effect of different match-order heuristics on the optimization speed.

The specific configuration of each heuristic can be found in table 4.3. We had the following

observations. (1) The experiment showed that different match orders indeed had different

impacts on the optimization speed. For example, in query 85, heuristic 1 was about 30%

slower than heuristic 5. Therefore it is important to choose a good match order to accelerate

the optimization. (2) The best heuristic was query-dependent and there was no single heuris-

tic match order that performs the best in all the cases. The heuristic we chose out-performs

the baseline for most queries. Based on these observations, Tempura allows a developer to

tune the match-order heuristics based on the query and workload.
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4.11 Related Work

Incremental Processing. There are rich research works on incremental processing, ranging

from incremental view maintenance, stream computing, to approximate query answering

and so on. Incremental view maintenance has been studied under both the set [29, 31]

and bag [40, 56] semantics, for queries with outer joins [55, 67], and using higher-order

maintenance methods [14]. Previous studies mainly focused on delta propagation rules for

relational operators. Stream computing [12, 48, 80, 100] adopts incremental processing

and sublinear-space algorithms to process updates and deltas. Many approximate query

answering studies [13, 23, 39] focused on constructing optimal samples to improve query

accuracy. Proactive or trigger-based incremental computation techniques [117, 38] were used

to achieve low query latency. These studies proposed incremental techniques in isolation,

and do not have a general cost-based optimization framework. In addition, they can be

integrated into Tempura.

Query Planning for Incremental Processing. Previous work studied some optimization

problems in incremental computation. Viglas et al. [107] proposed a rate-based cost model

for stream processing. The cost model is orthogonal to Tempura and can be integrated.

DBToaster [14] discussed a cost-based approach to deciding the views to materialize under

a higher-order view maintenance algorithm. Tang et al. [97] focused on selecting optimal

states to materialize for scenarios with intermittent data arrival. They proposed a dynamic

programming algorithm for selecting states to materialize given a fixed physical incremental

plan and a memory budget, by considering future data-arrival patterns. These optimization

techniques all focus on the optimal materialization problem for a specific incremental plan

or incremental method, and thus are not general IQP solutions. Tang et al. [98] discussed

the idea of eagerly (or lazily) executing parts of a query that is more (or less) amenable

to incremental execution. Tempura can also support this style of execution in the PDW-PD

setting, where the final results are delivered only at the last run. At earlier runs, the optimizer
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can choose to incrementally execute only a sub-part of the query based on cost. In fact, we

often observed this behavior in the PDW-PD setting in the experiments. [98] analyzes the cost

of incremental execution based on the concept of incrementability. This can be adopted in

Tempura as a new cost function following the discussion in Section 4.6.2.

Flink [20] uses Calcite [26] as the optimizer to support stream queries, which only provides

traditional optimizations on the logical plan generated by a fixed incremental method, but

cannot combine multiple incremental methods, nor consider correlations between incremental

runs. On the contrary, Tempura provides a general framework for users to integrate various

incremental methods, and searches the plan space in a cost-based approach.

Semantic Models for Incremental Processing. CQL[21] exploited the relational model

to provide strong query semantics for stream processing. Sax et al. [91] introduced the Dual

Streaming Model to reason about ordering in stream processing. The key idea behind [21, 91]

is the duality of relations and streams, i.e., time-varying relations can be modeled as a

sequence of static relations, or a sequence of change logs. The recent work [25] proposed

to integrate streaming into the SQL standard, and briefly mentioned that TVRs can serve

as a unified basis of both relations and streams. However, their models do not include a

formal algebra and rewrite rules on TVRs. To the best of our knowledge, our TIP model

for the first time formally defines an algebra on TVRs, providing a principled way to model

different types of snapshots/deltas and operators between them. The trichotomy of TVR

rewrite rules subsumes many existing incremental methods, laying a theoretical foundation

for Tempura.
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Chapter 5

Conclusion and Future Work

In this thesis, we first presented the Texera system in Chapter 2, discussing the design choices

and the associated trade-offs of several key components within Texera that enable real-time

collaborations and user interactions.

For future work, regarding user interaction support, we aim to incorporate more powerful

line-level debugging capabilities and controls, both in the Java-based system and operators,

as well as Python UDF operators. Another area of focus is our logging-based fault tolerance,

where we plan to leverage deterministic computation to improve the reproducibility of Texera

workflows and support time-travel debugging. In terms of enhancing real-time collaboration

features, we are actively developing the frontend to be smarter and more user-friendly, such

as by adding IDE-like code editing experiences while still providing real-time collaborative

editing. Texera is being very actively developed, with numerous ongoing features planned

or in progress that can greatly enhancing the system’s scalability, extensibility, and security,

and user experience.

In Chapter 3, we examined a specific use case of user interaction: modifying the logic of

operators in a workflow, also known as reconfigurations. We developed an algorithm called
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Fries, which can schedule these reconfigurations with minimal delay while maintaining trans-

actional guarantees, especially when a reconfiguration involves multiple operators.

In this work, we focused solely on modifying the logic of operators in a workflow, leaving

the alteration of the workflow graph topology for future research. In many use cases, the

ability to change the workflow graph topology is essential and highly beneficial, such as when

users want to add or remove operators, adjust operator parallelism (add/remove workers), or

modify the data exchange policy. Another area for future work is addressing the potential for

high reconfiguration delays in Fries when dealing with certain reconfigurations in workflows

involving one-to-many operators. Investigating real-world workloads to determine how Fries

performs in these cases and offering multiple levels of transactional consistency guarantees

could provide trade-offs between delay and consistency. Fries has been integrated into Tex-

era’s master branch and is currently implemented as a research prototype on Apache Flink.

Further work could involve exploring the possibility of fully integrating the Fries algorithm

into Flink.

In Chapter 4, we introduced Tempura, a cost-based optimization framework specifically de-

signed for incremental processing. As a general framework, Tempura can support a wide

range of incremental computation requirements for various applications and use cases, ex-

tending beyond Texera’s scope. Tempura can select the most suitable incremental compu-

tation algorithm based on the specific queries and data involved.

Tempura can jointly consider a multitude of factors when choosing an optimal plan. These

include different incremental computation algorithms, physical operator implementations,

and identifying the best places to materialize intermediate states. Yet, there are several

other facets in incremental computation that Tempura does not currently consider, such

as determining the frequency at which an operator or a sub-query should be executed, or

prioritization among different inputs for multi-input operators such as the Join operator.

As operators possess varying degrees of incremental computation overhead, instituting a
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prioritization strategy can potentially mitigate this overhead while still catering to the user’s

requirements.

Currently, the Tempura optimizer framework works the best with a single query. How-

ever, in a data warehouse environment, there are often large pipelines of dependent queries.

One area for future work is exploring how to incrementally run a complex data warehouse

pipeline. This would involve determining which queries to run incrementally and scheduling

the incremental runs. Tempura is implemented on top of Apache Calcite, an open-source

query optimizer framework. We have successfully incorporated part of Tempura’s changes

into Calcite. Another direction for future work is integrating more of Tempura’s advanced

incremental computation features into the Calcite framework.
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