
1

DeepThings: Distributed Adaptive Deep Learning Inference on
Resource-Constrained IoT Edge Clusters

Zhuoran Zhao, Student Member, IEEE, Kamyar Mirzazad Barijough, Student Member, IEEE,
Andreas Gerstlauer, Senior Member, IEEE

Abstract—Edge computing has emerged as a trend to improve
scalability, overhead and privacy by processing large-scale data,
e.g. in deep learning applications locally at the source. In
IoT networks, edge devices are characterized by tight resource
constraints and often dynamic nature of data sources, where
existing approaches for deploying Deep/Convolutional Neural
Networks (DNNs/CNNs) can only meet IoT constraints when
severely reducing accuracy or using a static distribution that
can not adapt to dynamic IoT environments. In this paper, we
propose DeepThings, a framework for adaptively distributed ex-
ecution of CNN-based inference applications on tightly resource-
constrained IoT edge clusters. DeepThings employs a scalable
Fused Tile Partitioning (FTP) of convolutional layers to minimize
memory footprint while exposing parallelism. It further realizes a
distributed work stealing approach to enable dynamic workload
distribution and balancing at inference runtime. Finally, we
employ a novel work scheduling process to improve data reuse
and reduce overall execution latency. Results show that our
proposed FTP method can reduce memory footprint by more
than 68% without sacrificing accuracy. Furthermore, compared
to existing work sharing methods, our distributed work stealing
and work scheduling improve throughput by 1.7-2.2x with
multiple dynamic data sources. When combined, DeepThings
provides scalable CNN inference speedups of 1.7x-3.5x on 2-6
edge devices with less than 23MB memory each.

I. INTRODUCTION

In IoT applications, environmental context analysis is a key
but also one of the most challenging tasks given often mas-
sively distributed, diverse, complex and noisy sensing scenar-
ios [1]. Deep/Convolutional Neural Networks (DNNs/CNNs)
have been intensively researched and widely used in large scale
data processing due to their comparable classification accuracy
to human experts [2]. As such, DNN/CNN-based data analysis
techniques naturally become a solution to deal with the large
data streams generated by IoT devices.

However, executing DNN inference locally on mobile and
embedded devices requires large computational resources and
memory footprints [3] that are usually not available in IoT
computing platforms. Cloud-assisted approaches trade off lo-
cal DNN inference performance for often unpredictable remote
server status and network communication latency, in addition
to potentially exposing private and sensitive information dur-
ing data transmission and remote processing. Furthermore,
given that the number of IoT devices is predicted to be
rapidly increasing and reaching more than 20 billion by
2020 [4], the resulting rapid explosion and scale of collected

This article was presented in the International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS) 2018 and
appears as part of the ESWEEK-TCAD special issue.

data is projected to make even centralized cloud-based data
processing infeasible in the near future [1], [5].

Alternatively, fog or edge computing has been proposed
to make use of computation resources that are closer to
data collection end points, such as gateway and edge node
devices [6], [7], [8]. However, how to efficiently partition, dis-
tribute and schedule CNN inference within a locally connected
yet severely resource-constrained IoT edge device cluster is a
challenging problem that has not been adequately addressed.
Existing approaches for layer-based partitioning of DNN in-
ference applications result in processing a large amount of
intermediate feature map data locally. This introduces signif-
icant memory footprint exceeding the capabilities of typical
IoT devices. Furthermore, existing distributed DNN/CNN edge
processing proposals are based on static partitioning and dis-
tribution schemes, where dynamically changing data sources
and varying availability of computational resources in typical
IoT edge clusters can not be optimally explored.

In this paper, we propose DeepThings, a novel framework
for locally distributed and adaptive CNN inference in resource-
constrained IoT devices. DeepThings incorporates the follow-
ing main innovations and contributions:

1) We propose a Fused Tile Partitioning (FTP) method
for dividing convolutional layers into independently dis-
tributable tasks. In contrast to partitioning horizontally
by layers, FTP fuses layers and partitions them vertically
in a grid fashion, which minimizes memory footprint
regardless of the number of partitions and devices,
while also reducing communication and task migration
overhead.

2) We develop a distributed work stealing runtime system
for IoT clusters to adaptively distribute FTP partitions in
dynamic application scenarios. Our approach avoids cen-
tralized data synchronization overhead of existing work
sharing solutions to better exploit available parallelism
and computation/communication overlap in the presence
of dynamic data sources.

3) Finally, we introduce a novel work scheduling and dis-
tribution method to maximize reuse of overlapped data
between adjacent FTP partitions and further improve
distributed inference performance.

Results show that, in comparison to prior work, DeepThings
is able to execute otherwise infeasible CNN inference tasks
with significantly improved performance in IoT edge clusters
under various dynamic application environments.

The rest of the paper is organized as follows: After an
overview of related work, background and a motivational
example in Sections II and III, details of DeepThings will be

2

described in Section IV. Section V then discusses the results
of our experiments, while Section VI presents a summary and
conclusions of our work.

II. RELATED WORK

Different approaches have been proposed to adopt deep
learning frameworks in mobile/IoT applications. In [9], [10],
DNN inference is partially offloaded to cloud servers to min-
imize processing latency and edge device resource consump-
tion. However, in such cloud-assisted approaches, inference
performance depends on unpredictable cloud availability and
communication latency. Moreover, such offloading schemes
can potentially expose privacy issues. Finally, existing cloud
approaches use a layer-based partitioning with memory foot-
prints that require aggressive or complete offloading when only
severely constrained IoT edge devices are available.

In order to directly deploy DNNs on resource-constrained
edge devices, various sparsification and pruning techniques
have been proposed [11], [12]. More recently, compression
techniques have been developed to further simplify neural
network topologies and thus reduce complexities [13], [14],
[15]. In all cases, loss of accuracy is inevitable, while available
redundancies are also highly application-/scenario-dependent.
Our work is orthogonal, where we aim to meet resource
constraints by executing unmodified networks in a partitioned
and distributed fashion on a cluster of IoT devices.

In the context of mobile systems, the work in [16] proposed
to deploy DNNs onto a set of smartphone devices within a
Wireless Local Area Network (WLAN). A MapReduce-like
distributed programming model is employed to synchronously
orchestrate the CNN inference computation among a fixed
set of mobile devices. Their approach partitions individual
layers into slices to increase parallelism and reduce memory
footprint, but still executes slices layer-by-layer in a centrally
coordinated, bulk-synchronous and lock-step fashion. By con-
trast, we fuse layers and apply a finer grid partitioning to min-
imize communication, synchronization and memory overhead.
Layer fusion techniques have been previously applied to CNN
accelerators [17]. Such work is, however, specifically aimed
at exploiting operator-level parallelism targeting fixed-function
hardware implementations. As such, it is limited to fixed-size,
single-pixel and static partitions. By contrast, we provide a
general and parameterizable grid-based partitioning targeting
task-level parallelism in edge devices.

The work in [16] also profiles and partitions the original
CNN statically. This assumes that available computation re-
sources are predictable and known a priori. In [18], a work
stealing framework is proposed for dynamic load balancing in
distributed mobile applications. We adopt a similar but more
lightweight approach to execute fine-grain and fused inference
stacks in a dynamically distributed, adaptive, asynchronous
and low overhead fashion on IoT clusters. In the process, we
incorporate a custom work distribution policy to optimize data
reuse among inference partitions.

III. BACKGROUND AND MOTIVATION

In CNN-based data analytics, convolutional operations are
the key as well as the most resource-demanding components.

co
nv

1
m

ax
1

co
nv

2
m

ax
2

co
nv

3
co

nv
4

co
nv

5
m

ax
3

co
nv

6
co

nv
7

co
nv

8
m

ax
4

co
nv

9
co

nv
10

co
nv

11
co

nv
12

co
nv

13
m

ax
5

co
nv

14
co

nv
15

co
nv

16
co

nv
17

co
nv

18
co

nv
19

co
nv

20
ro

ut
e1

co
nv

21
re

or
g

ro
ut

e2
co

nv
22

co
nv

23
re

gi
on

0.0

2.5

5.0

7.5

10.0

La
te

nc
y

(s
)

Computation Communication

Fig. 1: Per layer execution and comm. latency in YOLOv2.

co
nv

1
m

ax
1

co
nv

2
m

ax
2

co
nv

3
co

nv
4

co
nv

5
m

ax
3

co
nv

6
co

nv
7

co
nv

8
m

ax
4

co
nv

9
co

nv
10

co
nv

11
co

nv
12

co
nv

13
m

ax
5

co
nv

14
co

nv
15

co
nv

16
co

nv
17

co
nv

18
co

nv
19

co
nv

20
ro

ut
e1

co
nv

21
re

or
g

ro
ut

e2
co

nv
22

co
nv

23
re

gi
on

0

20

40

M
em

or
y

siz
e

(M
B)

Output data Input data Weight Other

Fig. 2: Inference memory footprint of YOLOv2.

Figure 1 shows the per layer execution duration and output
data transmission time over a WiFi network for a widely
used CNN-based object detection application1. During CNN
inference, large dimensional visual data is generated in early
convolutional layers in order to extract fine-grained visual con-
text from the original images. In the following inference layers,
visual information is gradually compressed and down-sampled
using high-dimensional filters for high-level feature reasoning.
Such data compression behaviour along CNN inference layers
motivates existing partitioning schemes at layer granularity [9].
As shown in Figure 1, delays for communication of output
data between layers are gradually decreasing with inference
progress, where an intermediate layer with lightweight feature
data output can serve as a partition point between edge and
gateway devices. However, this straightforward approach can
not explore the inference parallelism within one data frame,
and significant computation is still happening in each layer.
Apart from the long computation time, early convolutional
layers also leave a large memory footprint, as shown by
memory profiling results in Figure 2. Taking the first 16 layers
in YOLOv2 as an example, the maximum memory footprint
for layer execution can be as large as 70MB, where the
input and output data contribute more than 90% of the total
memory consumption. Such large memory footprint prohibits
the deployment of CNN inference layers directly on resource-
constrained IoT edge devices.

In this paper, we focus on partition and distribution methods
that enable execution of early stage convolutional layers on
IoT edge clusters with lightweight memory footprint. The
key idea is to slice original CNN layer stacks into inde-
pendently distributable execution units, each with smaller
memory footprint and maximal memory reuse within each
IoT device. With these small partitions, DeepThings will then
dynamically balance the workload among edge clusters to

1YOLOv2 (608x608) is instantiated in Darknet with NNPACK accelera-
tion [19], [20], [21]. Execution time is collected based on the single-core
performance of a Raspberry Pi 3.

3

CNN
Parameters

Pre-trained
Weights

Fused Tile
Partitioning (FTP)

FTP
Parameters

Runtime System

Data Frame

Platform
Constraints

Local
Tasks

Gateway
Device

Edge
Device

Task Results

CNN
Model

Weights

Data Frame
Partitioner

DeepThings
Runtime

CNN
Framework

Inference
Engine:
Caffe,

Darknet ...

Fig. 3: Overview of the DeepThings framework.

enable efficient locally distributed CNN inference under time-
varying processing needs.

IV. DEEPTHINGS FRAMEWORK

An overview of the DeepThings framework is shown in
Figure 3. In general, DeepThings includes an offline CNN
partitioning step and an online executable to enable distributed
adaptive CNN inference under dynamic IoT application en-
vironments. Before execution, DeepThings takes structural
parameters of the original CNN model as input and feeds
them into a Fused Tile Partitioning (FTP). Based on resource
constraints of edge devices, a proper offloading point between
gateway/edge nodes and partitioning parameters are generated
in a one-time offline process. FTP parameters together with
model weights are then downloaded into each edge device.
For inference, a DeepThings runtime is instantiated in each
IoT device to manage task computation, distribution and data
communication. Its Data Frame Partitioner will partition any
incoming data frames from local data sources into distributable
and lightweight inference tasks according to the pre-computed
FTP parameters. The Runtime System in turn loads the pre-
trained weights and invokes an externally linked CNN in-
ference engine to process the partitioned inference tasks. In
the process, the Runtime System will register itself with the
gateway device, which centrally monitors and coordinates
work distribution and stealing. If its task queue runs empty, an
IoT edge node will poll the gateway for devices with active
work items and start stealing tasks by directly communicating
with other DeepThings runtimes in a peer-to-peer fashion.
Finally, after edge devices have finished processing all tasks
for a given data source associated with one of the devices, the
gateway will collect and merge partition results from different
devices and finish the remaining offloaded inference layers.
A key aspect of DeepThings is that it is designed to be
independent of and general in supporting arbitrary pre-trained
models and external inference engines.

... ...

..
.

D0

... ..
.

...

... ...

..
.

...

..
.

..
.

x1

x2

y1
y2

D1

D2

D3

Layer 1

...
D0

D1

D0

Independent Fused
Partition Executions

...

Conv-BN-ReLU

Conv-BN-ReLU

Maxpool

Layer 2

Layer 3

M

N N x M

W0

H0

F1

F1

Fig. 4: Fused Tile Partitioning for CNN.

A. Fused Tile Partitioning

Figure 4 illustrates our FTP partitioning on a typical ex-
ample of a CNN inference flow. In deep neural network
architectures, multiple convolutional and pooling layers are
usually stacked together to gradually extract hidden features
from input data. In a CNN with L layers, for each convo-
lutional operation in layer l = 1...L with input dimensions
Wl−1 × Hl−1, a set of Dl learnable filters with dimensions
Fl × Fl × Dl−1 are used to slide across Dl−1 input feature
maps with a stride of Sl. In the process, dot products of the
filter sets and corresponding input region are computed to
generate Dl output feature maps with dimensions Wl × Hl,
which in turn form the input maps for layer l + 1. Note
that in such convolutional chains of deep neural networks,
the depth of intermediate feature maps (Dl) are usually very
high to be able to encode a large amount of low level feature
information. This results in extremely large memory footprints
and potential communication overhead when following a layer-
based partitioning. However, we can observe that each output
data element only depends on a local region in the input feature
maps. Thus, each original convolutional layer can be parti-
tioned into multiple parallel execution tasks with smaller input
and output regions and hence reduced memory footprint each.
At the same time, regions that are connected across layers
can be fused into a larger task that processes intermediate
data locally and thus reduce communication overhead while
maintain the same reduced memory footprint.

Based on these properties, we propose a Fused Tile Parti-
tioning (FTP) method to parallelize the convolutional opera-
tion and reduce both the memory footprint and communication
overhead for early stage convolutional layers. In FTP, the
original CNN is divided into tiled stacks of convolution and
pooling operations. The feature maps of each layer are divided
into small tiles in a grid fashion, where corresponding feature
map tiles and operations across layers are vertically fused
together to constitute an execution partition and stack. As
shown in Figure 4, the original set of convolutional and

4

pooling layers are thus partitioned into N ×M independent
execution stacks. By fusing consecutive convolutional layers
together, the intermediate feature maps will remain within
the edge node device that is assigned such a partition, where
only input feature maps are potentially migrated among edge
nodes, while output feature maps need to be transmitted to
the gateway. Furthermore, by partitioning fused stacks along
a grid, the sizes of intermediate feature maps associated with
each partition can be reduced to any desired footprint based on
the grid granularity. Multiple partitions can then be iteratively
executed within one device, where the memory requirement
is reduced to only fit a maximum of one partition at a time
instead of the entire convolutional feature maps.

In the process, we also need to consider that, due to the
nature of the convolutions, data regions of different partitions
will overlap in the feature space. In order to distribute the
inference operations and input data, each partition’s interme-
diate feature tiles (marked in orange in Figure 4) and input
region (marked in blue in Figure 4) need to be correctly located
based on the output partition (marked in green in Figure 4) and
cropped out of the original feature maps. In FTP, the region
for a tile tl,(i,j) = (t1l,(i,j), t2l,(i,j)) at grid location (i, j)
in the output map of layer l is represented by the x and y
index coordinates t1l,(i,j) = (x1l,(i,j), y1l,(i,j)) of its top left
and t2l,(i,j) = (x2l,(i,j), y2l,(i,j)) of its bottom right elements
in the original feature maps. During FTP, the output data is
first partitioned equally into non-overlapping grid tiles with a
given grid dimension. Then, with the output offset parameters,
a recursive backward traversal is performed for each partition
(i, j) to calculate the required tile region in each layer as
follows:

x1l−1,(i,j) = max(0, Sl × x1l,(i,j) − bFl

2 c)
y1l−1,(i,j) = max(0, Sl × y1l,(i,j) − bFl

2 c)
x2l−1,(i,j) = min(Sl × x2l,(i,j) + bFl

2 c, Wl−1 − 1)

y2l−1,(i,j) = min(Sl × y2l,(i,j) + bFl

2 c, Hl−1 − 1)

(1)

for convolutional layers, and for pooling layers:

x1l−1,(i,j) = Sl × x1l,(i,j)
y1l−1,(i,j) = Sl × y1l,(i,j)
x2l−1,(i,j) = min(Sl × x2l,(i,j) + Sl − 1, Wl−1 − 1)
y2l−1,(i,j) = min(Sl × y2l,(i,j) + Sl − 1, Hl−1 − 1).

(2)

For a CNN with L layers, the final input offsets for each
partition in the CNN input map at l = 1 can be obtained
by applying Equations (1) and (2) recursively starting from
partition offsets in the output map at l = L with initial
coordinates of (x1L,(i,j), y1L,(i,j)) = (WL×j

M , HL×i
N) and (

x2L,(i,j), y2L,(i,j)) = (WL×(j+1)
M −1, HL×(i+1)

N −1). The steps
of this FTP process are summarized in Algorithm 1.

An illustrative example of a 2 × 2 FTP partition with one
convolutional layer is demonstrated in Figure 5. The input and
output data footprints of partition (0, 1) and (1, 0) at layer
l = 1 are highlighted with colors, where concrete values of
corresponding parametrized variables are annotated. A set of
3×3×3 filters are applied to each partitioned input feature map
tile with a stride of 1. Under such convolutional parameters, an
input tile needs an 1-element wide extra boundary to generate
the corresponding output tile. Taking partition (0, 1) and (1, 0)

Algorithm 1 Fused Tile Partitioning (FTP) algorithm

1: procedure FTP({Wi, Hi, Fi, Si, Typei}, N,M)
2: i← 0; j ← 0;
3: while i < N do
4: while j < M do
5: tL,(i,j) ← Grid(WL, HL, N,M, i, j)
6: l← L
7: while l > 0 do
8: tl−1,(i,j) ←
9: Traversal(tl,(i,j),Wl−1, Hl−1, Fl, Sl, Typel)

10: l← l − 1

11: j ← j + 1

12: i← i+ 1

13: return {tl,(i,j)| 0≤l≤L,0≤i<N,0≤j<M}

Conv-BN-ReLU
Layer 1

(0, 0) (0, 1)

(1, 0) (1, 1)

Conv-BN-ReLU

Conv-BN-ReLU

Partition (0, 1)

(x10,(0,1) , y10,(0,1)) = (2, 0)

(x20,(0,1) , y20,(0,1)) = (5, 3)

(x11,(0,1) , y11,(0,1)) = (3, 0)

(x21,(0,1) , y21,(0,1)) = (5, 2)

(x20,(1,0) , y20,(1,0)) = (3, 5)

Partition (1, 0)

(x10,(1,0) , y10,(1,0)) = (0, 2)

(x11,(1,0) , y11,(1,0)) = (0, 3)

(x21,(1,0) , y21,(1,0)) = (2, 5)

Fig. 5: FTP example (L = 1, N = M = 2, F1 = 3, S1 = 1).

as examples, the output region index coordinates are t1,(0,1) =
((3, 0), (5, 2)) and t1,(1,0) = ((0, 3), (2, 5)) after applying
a non-overlapping grid partition. The required input regions
will be t0,(0,1) = ((2, 0), (5, 3)) and t0,(1,0) = ((0, 2), (3, 5)),
respectively, according to Equation (1).

B. Distributed Work Stealing

During inference, the FTP-partitioned early convolutional
layers need to be distributed among edge node devices in a
load balancing manner. To deal with the dynamic nature of
workloads in IoT clusters, we employ a work stealing scheme
to adaptively distribute inference tasks, where idle devices
can steal partitioned input data from peers to accelerate their
inference processing.

An example message activity and synchronization flow dia-
gram for our stealing approach is shown in Figure 6. Whenever

Device0

(Victim)
GatewayDevice1

(Stealer)

New Data

Busy List = {}

Busy List = {0}

Busy List = {0}

{0}

t0

t1

t2

t3

Fig. 6: Work stealing flow in DeepThings.

5

CNN Inference Service

Comp.ThreadTask
Queue Register

Result
Queue

Partition
Inference

Work Stealing Service

Stealing Server
Thread

Request
Handler

Stealer Thread

Steal & Part.
Inference

Partition Result
Collection Thread

Send Result

Idle

Push

Push

Pop

Partition
Result

Serve
Stealing Pop

Pop

Stealing
Req.

& Steal

Data Frame
Partitioner

(a) Edge node runtime system

Results PoolResults Pool

CNN Inference Service

Comp.Thread

Serve
Registration

Image
Inference

Work Stealing Service

Stealing Server
Thread

Request Handler

Partition Result
Collection Thread

Recv. Results

Registered
client list

Put
Results

Serve
Stealing Req.

Partition
Result

Merge Partition
Results

Results Pool

Ready

Im ag e0 Im ag e1 Im ag e2 Im ag e3

(b) Gateway runtime system

Fig. 7: Distributed work stealing runtime systems.

a new data frame arrives in a source device, the corresponding
device will register itself with the gateway (Device0 at time
t1) and start processing work queue items. Once a device’s
work queue runs empty, it will notify and regularly poll the
gateway for other busy devices to steal work from. An idle
devices will first get a victim ID from the gateway before
performing the actual task stealing. If the gateway responds
that no other devices are busy, the idle device will sleep for a
certain period before the next request. In Figure 6, Device1
will sleep after the first request at time t0. Then, at t2, Device1
polls the gateway again, which responds with Device0’s ID
as potential victim. As a result, Device1 sends a request and
steals a pending task from Device0 at t3.

To deploy such a dynamic execution framework, we design
corresponding edge node and gateway runtime systems. Our
proposed distributed work stealing system architecture for
partitioned CNN inference is detailed in Figure 7 and in the
following subsections.

1) Edge Node Service: Figure 7a shows the architecture
of the distributed work stealing runtime system in edge node
devices. It consists of two major functional components, a
Work Stealing Service and a CNN Inference Service, which
are encapsulated within the edge node runtime. Each service
in turn consists of several threads and related software libraries
to perform the task processing and distribution. As described
above and in Figure 3, in an edge node, each incoming data
frame will be first sliced into smaller tasks according to FTP
parameters, and independent input data partitions are pushed
into a task queue. In the CNN inference service, the Computa-

..
. ..
.

...

..
. ...

..
.

... ..
.

...

..
. ...

...

... ...

..
.

...

..
.

..
.

..
.

..
.

...

...

..
.

Partition A
Partition B

With Reused Data

Reused Feature
Data from
Partition A

Reused Feature
Data from
Partition A

...

..
.

..
.

..
.

... ...

..
.

..
.

......

Conv-BN-ReLU

Conv-BN-ReLU

Maxpool

Duplicated Data & Computation

A B

..
.

..
.

...

Remaining
Cmputation

Fig. 8: Feature reuse between adjacent partitions.

tion Thread will register itself with the gateway whenever the
task queue is no longer empty. It will then repeatedly fetch
work items from the task queue and process each partition. If
there is no more incoming data and the task queue runs empty,
the Computation Thread will report its status to the gateway
and notify the Stealer Thread to start stealing and processing
work items from other edge node devices. Note that in order
to reduce the number of unsuccessful stealing attempts, the
Stealer Thread will first request the IP address of an edge
node with pending tasks from the gateway before performing
the actual stealing. If no other edge node has pending input
partitions according to the gateway, the Stealer Thread will
sleep for a certain period before polling again. Finally, all
output data from the Computation Thread and Stealer Thread
will be pushed into a result queue.

To serve incoming stealing requests from other devices,
a Stealing Server Thread is continuously running as part of
the Work Stealing Service in each edge device. Once a steal
request has been received, the Request Handler inside the
stealing server will get a task from the local task queue and
reply with the corresponding partition input data to the stealer.
Additionally, a Partition Result Collection Thread will collect
all the stolen and local partition results from the result queue
and send them to the gateway.

2) Gateway Service: The gateway runtime architecture for
distributed work stealing is shown in Figure 7b. In our setup,
the gateway is responsible for the collection, merging and
further processing of results from edge nodes. In addition, the
gateway will also keep a record of edge devices with pending
partitions and give out stealing hints to stealer devices. Similar
to the edge node device, two components are included in gate-
way runtime systems: In the Work Stealing Service, a Stealing
Server Thread receives registration requests from edge nodes
that have just forked pending tasks. The IP addresses of these
edge nodes are put into a ring buffer, where a pointer will
rotate and pick up a registered IP address as the stealing victim
upon arrival of each stealing request. We employ such a round-
robin approach to improve work stealing fairness and workload
balancing among edge nodes. The Partition Result Collection
Thread collects partition data from all edge nodes within the
network, where the collected partition results will be reordered
and merged into a result pool according to the data source

6

Partition Input

Steal
Partitions

A B C

Part A, B and C are
executed in parallel

Stealing
Order

Steal
Partitions

Part A, C and G are
executed in parallel

Stealing
Order

A C

E

Steal
Partitions

Part B, D and F are
executed in parallel

B

D FPartition
Scheduling

G I H

Wireless
NetworkSend overlapped

data to gateway

Wireless
NetworkRequest overlapped

data from gateway

D E F

G H I

Partition Input Partition Input

A
B
C
D
E
F
G
H
I

A
C
G
I
E
B
D
F
H

Wireless
Network

Fig. 9: Data reuse-aware work scheduling and distribution.

Results Pool

Overlapped Data PoolOverlapped Data Pool

CNN Inference Service

Comp.Thread

Work Stealing Service

Stealing Server Thread

Request Handler

Partition Result
Collection Thread

Put
Results

Ready

Overlapped Data
Collection

Overlapped Data Pool

B D F H

A
C
E

A
G

C

E

G

Overlapped data from
other partitions

Put Data

Send Data
to Stealer

Results PoolResults Pool

E
I

E
I

Fig. 10: Reuse data management.

ID and partition number. Note that the received results are
the non-overlapping output data tiles of the last FTP layer
mapped to edge devices, which can be simply concatenated
together to retrieve the entire output tensor. Whenever a new
result is collected, the total number of received data tiles for
the corresponding data frame will be checked. When all the
data outputs for a particular input data frame are collected,
the Computation Thread of the CNN Inference Service in the
gateway will fetch the corresponding data from the results
pool, concatenate different partition outputs according to their
region indexes to reconstruct the original output feature map
of the early convolutional layers, and further feed the data into
the remaining CNN layers to complete the inference.

C. Work Scheduling and Distribution

The Fused Tile Partitioning approach can largely reduce the
communication overhead by localizing the high-dimensional
intermediate feature map data within the edge node devices
while still supporting partitions of selected size and memory
footprint. However, the FTP scheme requires the overlapped
input data between adjacent partitions to be locally replicated
in different distributed devices and to locally reproduce the
overlapped output feature regions. As such, despite of a reduc-
tion in memory footprint and inter-device communication, FTP
may result in additional transmission overhead and duplicated
computation effort. Furthermore, the amount of overlapped
data and redundant computation is amplified by the fusing of
consecutive convolutional and pooling layers. As a result, the
processing and communication redundancy caused by the FTP

method needs to carefully considered and pruned. To address
this problem, we introduce an optimized work scheduling and
distribution enhancement to our runtime system.

1) Overlapped Data Reuse: A concrete data overlapping
example is shown in Figure 8. In this example, two adjacent
partitions A and B share an overlapped data region at the
inputs of their first two convolutional layers. Assuming A and
B will be distributed onto two different devices, the overlapped
region at the input layer (blue dotted) needs to be duplicated
and each device needs to have an individual copy after task
distribution. Then, during execution of each partition, both
devices need to calculate any overlapped intermediate feature
map vertically along the inference layers. For example, in
Figure 8, the overlapped region (orange dotted) required by the
input of the second convolutional layer needs to be computed
by the first layer during the execution of both A and B.

In order to prune such data transmission and computation
redundancy, overlapped intermediate feature map data pro-
duced by one partition can be cached and later reused by
other adjacent partitions. Taking the example above, a data
reuse scenario between partitions A and B is depicted in
Figure 8. After the execution of partition A, the overlapped
data is cached for reuse by partition B. During execution
of B, the first layer only needs to receive and generate the
non-overlapping regions of input and intermediate feature
maps. As such, both the required input data transmission and
computation workload of the first layer can be reduced.

Such a reuse scheme, however, creates dependencies among
adjacent partitions and thus limits the inference parallelism.
A straightforward solution would be to collect the required
overlapped data after every layer and hand it out to dependent
devices during partition execution time. However, in such
an approach, the execution of adjacent partitions must be
synchronized on a layer by layer basis, which introduces
extra overhead and limits performance and scalability. In
order to parallelize partitions while maximizing data reuse
and minimizing synchronization overhead in a dynamically
distributed work stealing environment, we propose a novel
partition scheduling method.

2) Partition Scheduling: To enable data reuse between FTP
partitions without the need for synchronization, we need to
schedule parallel work items while considering their data reuse
dependencies. Figure 9 on the left shows an example in which
the data source node serves incoming work stealing requests
with FTP tiles in a default left-to-right, top-to-bottom order. In

7

this example, adjacent partitions A, B and C are distributed
into different edge devices to be executed in parallel, where
overlapped intermediate results between A,B and B,C can
not be reused without extra synchronization and thus wait
time between partitions. If we instead serve requests and thus
schedule and distribute work items in a different stealing order
that minimizes dependencies and thus maximizes parallelism,
independent partitions with minimal or no overlap should
be distributed and executed first, such that their adjacent
partitions can have a higher probability to be executed when
their predecessors have finished and overlapped intermediate
results are available. In the scheduled scenario in Figure 9 on
the right, A, C and G are being distributed and executed in
parallel with a largely reduced or no amount of overlapped
data. Partitions B, D and F will only be processed after
all their adjacent partitions (A − E) have been distributed or
processed locally, where they will have a better chance to reuse
the overlapped data.

We implement such an approach in DeepThings by inserting
items into each device’s task queue and thus serving both
local and stealing requests in dependency order, starting from
even grid rows and columns, and by least amount of overlap
first. In order to efficiently share overlapped results between
different edge node devices, the gateway collects and manages
overlapping intermediate data among all involved partitions.
During inference, an IoT edge node will receive the necessary
input data from peer devices or the local task queue, request
any overlapped intermediate or input data from the gateway,
and compute all unique intermediate and output results locally.
If the required overlapped data is not collected by the gate-
way yet, the partition will execute without reuse and locally
compute the overlapped data. Note that if adjacent partitions
from different groups are executed within the same device,
intermediate results can be stored locally and the overhead of
communication with the gateway is avoided.

In order to support such a distributed partition scheduling,
the gateway device needs to be augmented with correspond-
ing components to collect and hand out overlapped data
for reuse. Figure 10 shows the enhanced gateway runtime
system architecture. The Stealing Server Thread is now also
responsible for the Overlapped Data Collection. The collected
overlapped data will be stored and aligned according to the
region information in a data pool. In each edge node, a
fetcher is then added before partition execution to request the
overlapped data from the pool in the gateway device.

3) Overlapped Region Computation: To deploy such a
scheduling method, each FTP partition needs to record the
overlapped regions with other partitions in each convolutional
layer. To calculate these new parameters, we extend the FTP
process from Algorithm 1 to compute both the set of regions
overlapped with all adjacent partitions as well as the non-
overlapping region local to each partition (i, j) in each layer
l. Note that although the input data communication and inter-
mediate feature map computation amount can both be reduced
by data reuse, the exchange of overlapped intermediate data
can introduce extra communication overhead. We will discuss
and evaluate different design trade-offs in detail in Section V.

TABLE I: Comparison of different frameworks.

DeepThings MoDNN [16]

Partition Method FTP BODP-MR

Partition Dimensions 3x3∼5x5 1x1∼1x6

Distribution Method Stealing/Sharing Sharing

Edge Node Number 1∼6

V. EXPERIMENTAL RESULTS

We implemented the DeepThings framework in C/C++, with
network communication modules in runtime systems realized
using TCP/IP with socket APIs. DeepThings is available for
download in open-source form at [22]. Without loss of general-
ity, we evaluate DeepThings using the You Only Look Once,
version 2 (YOLOv2) object detection framework [19] with
its C-based Darknet neural network library as external CNN
inference engine. YOLO and Darknet are widely used in the
embedded domain because of their lightweight structure com-
pared to other CNN-based object detection approaches [23],
[24]. We use Darknet with NNPACK as backend acceleration
kernel to provide state-of-the-art convolution performance as
baseline for embedded devices without GPU support [21]. In
our experiments, we deploy YOLOv2 on top of DeepThings on
a set of IoT devices in a wireless local area network (WLAN).
Our network setup consists of up to six edge and a single
gateway device. We use Raspberry Pi 3 Model B (RPi3) as
both edge and gateway platforms. Each RPi3 has a quad-
core 1.2 GHz ARM Cortex-A53 processor with 1GB RAM. In
order to provide a realistic evaluation of low-end IoT device
performance, we limit each edge device to only a single RPi3
core. We apply our partitioning and distribution approach to
the first 16 layers in YOLOv2 (12 convolutional layers and
4 maxpool layers), which contribute more than 49% of the
computation and 86.6% of the memory footprint to the overall
inference (see Figures 1 and 2). All results in the following
experimental sections refer to these 16-layer stages.

In order to validate the benefits of our proposed frame-
work, we implement and compare DeepThings against the
MoDNN framework from [16]. MoDNN uses a Biased One-
Dimensional Partition (BODP) approach with a MapReduce-
style (MR) task model and a work sharing (WSH) distri-
bution method in which processing tasks in each layer are
first collected by a coordination device and then equally
distributed to existing edge nodes. We compare the MoDNN
approach against DeepThings’s FTP partitioning using either
a work sharing (WSH) or our proposed work stealing (WST)
framework with (FTP-WST-S) or without (FTP-WST) data
reuse and reuse-aware work scheduling. All frameworks are
applied to YOLOv2, where different partitioning parameters
are included in our evaluation to demonstrate corresponding
design trade-offs. A summary of our experimental setup is
shown in Table I.

We first evaluate the memory reduction under different
partitioning methods. Then, communication overhead, infer-
ence latency and throughput are investigated for different
combinations of partitioning methods and their possible work

8

conv1 max1 conv2 max2 conv3 conv4 conv5 max3 conv6 conv7 conv8 max4 conv9 conv10 conv11 conv12 Total
0

20

40

60
M

em
or

y
siz

e
(M

B)

Data (BODP-1/Original)
Data (BODP-4)

Data (FTP-3X3)
Data (FTP-5X5)

Weight
Other

Fig. 11: Memory footprint per device for early convolutional layers.

1 2 3 4 5 6
Number of devices

0

5

10

15

20

Co
m

m
u.

 si
ze

 (M
B)

MoDNN (BODP-MR-WSH)
FTP-WSH

FTP-WST
FTP-WST-S

(a) 3x3 Fused Tile Partition

1 2 3 4 5 6
Number of devices

0

5

10

15

20

Co
m

m
u.

 si
ze

 (M
B)

(b) 4x4 Fused Tile Partition

1 2 3 4 5 6
Number of devices

0

5

10

15

20

Co
m

m
u.

 si
ze

 (M
B)

(c) 5x5 Fused Tile Partition

Fig. 12: Communication data size for a single data frame.

distribution strategies. Results show that the major benefit of
our distributed work stealing and work scheduling framework
is the improvement of throughput with multiple dynamic data
sources.

A. Memory Footprint
Per device memory footprints of each layer in different

partitioning approaches are shown in Figure 11. In all cases,
partitioning convolutional layers will only reduce the in-
put/output data memory footprint, while the weights remain
the same and need to be duplicated in each device. As such, the
total memory requirement within one device is bounded by the
sum of the largest layer data size and the total weight amount
in partitioned CNN inference. Comparing with the memory
requirement of the original CNN model, the reduction of total
per device memory usage in BODP with 4 partitions is 61%,
while the reductions are 58% and 68% for FTP with 3x3 and
5x5 grid dimensions, respectively. In general, total per device
memory footprint shrinks proportionally with an increasing
number of partitions in both BODP and FTP. However, since
each FTP partition includes additional overlapped input data
to guarantee independently distributable and executable parti-
tions, an FTP with more tiles than BODP partitions can end
up having a slightly larger (3%) memory footprint, as shown
by the comparison between FTP 3x3 and BODP-4.

Comparing the memory footprint for each layer to the
original CNN model, memory requirements can be reduced by
an average of 69% and 79% for FTP-3x3 and FTP-5x5, while
in BODP-1x4, the average reduction is 67%. Specifically, in
the first 7 layers, FTP with a 3x3 grid dimension will have
a 7% larger memory footprint than the 4-partition BODP.
However, overlapped intermediate feature map regions are
smaller in later layers, as shown in the comparison between
FTP-3x3 and BODP-4 after the max3 layer.

In general, both BODP and FTP provide a configurable
range of memory budget options and significantly alleviate the

memory consumption problem of the original CNN inference
or any purely layer-by-layer partitioning. Comparing FTP with
BODP, FTP requires extra memory because of the overlapped
data. However, in general, partitioning parameters will also
affect communication overhead, latency and throughput, which
will be further discussed in the following sections. For a
BODP- and MR-based execution model, an optimal approach
is thereby to match the number of partitions to the number
of available devices [16], which we will use for all further
comparisons.

B. Communication Overhead

Communication overhead is dependent on both partitioning
methods and distribution strategies. In FTP, only the input and
output data of each partition needs to be communicated. As
such, the total communication size is upper bounded by the
sum of inputs and outputs from all partitions. The overlapped
input data included by each FTP partition will result in
extra communication, where the overhead will increase with
finer partitioning granularity because of additional overlapped
boundaries. By contrast, the BODP-MR based execution
model relies on a centralized scheduler to exchange overlapped
intermediate results after the execution of each layer. Such data
exchanges between partitions in each layer will have a linearly
increasing communication overhead when more collaborative
devices are introduced. Note that intermediate feature maps
can have a much larger depth compared to input ones. As a
result, although BODP-MR can avoid additional transmission
overhead of overlapped partition input, the communication size
of BODP-MR will exceed the one of FTP with more than 5
devices because of these intermediate data exchanges.

We first compare the communication overhead of MoDNN
and FTP using the same work sharing (WSH) distribution
strategy. In a WSH strategy, the input data and, in the MoDNN
case, the intermediate data after each layer, is transferred

9

1 2 3 4 5 6
Number of devices

0

10

20

30

40
La

te
nc

y
(s

)
MoDNN (BODP-MR-WSH)
FTP-WSH

FTP-WST
FTP-WST-S

(a) 3x3 Fused Tile Partition

1 2 3 4 5 6
Number of devices

0

10

20

30

40

La
te

nc
y

(s
)

(b) 4x4 Fused Tile Partition

1 2 3 4 5 6
Number of devices

0

10

20

30

40

La
te

nc
y

(s
)

(c) 5x5 Fused Tile Partition

Fig. 13: Inference latency for a single data frame.

1/6 2/6 3/6 4/6 5/6 6/6
Number of data sources out of 6 devices
0

10
20
30
40
50
60
70

M
ax

im
um

 L
at

en
cy

 (s
)

0.0
0.1
0.2
0.3

Th
ro

ug
hp

ut
 (F

PS
)

Throughput
MoDNN
FTP-WSH
FTP-WST
FTP-WST-S

Latency
MoDNN
FTP-WSH
FTP-WST
FTP-WST-S

(a) 3x3 Fused Tile Partition

1/6 2/6 3/6 4/6 5/6 6/6
Number of data sources out of 6 devices
0

10
20
30
40
50
60
70

M
ax

im
um

 L
at

en
cy

 (s
)

0.0
0.1
0.2
0.3

Th
ro

ug
hp

ut
 (F

PS
)

(b) 4x4 Fused Tile Partition

1/6 2/6 3/6 4/6 5/6 6/6
Number of data sources out of 6 devices

0
10
20
30
40
50
60
70

M
ax

im
um

 L
at

en
cy

 (s
)

0.0
0.1
0.2
0.3

Th
ro

ug
hp

ut
 (F

PS
)

(c) 5x5 Fused Tile Partition

Fig. 14: Inference latency and throughput with multiple data sources.

to the gateway, where it will be further partitioned and
distributed into existing edge devices. As shown in Figure 12,
for distributed inference of one data frame, MoDNN com-
municates an average of 14.0MB of data. When the device
number increases from 1 to 6, the communication overhead
of MoDNN increases linearly to up to 19.6MB. For FTP, the
communication overheads are constantly 13.8MB, 16.2MB,
and 18.9MB for FTP-3x3, FTP-4x4 and FTP-5x5, respectively.
As the results show, the pre-partitioning method in FTP has
a better scalability but may result in more overhead with a
smaller number of devices.

An important aspect of FTP is that its independent task
model enables other distribution strategies to be applied, which
can have a large influence on the communication overhead.
To investigate the effect of the distribution strategy on com-
munication overhead, we apply both WSH and WST to FTP.
Figure 12 shows that WST can reduce the communication
overhead by an average of 52% while also having better
scalability. In WST, tasks will be transferred directly to idle
devices through stealing activities without centralized data col-
lection and distribution. As a result, potential overlaps between
communication and computation can be better explored. At the
data source, more tasks will be consumed locally in parallel
with task distribution, and tasks will only be distributed as
necessary, where overall data movement is reduced and over-
lapped with local processing. Finally, our data reuse approach
(FTP-WST-S) introduces additional communication overhead
because of the transmission of intermediate feature map data.
In FTP-WST-S, a data source will always notify the gateway
of completion and will transfer the intermediate data to the
gateway for possible data reuse by other stealing devices. As
such, communication overhead of FTP-WST-S is larger than
that of FTP-WST in all cases. However, such overhead can be

amortized by the larger reduction of partition data at the input
to the first layer with reuse (Figure 8). As a result, the overall
communication overhead of FTP-WST-S decreases with finer
partitioning granularity because of an increasing probability of
data reuse. In a 3x3 grid (Figure 12a), FTP-WST-S introduces
an average of 1.4MB more communication data than FTP-
WST, while the overhead is reduced to 0.9MB in a 5x5 grid
(Figure 12c).

C. Latency and Throughput

We finally compare overall latency and throughput of dif-
ferent frameworks. Single data frame latencies of MoDNN vs.
DeepThings are shown in Figure 13. With the same partition-
ing method, WST generally results in shorter inference latency
for one data frame because of the reduced communication
overhead. As shown by the comparison between FTP-WSH
and FTP-WST, an average of 10.3% reduction can be achieved
by WST across different partitioning parameters. The single-
frame inference scalability is, however, dominated by both
partitioning methods and distribution approaches. In MoDNN,
the computation time is inversely proportional while the
communication overhead will grow linearly with the number
of devices because of the centralized data distribution and
processing synchronization. As a result, the latency will reach
a minimum and increase after 4 devices. By contrast, FTP-
WST and FTP-WST-S can adaptively explore the available
communication bandwidth. As such, the performance im-
proves until the bandwidth is maximally exploited, after which
additional nodes will not be fully utilized and performance will
saturate at a minimal value.

A finer grid granularity can expose more parallelism, but
additional grid cells will also result in more overlapped
boundaries and redundant communication/computation. As the

10

grid dimension increases from 3x3 to 5x5, latency increases
by an average of 43% because of more overlapped regions.
However, such overhead can be largely reduced by reuse-
aware partition scheduling. For the same distribution strategy
and number of devices, FTP-WST-S reduces latency by more
than 27% on average compared to FTP-WST because of the
reduced amount of duplicated computation. The efficiency of
work scheduling also increases with partitioning dimension,
where finer grid granularity will provide higher probability of
data reuse. In Figure 13a, FTP-WST-S will reduce the latency
by an average of 16% for a 3x3 grid, while an average of 33%
reduction is achieved in a 5x5 grid (Figure 13c).

Overall, DeepThings has similar scalability but more re-
dundant communication and computation as compared to
MoDNN. With only one edge device, FTP-WST-S has an
average of 25% larger latency. However, as more devices are
added, the latency of FTP-WST-S will become similar to or
lower than MoDNN. When processing a single data frame with
6 devices, FTP-WST-S has an average latency of 6.8s with a
3.5x speedup, while the latency and speedup in MoDNN are
8.1s and 2.1x.

In order to evaluate our approach under more realistic appli-
cation scenarios, we further evaluate the maximum inference
latency and overall throughput with multiple data sources and
a fixed number of devices. For WSH-based approaches, when
multiple data sources are present, the data source devices will
first register themselves at the gateway. The gateway will then
fetch and distribute the input data according to the registered
device list in a round-robin manner. During execution, the
WSH gateway will always treat edge nodes as collaborative
workers and orchestrate the execution of data frames from
different sources within the cluster in a serialized manner.
As such, WSH can only explore the execution parallelism
within a single data frame. In case of WST, task distribution
will only be initiated in case of availability of idle resources,
where a busy edge device is not forced to share resources
with peer devices. As a result, the parallelism and overlap of
communication and computation between different data frames
are better explored.

Maximum single-frame latency and multi-frame throughput
with multiple data sources are shown in Figure 14. In gen-
eral, performance is mainly decided by the task distribution
strategies. The processing latency in WSH-based approaches
increases linearly when more data sources are involved. WST-
based approaches, however, have a much smaller growth in
maximum inference latency and are upper bounded by the
single-device latency because of the adaptive stealing-based
distribution. As the number of data sources increase from 1
to 6, the maximum latency will be increased by an average
of 6.1x and 6.0x for FTP-WSH and MoDNN, respectively,
while the increase is only 4.2x and 3.1x for FTP-WST and
FTP-WST-S, respectively.

Figure 14 also shows the maximum throughput for different
configurations. Because of the centralized overhead and seri-
alized execution of WSH, the throughput can not be improved
when parallelism from multiple data frames in different edge
nodes exists. In MoDNN, the throughput is constantly around
0.12 frames per second (FPS) with changing number of data

3x3 4x4 5x50
5

10
15
20
25
30

M
em

or
y.

 si
ze

 (M
B) Memory footprint

3x3 4x4 5x50
2
4
6
8

10
12

Co
m

m
. s

ize
 (M

B) Comm. data size

3x3 4x4 5x50.0

1.0

2.0

3.0

Sp
ee

du
p

Speedup
4-layer 8-layer 16-layer

Fig. 15: Variations of design metrics under different FTP
partitioning parameters with 6 IoT edge devices.

sources. Similarly, throughput for FTP-WSH is 0.11 FPS on
average. By contrast, in the case of WST, throughput increases
as more data sources are introduced because of the reduced
communication amount and coordinator-free workload balanc-
ing scheme. As the number of data sources increase from 1
to 6, the average throughput will increase from 0.14 to 0.20
for FTP-WST. The data reuse-aware scheduling (FTP-WST-
S) will have large benefits under finer partitioning granularity
compared to the unoptimized approach (FTP-WST). As shown
in Figure 14a, reuse-aware work scheduling provides 20% and
22% improvement for latency and throughput. In Figure 14c,
with finer partitioning granularity, 32% and 45% latency
reduction and throughput improvement are achieved. When the
number of data sources increases, the efficiency of WST-S also
manifest itself as fewer idle devices and increased data reused
probability. In summary, when multiple data sources exist
within a IoT cluster, our proposed FTP-WST-S approach will
outperform MoDNN by an average of 41% latency reduction
and 80% throughput improvement.

D. Sensitivity Analysis of FTP Parameters

We further investigate the sensitivity of various design
metrics to FTP partitioning parameters in a 6-device network
using a FTP-WST-S approach in which the first 4, 8 or 16
layers are executed on the edge devices, while other layers
are offloaded to the gateway (Figure 15). In terms of memory
footprint, more than 23% memory reduction can be achieved
when increasing the partitioning granularity from 3x3 to 5x5
with 16 fused layers (see Section 5.1). In terms of commu-
nication overhead, as described in Section 5.2, due to more
redundant input data overlap between partitions, the amount
of transmitted data increases overall by 25% from 3x3 to 5x5
partitions in case of 16-layer fusion. Finally, the speedup for
different number of fusing layers is calculated by comparing
against the corresponding fastest single-device performance,
which is 3x3 FTP in all cases. Coarser partitioning achieves
better inference performance because of less overlapped and
duplicated computation and communication.

Fewer fused layers will result in the same memory footprint
for input/output data, which is bounded by early intensive
convolutional layers, while the reduced memory consumption
is mainly from a smaller amount of weight parameters, which
are mainly concentrated in layers 8-16. Fewer fused layers
can also have smaller overlapped partition regions and less
partition input data. However, their output layers will have
larger amount of output feature maps to be transferred to the

11

gateway. As a result, more fused layers do not necessarily
result in larger communication overhead, as shown by the
case of 3x3 partitions for 4 vs. 8 fused layers. Nevertheless,
despite the generally higher communication overhead, due
to a larger computation to communication ratio for each
individual partition, deeper fusion can efficiently explore task-
level parallelism by hiding more communication overhead in
longer partition execution durations, and therefore has a larger
speedup on inference latency.

In conclusion, trade-offs do exist for FTP partitioning pa-
rameters. Coarser partitioning granularity and deeper fusion
can provide better inference speedup with larger memory
footprint. The communication demand will also be larger with
more partitions and fused layers. However, finer partitioning
parameters inherently provide more parallelism with smaller
task units. As such, when there is enough communication
bandwidth, finer granularity can potentially provide better
scalability or workload balancing in large and heterogeneous
IoT edge clusters.

VI. SUMMARY AND CONCLUSIONS

In this paper, we presented DeepThings, a lightweight
framework for adaptively distributed CNN inference among
IoT gateway and resource-constrained edge node devices. We
mainly focus on the distribution of early convolutional layers,
which largely contribute to the overall inference latency and
are the most memory-intensive stages. In order to create inde-
pendently distributable processing task parallelism and mini-
mize memory footprint from convolutional layers, a Fused Tile
Partitioning (FTP) method is first proposed. We then develop
a distributed work stealing runtime system for IoT clusters
to adaptively distribute FTP partitions in dynamic application
scenarios. Finally, the proposed framework is augmented by a
partition scheduling and distribution policy to more efficiently
reuse overlapped data between adjacent CNN partitions. Re-
sults show that FTP significantly reduces memory footprint
compared to traditional layer-based partitioning, while the
fusion strategy across multiple convolutional layers avoids
communication overhead from intermediate feature map data.
When combined with a distributed work stealing and reuse-
aware work scheduling and distribution framework, scalable
CNN inference performance is significantly improved com-
pared to existing distributed inference methods under varying
static or dynamic application scenarios. We have released
DeepThings in open-source form at [22]. Future work will
include further investigating dynamic, heterogeneous partition-
ing and locality-aware work scheduling schemes, optimizing
the energy efficiency of distributed inference, as well as an
evaluation on larger and heterogeneous IoT edge clusters.

ACKNOWLEDGEMENTS

We sincerely thank the reviewers for their comments to help
improve the paper. This work was supported by NSF grant
CNS-1421642.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(IoT): A vision, architectural elements, and future directions,” Future
Generation Computer Systems (FGCS), vol. 29, no. 7, pp. 1645 – 1660,
2013.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems (NIPS), 2012.

[3] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, and F. Kawsar,
“An early resource characterization of deep learning on wearables,
smartphones and Internet-of-Things devices,” in International Workshop
on Internet of Things Towards Applications (IoT-A), 2015.

[4] Gartner, https://www.gartner.com/newsroom/id/3598917, 2017.
[5] B. Zhang, N. Mor, J. Kolb, D. S. Chan, K. Lutz, E. Allman,

J. Wawrzynek, E. Lee, and J. Kubiatowicz, “The cloud is not enough:
Saving IoT from the cloud,” in USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud), 2015.

[6] S.-Y. Chien, W.-K. Chan, Y.-H. Tseng, C.-H. Lee, V. S. Somayazulu, and
Y.-K. Chen, “Distributed computing in IoT: System-on-a-chip for smart
cameras as an example,” in Asia and South Pacific Design Automation
Conference (ASP-DAC), 2015.

[7] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal (IoT-J), vol. 3, no. 5,
pp. 637–646, 2016.

[8] F. Samie, V. Tsoutsouras, S. Xydis, L. Bauer, D. Soudris, and J. Henkel,
“Distributed QoS management for Internet of Things under resource
constraints,” in International Conference on Hardware/Software Code-
sign and System Synthesis (CODES+ISSS), 2016.

[9] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” in International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2017.

[10] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed deep neu-
ral networks over the cloud, the edge and end devices,” in International
Conference on Distributed Computing Systems (ICDCS), 2017.

[11] S. Bhattacharya and N. D. Lane, “Sparsification and separation of deep
learning layers for constrained resource inference on wearables,” in ACM
Conference on Embedded Network Sensor Systems (SenSys), 2016.

[12] S. Yao, Y. Zhao, A. Zhang, L. Su, and T. F. Abdelzaher, “Compressing
deep neural network structures for sensing systems with a compressor-
critic framework,” arXiv preprint arXiv:1706.01215, 2017.

[13] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5MB model size,” arXiv preprint arXiv:1602.07360,
2016.

[14] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[15] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely ef-
ficient convolutional neural network for mobile devices,” arXiv preprint
arXiv:1707.01083, 2017.

[16] J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen, “MoDNN:
Local distributed mobile computing system for deep neural network,”
in Design, Automation Test in Europe Conference Exhibition (DATE),
2017.

[17] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer CNN ac-
celerators,” in International Symposium on Microarchitecture (MICRO),
2016.

[18] N. Fernando, S. W. Loke, and W. Rahayu, “Computing with nearby
mobile devices: a work sharing algorithm for mobile edge-clouds,” IEEE
Transactions on Cloud Computing (TCC), vol. Pre-printed, 2017.

[19] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” arXiv
preprint arXiv:1612.08242, 2016.

[20] J. Redmon, “Darknet: Open source neural networks in C,”
http://pjreddie.com/darknet/, 2013–2016.

[21] M. Dukhan, “NNPACK,” https://github.com/Maratyszcza/NNPACK,
2018.

[22] Z. Zhao, “DeepThings,” https://github.com/SLAM-Lab/DeepThings,
2018.

[23] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Advances in
Neural Information Processing Systems (NIPS), 2015.

[24] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “SSD: Single shot multibox detector,” in European Conference on
Computer Vision (ECCV), 2016.

12

Zhuoran Zhao received the B.S. in Electrical En-
gineering from Zhejiang University, Zhejiang, China
in 2012, and the M.S. degree in Electrical and Com-
puter Engineering from The University of Texas at
Austin, Austin, TX, USA, in 2015, where he is cur-
rently working toward his Ph.D. degree. His current
research interests include source-level simulation for
software/hardware codesign, performance modeling
of distributed embedded systems, and acceleration
of deep learning algorithms on IoT clusters.

Kamyar Mirzazad Barijough received the B.S.
in Electrical Engineering from Sharif University of
Technology, Tehran, Iran in 2015, and the M.S.
degree in Electrical and Computer Engineering from
The University of Texas at Austin, Austin, TX, USA,
in 2017, where he is currently working toward the
Ph.D. degree. His current research interests include
design methodology and optimization methods for
distributed and embedded systems.

Andreas Gerstlauer received his Ph.D. degree in
Information and Computer Science from the Uni-
versity of California, Irvine (UCI) in 2004. He is
currently an Associate Professor in the Electrical and
Computer Engineering Department at The Univer-
sity of Texas at Austin. Prior to joining UT Austin,
he was an Assistant Researcher with the Center
for Embedded Computer Systems at UCI. He is
co-author on 3 books and more than 100 refereed
conference and journal publications. His research
interests are in the area of embedded systems, cyber-

physical systems (CPS) and the Internet of Things (IoT), specifically with a
focus on electronic system-level design (ESL/SLD) methods, system model-
ing, system-level design languages and design methodologies, and embedded
hardware and software synthesis.

