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Abstract—In recent years, kernel fuzzing research has expe-
rienced a significant surge. Among various kernel fuzzers,
Syzkaller stands out as the state-of-the-art tool, having iden-
tified over 5,000 bugs in the Linux kernel. Syzkaller’s suc-
cess can be attributed to its utilization of manually-curated
syscall specifications provided by kernel experts. However, this
process is time-consuming and not scalable due to complex
input structures and unknown dependencies among syscalls.
Consequently, a substantial portion of the kernel codebase,
specifically kernel drivers, lacks specifications, posing a signif-
icant security risk.

In this paper, we introduce SyzGen++, an innovative
approach for automatically inferring dependencies between
syscalls and generating specifications without relying on exist-
ing test suites. Specifically, we define two fundamental building
blocks of insertion and lookup operations and their pairing
to accurately identify dependencies. We evaluated SyzGen++
against existing state-of-the-art techniques on both Linux
and macOS drivers. Our results demonstrate that SyzGen++
uncovered 245 more dependencies. Furthermore, SyzGen++
outperforms DIFUZE, KSG, and SyzDescribe in terms of code
coverage, achieving 71%, 67%, and 39% improvement on
average, respectively. Notably, our evaluation discovered 10
previously unknown bugs in Linux Kernel 6.2 using specifi-
cations generated by SyzGen++, resulting in 6 CVEs, which
demonstrates its effectiveness in identifying vulnerabilities.

Index Terms—Fuzzing, Operating System Security, Vulnerabil-
ity Analysis

1. Introduction

The monolithic nature of the kernel, without a clear
separation between the core kernel and drivers, results in
driver bugs causing severe consequences (e.g., privilege
escalation). According to a Google report [1] and prior
research [2], [3], the majority of kernel bugs are attributed
to drivers, as they constitute a large portion of the codebase
and often lack proper vetting.

Syzbot [4], Google’s continuous kernel fuzz testing
platform, represents the state-of-the-art and has discovered
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5,667 bugs at the time of writing, showcasing the effective-
ness of its underlying kernel fuzzer, Syzkaller [5]. The es-
sential ingredient for its success is the syscall specifications
handcrafted by kernel experts. These specifications encode
both the structures and constraints of syscall arguments
(e.g., type and value ranges) and dependencies between
syscalls. Since a kernel module maintains its internal state,
successful execution of syscalls usually requires a valid
sequence of invocation (i.e., implicit dependency or ordering
dependency) and/or correctly passing a “handler” (e.g., file
descriptor) returned from one syscall to another (i.e., explicit
dependency or value dependency) [6].

Although Syzkaller does not allow users to specify im-
plicit dependencies, it can gradually learn the correct invoca-
tion order of any pair of syscalls based on their frequencies
of occurrence in the corpus. For instance, a successful call
to the ‘recvmsg’ syscall on a socket can only occur if
there is data available, which can be ensured by calling
‘sendmsg’ beforehand. Even though the former does not
require any input from the output of the latter, Syzkaller may
still assign a higher probability to this pairing as it frequently
leads to new coverage, and hence, new seed programs. In
contrast, missing explicit dependencies in the specification is
more detrimental, as it is extremely unlikely for a fuzzer to
generate a random value that matches a specific “handler”
returned by previous syscalls, resulting in only exploring
shallow paths. For example, without knowing the explicit
dependency between syscalls open and read, it is difficult
to successfully invoke read by randomly generating an
integer for its first argument (i.e., file descriptor).

Developing syscall specifications is a tedious and error-
prone process (as demonstrated in our evaluation §5). De-
spite the substantial attack surface introduced by drivers,
the majority of them lack readily available specifications.
In fact, Syzkaller contains only a limited number of driver
specifications: 60 for Linux, 0 for Darwin, and 5 each
for FreeBSD and Android (excluding non-Android specific
drivers). To address this issue, an attractive direction is
to automate the process of specification generation and
explicit dependency inference. DIFUZE [7] analyzes Linux
and Android kernel source code to extract syscall spec-
ifications, while KSG [8] uses Clang Static Analyzer to
collect constraints of syscall arguments for Linux kernel.
These approaches cannot be applied to closed-source kernel



drivers such as those in Windows and macOS (although
macOS has a limited number of open-source drivers [9]).
Furthermore, many Android OEM vendors selectively open
source their kernels and only periodically release source
code snapshots with significant delays [10], [11]. Regarding
dependency analysis, IMF [6] and Moonshine [12] infer de-
pendencies using traces produced by existing test suites, but
it is challenging to collect traces for kernel drivers. IMF and
Moonshine primarily target core APIs/syscalls, which have
many existing applications/test suites. In contrast, drivers
have relatively fewer test suites. In our evaluation (see §5
for details), Moonshine’s traces covered merely five drivers,
while SyzGen [9] managed to obtain traces for only about
10% of driver interfaces.

In this paper, we introduce SyzGen++, the first frame-
work that enables the inference of explicit dependencies
without requiring source code or execution traces. The key
insight of SyzGen++ is based on the following observa-
tions:

1) In user space, an explicit dependency involves a
integer (or handler) that corresponds to a complex
object maintained by the kernel, e.g., a file descrip-
tor corresponding to a struct file in kernel
space;

2) In kernel space, an explicit dependency requires
a producer that creates an object and performs
an insertion into some global data container (e.g.,
array or linked list) and a consumer that retrieves
the corresponding internal object by performing a
lookup into the same global data container based
on the user input.

It is worth noting that our work focuses on integer-like
(or handle-like) explicit dependencies due to their preva-
lent occurrence and the fact that Syzkaller only supports
handlers of the integer type for explicit dependencies. By
recognizing the insertion and lookup operations that operate
on the same global data container, SyzGen++ effectively
recovers explicit dependencies (see §3 for more details).
To this end, SyzGen++ performs symbolic execution on
each syscall interface separately to record symbolic access
paths, which are derived from memory reads on writes and
formalized in §3.2.3. Subsequently, SyzGen++ identifies
any pairs of insertion and lookup operations against the
same data container by matching their corresponding sym-
bolic access paths. To reduce false positives, we propose
a novel lightweight trial-and-error approach based on the
observation that sequential allocation is commonly used for
the “handler” (e.g., file descriptor). Additionally, we develop
a policy that selectively concretizes (or symbolizes) memory
to balance exploration and scalability.

We evaluated SyzGen++ against Linux and macOS
drivers and identified many new dependencies that were
missed by either previous solutions or manually-curated
syscall specifications. We show that they result in signifi-
cantly higher coverage and more crashes.

In summary, we made the following contributions:

resource fd_rdma_cm[fd]
resource rdma_cm_id[int32]
openat$rdma_cm(fd const[AT_FDCWD], file ptr[".../rdma_cm"],
    flags const[O_RDWR], mode const[0]) fd_rdma_cm

rdma_create_id {
    cmd const[0, int32]
    id     rdma_cm_id (out)
}

rdma_destroy_id {
    cmd         const[1, int32]
    padding   const[0, int32]
    response	ptr64[int32]
    id             rdma_cm_id (in)
}
write$CREATE_ID(fd fd_rdma_cm, data ptr[rdma_create_id],
    len bytesize[data])
write$DESTROY_ID(fd fd_rdma_cm, data ptr[rdma_destroy_id],
    len bytesize[data])

Command 

Identifiers

Explicit Dependencies

Figure 1: Excerpt from Syzkaller to describe syscall speci-
fications in which we use ‘resource’ to declare an explicit
dependency and ‘in’ and ‘out’ to specify the direction of a
buffer or field.

• We propose a novel approach for the identification of
explicit dependencies. Specifically, we define the two
fundamental building blocks of insertion and lookup op-
erations and their pairing.

• We develop a suite of techniques to realize the frame-
work. This includes leveraging symbolic access paths,
a lightweight trial-and-error-based method to generate
specifications of dependencies, and a selective symbolic
execution to balance exploration and scalability.

• We implemented a prototype, dubbed SyzGen++, that
supports both macOS and Linux. We open source our
tool at https://github.com/seclab-ucr/SyzGenPlusPlus.git
to support future research in this area.

• We demonstrate through empirical results that
SyzGen++ found 245 more dependencies for drivers
with no traces. We compare SyzGen++’s performance
to that of DIFUZE, KSG, and SyzDescribe in terms
of code coverage, achieving an average improvement
of 71%, 67%, and 39%, respectively. Additionally, We
found 10 previously unknown bugs in Linux 6.2 and got
6 CVEs, using specifications generated by SyzGen++.

2. Background and Related Work

2.1. Device Drivers

To support communication between userspace and
drivers provided by different vendors, modern OSes specify
a few generic syscalls such as write and ioctl (or its
counterpart IOConnectCallMethod for macOS IOKit
drivers [16]) that can receive arbitrary driver-specified struc-
tures as input. For instance, the prototype of ioctl is
defined as follows:

i n t i o c t l ( i n t fd , unsigned long r e q u e s t , void * a r g
) ;



Tool Target Technique Requirement Dependency
Inference

Type
Recovery

Constraint
RecoverySource Code Trace Spec

DIFUZE [7] Linux Driver Static Analysis ✓ ✗ ✗ ✗ ✓ ✗
HFL [13] Linux Driver Concolic Execution ✓ ✗ ✗ ✓− ✓ ✓
Moonshine [6] Linux Trace/Static Analysis ✓ ✓ ✓ ✓ ✗ ✗
KSG [8] Linux Driver Clang Static Analysis ✓ ✗ ✗ ✗ ✓ ✓
FUZZNG [14] Linux Driver API Hooking ✓ ✗ ✗ ✓∗ ✗ ✗
SyzDescribe [15] Linux Driver Static Analysis ✓ ✗ ✗ ✓∗ ✓ ✗
IMF [6] macOS Trace Analysis ✗ ✓ ✓ ✓ ✗ ✗
SyzGen [9] macOS Driver Symbolic Execution ✗ ✓ ✗ ✓ ✓ ✓
SyzGen++ Linux/macOS Driver Symbolic Execution ✗ ✗ ✗ ✓ ✓ ✓
−: HFL’s heuristic only works for 5 out of 16 drivers in our evaluated dataset.
∗: FUZZNG and SyzDescribe focus on only a subset of explicit dependencies that involve file descriptors.

TABLE 1: Comparison of recent fuzzing techniques on interface recovery. SyzGen++ is the only tool capable of inferring
dependencies, recovering structures, and identifying constraints, all without relying on source code or pre-existing traces

where the first argument fd is a file descriptor for a specific
device obtained by calling open with its device file name,
the second argument is an integer commonly known as the
command identifier, and the type of the third argument varies
significantly depending on the implementations of drivers
and the command identifier. One driver can provide multiple
functionalities through this unified entry point, and hence
determine which one is desired based on the command iden-
tifier. We refer to each functionality bound to a specific com-
mand identifier value as a separate interface. The separation
of interfaces within a driver is consistent with the convention
of Syzkaller’s specifications, allowing us to specify different
types for different functionalities and explicit dependencies
between them. As depicted in Fig. 1, we append different
suffixes (e.g., CREATE_ID and DESTROY_ID) to the same
syscall to indicate different interfaces. It is worth noting
that the command identifier does not necessarily need to be
passed as an individual argument and can be embedded into
a larger complex structure.

2.2. Kernel Fuzzing

Fuzz testing is an automated technique for discovering
vulnerabilities that randomly generates test inputs and feeds
them to the target program until it crashes. For syscalls
that require complex nested structures as inputs and heavily
sanitize the user-provided data for security concerns, a naive
fuzzer is unlikely to produce valid inputs that could reach
deep code, resulting in low code coverage. To address this,
Syzkaller [5] allows users to develop syscall specifications
in Syzlang, a strongly typed language to specify the struc-
tures and constraints of the inputs and the relationship
between fields (e.g., one field indicates the length of another
one), as shown in Fig. 1. Specifically, the resource type in
Syzlang represents a “handler” (i.e., explicit dependency)
produced by the kernel. Other types (e.g., const) are self-
explanatory. Implementing specifications is a manual and
time-consuming process, particularly when the source code
is unavailable.

Table 1 provides an overview of state-of-the-art tools
for automating the process of interface recovery. In the rest
of this section, we provide a detailed discussion of this
summary.

Type and Constraint Recovery. In the realm of syscall
specification, the most fundamental aspect is to define the
types and constraints of syscall arguments to guide fuzzers
in generating mostly valid inputs. DIFUZE [7] performs
static analysis on source code, specifically LLVM IR, to
extract accurate input types, while NTFuzz [17] conducts
static analysis on documented Windows API functions that
call undocumented syscalls to understand how inputs are
constructed. A wealth of literature exists on reverse engi-
neering of variable types for binary-only programs [18]–
[20], which can be applied to proprietary drivers. In terms
of recovering constraints on user inputs, prior work [8], [9],
[13] leverages symbolic execution. As an alternative to type
recovery, CoLaFuzz [21], V-Shuttle [22], and FUZZNG [14]
propose to hook all copy_from_user-like functions to
directly inject data instead of generating inputs with com-
plex nested structures, effectively decoupling a multi-layer
pointer into a sequence of one-layer buffers.
Explicit Dependency Inference. One of the factors that
contribute to Syzkaller’s success is its support for declar-
ing explicit dependencies (or value dependencies) between
syscalls. For example, a valid invocation of the read syscall
requires a preceding invocation of open and passing the
returned file descriptor fd to read as the first parameter.
Type matching [23], [24] is a trivial solution to infer explicit
dependency when type information is available, but it only
works for non-primitive types. IMF [6] and Moonshine [12]
leverage existing traces collected from third-party applica-
tions or test suites to infer explicit dependencies by detecting
identical values from the input and output of syscalls that are
consistent across traces, e.g., the value returned from open
always matches with the first parameter of read called right
after it. FuzzGen [25] and WINNIE [26] perform static anal-
ysis on consumer programs to construct data dependency
graphs and recover the dependencies between API calls.
However, it is non-trivial to collect traces or consumer pro-
grams for kernel drivers, as reported in SyzGen [9]. Instead,
SyzGen proposes first to recover some dependencies from a
small set of traces and then discover more dependencies for
interfaces without any traces, as interfaces within the same
driver usually share common code or have similar logic on
how to process dependencies.

One notable exception that does not require any existing



traces is HFL [13], which is a hybrid Linux kernel fuzzer
that leverages concolic execution to monitor every compar-
ison instruction, where one operand comes from userspace
and the other one is some global data previously copied
back to userspace. The underlying assumption is that the
dynamically allocated handler must be stored in a global
variable, copied back to userspace, and then used to check
against the user-provided handler. This approach is not
practical because it requires driving the execution precisely
to explore certain paths of syscalls with valid inputs and
its assumption only holds in 5 out of 16 drivers in our
evaluation (see §5.2 for more discussion). Another exception
is FUZZNG [14] and SyzDescribe [15], designed to identify
special dependencies like file descriptors and sockets by
recognizing kernel APIs responsible for handling them (e.g.,
fdget). The difference between the two is that FUZZNG
uses dynamic analysis (i.e., API hooking) while SyzDescribe
only employs static analysis. SyzGen++ does not need to
rely on any domain-specific knowledge and can identify a
wider range of dependencies.
Implicit Dependency Inference. Unlike explicit depen-
dency, implicit dependency (or ordering dependency) is
more subtle and mandates a certain sequence of syscalls
but does not involve any fd-like handlers. IMF [6] and
Moonshine [12] propose to preserve the order of syscall
sequences from existing test suites. As mentioned in §1,
Syzkaller constructs a priority table for all pairs of syscalls
based on their frequencies of occurrence in the corpus.
Healer [27] further refines this approach by proactively
removing syscalls in a single testcase to observe the cov-
erage changes and detect influential syscalls. Meanwhile,
Moonshine performs static analysis to identify potential
implicit dependencies by finding pairs of read and write
operations on the same global variable. Similarly, Minerva,
specific to browser API fuzzing, learns the implicit depen-
dencies of APIs by leveraging dynamic mod-ref analysis.
Additionally, ACTOR [28] captures actions that potentially
operate on shared data structures across different syscalls
and then synthesizes programs based on manually-written
templates in a domain-specific language that express the
implicit relationship among actions. In this work, we focus
solely on explicit dependencies and aim to automatically
generate syscall specifications in Syzlang, which can be
directly used by tools built atop Syzkaller, such as Healer,
Moonshine, and ACTOR.

3. Overview

In this section, we present two motivating examples that
have been simplified from real-world cases. These examples
aim to illustrate our key observations regarding how the
kernel typically implements explicit dependencies. Subse-
quently, we provide a detailed description of the workflow of
SyzGen++, along with the intuitions behind our approach
to infer explicit dependencies.

1    def create_request(gService):
2        int idx = gService->nextID++;
3        void* request = alloc_request();
4        gService->requests[idx] = request; # insertion
5        return idx;


6    def get_request(idx, gService):
7        return gService->requests[idx]; # lookup


(a) Function create_request creates a kernel object, stores it
in the next available slot in an array, and returns its index as the
‘handler’, while get_request can retrieve the corresponding
object by looking up the array using user-provided ‘handler’.

1    def create_link(gService):
2        int idx = gService->nextID++;
3        Node* node = alloc_node();
4        node->id = idx;
5        last = gService->head;
6        for (Node* e = last->next; e; e = e->next)
7            last = e;
8        last->next = node; # insertion
9        return idx;

10  def get_link(idx, gService):
11      for (Node* e = gService->head->next; e; e = e->next)
12          if (e->id == idx) # lookup
13              return e;
14      return NULL;

(b) Function create_link creates a kernel object, appends it
to the end of a linked list, and assigns a sequentially allocated ID
as the ‘handler’, while get_link iterates through the list to find
the corresponding object that has the same ID as the user-provided
one.

Figure 2: Two motivating examples of explicit dependencies
from macOS IOKit drivers (IOBluetoothHCIUserClient and
AudioAUUCDriver). Both of them involve insertion and
lookup operations.

3.1. Motivating Examples

Fig. 2a illustrates the interface create_request that
allocates a new object and inserts it into a global array of
which the index is returned to user space as a “handler”
to avoid exposing internal kernel data. Subsequent syscalls
that need to operate on the same object can retrieve it from
the global array based on the previously returned “handler”.
Similarly, Fig. 2b shows the interface create_link that
maintains a global linked list, where each newly created
node is appended to the end. It also assigns a unique ID
to each element so that the other interface get_link
can retrieve the corresponding object by examining each
element in the list. Despite their different implementations,
we made the following three key observations from the
common pattern:
• In user space, an explicit dependency only involves an

integer (or “handler”) which corresponds to a complex
object maintained in kernel space.

• In kernel space, an explicit dependency must involve a



producer that creates a complex object and stores it in
some global data container and a consumer that retrieves
the corresponding internal object by looking up the global
data container based on the user input.

• In kernel space, the producer must associate each object
with a unique “handler” and pass it back to user space,
enabling subsequent syscall invocations to indicate which
object to use.
Intuitively, a kernel object is a data structure that rep-

resents a system resource that cannot be directly accessed
by user programs, e.g., a file, thread, or socket. Instead,
user programs need to request kernel intervention to examine
or modify the resources on their behalf. To identify which
system resource to access, applications must obtain a unique
identifier, also known as a ‘handler’, that corresponds to an
internally-maintained data container. This identifier could be
the index of an object in an array as demonstrated in Fig. 2a,
or a unique ID that is assigned sequentially and bound to an
entry in a linked list as shown in Fig. 2b. Moreover, different
types of resources are typically maintained in different data
containers. Based on our observations, we can abstract two
essential operations for any explicit dependency: insertion
and lookup upon the same data container. It is straightfor-
ward to determine whether these operations operate on the
same data container by examining the symbol names and
how the kernel accesses it (if source code is available). In the
first motivating example, both the producer and consumer
access the arrays named requests and derived from the
same global variable gService. The same procedure can
also be applied to binaries.

3.2. System Architecture

Fig. 3 illustrates the workflow of SyzGen++, which
aims to automatically infer explicit dependencies between
driver interfaces and generate specifications for model-based
fuzzers. At a high level, SyzGen++ first identifies all
target drivers and their entry functions (§3.2.1). Then, for
each driver, it performs symbolic execution to recover the
type and constraints of the syscall inputs (§3.2.2). In the
meantime, it collects all memory operations to recognize
insertion and lookup operations via pattern matching and
then identifies the pairing of them as dependency candidates
if they operate on the same data container (§3.2.4). The
pairs are then validated to infer and generate dependencies
(§3.2.4), and the tool generates specifications for fuzzing
based on the results. In the rest of this section, we discuss
each component in detail.

3.2.1. Device and Entry Identification. The initial step of
SyzGen++ involves detecting potential driver targets that
can be fuzzed on physical or virtual machines. Subsequently,
SyzGen++ employs established techniques from prior re-
search [9], [21] to extract the entry functions for further
program analysis. For macOS IOKit drivers, SyzGen++
utilizes the IOServiceMatching API to query the
OS and discover all available drivers. Further, it extracts

Driver
Binaries

Device & Entry
Identification

Type & Constraint
Recovery

Dependency
Pair Identification

Spec
Generation

Virtual/Physical Machines

Debugger

Dependency
Inference

§3.2.1 §3.2.2

§3.2.3

§3.2.4

Figure 3: The workflow of SyzGen++: first, it discovers
drivers running on the device and their entry points (§3.2.1).
Next, it performs symbolic execution to recover the types
and constraints of the syscall inputs (§3.2.2), and to identify
dependency pairs (§3.2.3). The pairs are then validated
to infer and generate dependencies (§3.2.4), and the tool
generates specifications for fuzzing based on the results. It
is possible to refine the specifications iteratively.

their entry functions by searching for specific functions
(e.g., ExternalMethod) in binaries based on the official
IOKit design guidelines [29]. In contrast, for Linux drivers,
SyzGen++ recursively scans the device folder (e.g.,/dev)
to obtain all available device files that can be successfully
opened to acquire file descriptors. These file descriptors,
in turn, can then be utilized to obtain the correspond-
ing struct file_operations containing all the entry
functions.

3.2.2. Type and Constraint Recovery. SyzGen++ follows
conventional driver development practices, such as using the
second argument of ioctl as the command identifier to
extract all valid command values corresponding to each in-
terface through symbolic execution. Additionally, to handle
cases where the command identifier is embedded within
other inputs, SyzGen++ identifies the critical variable
whose value comes directly from user space and influences
the invocation of different functions [9]. SyzGen++ then
performs symbolic execution on each interface separately
by imposing a constraint on the command identifier
(e.g., cmd == ONE COMMAND VALUE), during which
it collects constraints on the user inputs and monitors every
“use” of them (symbolized beforehand) to identify separate
fields at byte granularity [9], [18]. To recover multi-layer
pointers, SyzGen++ intercepts all copy_from_user-
like APIs, since all user data must go through these APIs to
traverse the boundary between user and kernel space. Due to
space constraints, we omit details on how to generate spec-
ifications from recovered types and constraints and direct
interested readers to SyzGen [9].

3.2.3. Dependency Pair Identification. Based on the ob-
servations described in §3.1, we propose to detect explicit
dependencies by recognizing two operations (i.e., insertion
and lookup) that meet the following three criteria: (1) the in-



sertion operation creates a new heap object and stores it; (2)
the lookup operation retrieves different objects depending on
the user input, and (3) both insertion and lookup operate on
the same data container reachable from a global variable. We
refer to the interface that performs the insertion operation as
the producer and the one that performs the lookup operation
as the consumer. Since each interface is analyzed separately,
the third criterion is used to link the consumer and producer
interfaces by identifying the shared data container they use.

For instance, in the first motivating example illustrated
in Fig. 2a, create_request inserts a newly-created heap
object into an array at line 4, while get_request obtains
a specific one by looking up the array using user-provided
handler (i.e., an index to the array) at line 7. Both of them
manipulate the same array (i.e., gService->requests)
reachable from a global variable. Similarly, the second ex-
ample shown in Fig. 2b follows the same pattern except
that its lookup operation requires a loop with a conditional
check against each element in the linked list (from lines 11
to 13). Hence, SyzGen++ detects the specified insertion
and lookup as follows:

Identifying Insertion: SyzGen++ records every exe-
cuted memory write whose source is a pointer to a heap
object that has been allocated within the same interface. All
such memory writes are considered “insertion candidates”.
However, for a memory write to be considered a true
insertion, it must be paired with a lookup (which will be
described in the later matching phase).

Identifying Lookup: A lookup operation is defined as a
procedure that attempts to find one specific object from a
collection based on user input, which can be categorized
into the following two types:

(1) Single-memory-read lookup: any single memory
read that can potentially access different objects de-
pending on the user input is considered a lookup,
e.g., gService->requests[idx]. To identify such
lookups, SyzGen++ conducts symbolic execution with all
user inputs symbolized and extracts symbolic expressions
for memory read addresses that are computed based on
the user input, e.g., gService->requests + idx *
sizeof(request) is the symbolic expression for the
memory read address at line 7 in Fig. 2a, in which idx is
directly from the user input, resulting in accessing different
objects when idx varies.

(2) Multiple-memory-read lookup: it iterates through the
container and checks for the presence of a desired ele-
ment, typically by comparing a specific field of the element
against the ‘handler’ provided by the user, e.g., lines 11–
13 in Fig. 2b. SyzGen++ detects the existence of such
a lookup based on the following criteria: it must execute
multiple comparison instructions that compare the same user
input against the same field derived from different objects.
Intuitively, each element within the container should have
the same type and maintain its own ID (or ‘handler’) in
a dedicated field, enabling the lookup operation to dif-
ferentiate between them based on the field. Specifically,

SyzGen++ again conducts symbolic execution to collect
symbolic constraints for all comparison instructions. One of
the operands of these instructions must be directly derived
from user input (e.g., idx), while the other is derived from
an object. If SyzGen++ identifies multiple objects with the
same field compared against the same user input, it considers
the corresponding comparison instructions to be part of a
lookup operation.

It is worth noting that our algorithm is agnostic to the
implementation of the underlying data container as it cap-
tures the high-level semantics of two fundamental operations
– insertion and lookup. The only assumption in the multiple-
memory-read lookup scenario is that each element should
maintain its own ‘handler’, which assists SyzGen++ in
associating the lookup operation with user input.

Matching Insertion and Lookup: The objective of this
step is to match the insertion and lookup performed on
the same data container. Therefore, the initial step is to
determine the same objects across different interfaces. To
this end, we adapt the well-known technique, namely Ac-
cess Paths, from programming languages [30]. An access
path is a base variable followed by a finite sequence
of field accesses, e.g., gService->head->next and
gService->head->next->next are two different ac-
cess paths accessing different objects. By tracing back
each access to its root (e.g., some global variable), we
can uniquely identify an object. In the absence of source
code, we use the unique addresses of global variables and
field offsets to represent an access path. For simplicity,
we use symbols instead of offsets in the rest of the pa-
per. In contrast to traditional access paths composed of
variables and fields, SyzGen++ also retains symbolic ex-
pressions in the access path such that one could refer to
different objects, e.g., gService->requests + idx
* sizeof(request) where idx is user-controllable.

To simplify the description, we state the following defi-
nitions: a collection of objects can be modeled by a directed
graph G = (N,E). Each node ni ∈ N corresponds to an
object, and an edge in G is a tuple ⟨ni, f, nj⟩ ∈ E connect-
ing node ni and nj . Here, f is a symbolic function such that
f(ni) = nj and f ∈ F , in which F denotes all symbolic
functions comprised of exactly one pointer dereference, any
number of symbolic variables, and arithmetic operations,
e.g., f(ptr) = ∗(ptr+idx∗8). It indicates that an object rep-
resented by nj can be retrieved via the object represented by
ni. The symbolic function f is not unique since it is possible
that fi and fj are semantically the same but syntactically dif-
ferent. For instance, ptr+ idx∗8 is semantically equivalent
to ptr + (idx << 3). Note that a node can have more than
one outgoing edge with a given f as it may involve symbolic
variables resulting in different outcomes. Additionally, since
there might be multiple ways to access a node nk (i.e.,
∃ni, nj ∈ N, fi, fj ∈ F, fi(ni) = fj(nj) = nk), we define
a partial order between them as follows: fi(xi) ⪯ fj(xj)
if ⟨ni, fi, nk⟩ happens before ⟨nj , fj , nk⟩ during a single
execution path. This partial order enables us to define a
partial inverse of f as f−1 such that f−1(nk) = nj if



∃fj ∈ F, fj(nj) = nk and ∀fi, ni ∈ {(f, n)|f ∈ F ∧ n ∈
N ∧ f(n) = nk}, fi(ni) ⪯ fj(nj). Intuitively, when we
backtrack a field to its root on a single execution path, we
always reverse the latest dereference of the field to find its
parent object.

A symbolic access path in G is a sequence of
connected edges denoted as f1...l(n1), which equates to
(⟨n1, f1, n2⟩, ..., ⟨nl, fl, nl+1⟩). Node n1 and nl+1 represent
the source and destination of the path, respectively, and the
source must be a global object that can be uniquely labeled.
Two symbolic access paths are equivalent if they
could access the same objects in the same order: f1...i(x1) =
f ′
1...j(y1) ⇔ x1 = y1 ∧ i = j ∧ ∀k ≤ i, fk(xk) = f ′

k(yk).
As aforementioned, a symbolic function f may involve

symbolized user inputs resulting in different outcomes and
may be syntactically different. Thus, we use SMT (satisfi-
ability modulo theories) solver to prove fk(xk) and f ′

k(yk)
can access the same object, i.e., fk(xk) == f ′

k(yk). Note
that we evaluate them in a top-down manner, meaning
we evaluate fk(xk) == f ′

k(yk) before fk+1(xk+1) ==
f ′
k+1(yk+1), and thus we use the same object xk+1 and

evaluate fk+1(xk+1) == f ′
k+1(xk+1) instead.

Now that we know how to identify objects based on
their symbolic access paths, let us revisit how we record
insertion and lookup. For any memory write whose source
is a pointer to a newly-created heap object, we backtrack
the destination address to obtain its symbolic access path.
Similarly, for any memory read, we backtrack the source ad-
dress if it could point to different objects, i.e., the symbolic
access path f1...i(x1) has different destinations. We identify
a match between insertion fwrite

1..i (x1) and lookup fread
1...j (y1)

if fwrite
1...i (x1) = fread

1...j (y1). To reduce false positives (i.e.,
mistakenly identifying lookup operations), we require that
the last symbolic function fi involves only one symbolized
variable from user inputs and previous symbolic functions
do not contain any user inputs. The rationale is that we
observed there is always a deterministic access path for the
underlying data container, and only one handler (usually a
32-bit integer from user inputs) is involved in determining
the final object to access. In the first motivating example
shown in Fig. 2a, we can collect a symbolic access path
(fwrite(gService) = gService->requests + 0) for
the insertion at line 4 when gService->nextID
is initialized to zero, and a symbolic access path
(fread(gService) = gService->requests + idx *
sizeof(request)) for the lookup at line 7, in which
only the last field access involves the user input follow-
ing our observations. We could successfully match them
as both access the same objects (i.e., gService and
requests) and fwrite(gService) = fread(gService)
when idx equals to zero.

As aforementioned, for the second type of lookup
operation involving multiple instructions, SyzGen++
focuses on comparison instructions and identifies potential
lookup based on our observations. For each comparison
instruction that satisfies our criteria (i.e., one operand
is directly from user input and the other one is a field
derived from an object), we collect a tuple ⟨fread

1...i , idx⟩

in which idx is a symbolic variable from user inputs
and fread

1...i signifies the symbolic access path of the
other operand of the comparison instruction. We then
group all tuples based on the symbolic variables (i.e.,
idx) and last field access (i.e., fi) to ensure that
those from the same group indeed check the same field
against the same user input. We denote each group as
Sidx,fi = {f1...j |there exists⟨f1...j , idx⟩ ∧ fj = fi},
and consider it as a lookup operation if the size of Sidx,fi
is larger than a threshold (i.e., three in our experiments).
Intuitively, the condition fj = fi filters out those accessing
different fields, and the unique idx helps prune irrelevant
symbolic access paths. We say we find a match between
the insertion and lookup if ∀f1...j ∈ Sidx,fi , f1..j−1 is
also a symbolic access path for the insertion. For example,
in the second motivating example in Fig. 2b, we could
collect a set of symbolic access paths for the insertion
at line 8 when exploring different paths during symbolic
execution: Swrite = {gService->head->next,
..., gSerivce->head->next-> ... ->next}.
Similarly, we collect multiple tuples for the comparison
at line 12 and group them into a single set
Sidx,fi = {gService->head->next->id, ...,
gService->head->next->...->next->id}.
As we can see, every access path f1...j in Sidx,fi has a
corresponding access path f1...j−1 in Swrite.

3.2.4. Dependency Inference and Specification Genera-
tion. Upon identifying a pair of one producer with insertion
and a consumer with lookup, we need to generate the
corresponding specification that specifies the location of the
handler in the input and output buffer (e.g., offsets), as
illustrated in Fig. 1. Determining the location of the handler
in the input buffer is straightforward since the symbolic
access paths always include a symbolic variable from user
space (with corresponding offsets, e.g., input[0] or input[4]),
which informs us of the exact location of the handler. In
contrast, symbolic access paths for insertion do not encode
any user space inputs since the handler is generated by the
kernel in the producer interface (e.g., line 2 in Fig. 2a).
Therefore, the location of the handler in the output buffer
is unknown, and identifying it can be challenging since it
is typically just an integer. Tracking all potential handlers
from their creation sites to user space is impractical due to
the vast number of candidates.

Instead, we propose a novel, lightweight trial-and-error
approach that enumerates all possible offsets and verifies
each hypothesis based on the observation that sequential
allocation is often used for the handler, e.g., file descriptors
in Linux. Thus, SyzGen++ leverages fuzzing to produce a
test case that could successfully invoke the producer with no
error code returned, indicating that it has produced a handler.
SyzGen++ discards this potential dependency if fuzzing
fails within a pre-configured time budget (we empirically
set a 30-minute timeout in our evaluation). Subsequently,
SyzGen++ proposes a hypothesis on the offset of the
handler in the output buffer and verifies it based on the
aforementioned method. It repeats the test case multiple



times to find sequential numbers in the output buffers at
the hypothesized offset. If it fails, SyzGen++ repeats the
process with every feasible offset until one test supports the
hypothesis. If none of the hypotheses passes the validation,
we discard this potential dependency and deem it as a false
positive from the previous step.

It is worth noting that this approach works well in prac-
tice, as demonstrated in our evaluation (see §5.2). Further-
more, SyzGen++ flags special dependencies (i.e., file de-
scriptors) by monitoring certain APIs (e.g., alloc fd). These
dynamically-created file descriptors can be used to obtain
their entry functions by checking their associated struct
file_operations, enabling SyzGen++ to generate de-
pendency directly without needing to match a lookup op-
eration. For instance, if the ioctl entry function is valid,
SyzGen++ can directly generate a dependency between the
interface that returns a newly-created file descriptor and the
corresponding syscall (i.e., ioctl), knowing that this file
descriptor is passed as the first argument to ioctl.

4. Implementation

We have implemented SyzGen++ atop Angr [31] and
SyzGen [9] with 12,587 lines of Python code for interface
recovery and dependency inference, and ∼1K lines of Go
code into Syzkaller for fuzzing and test case generation. It
supports analyzing macOS IOKit drivers and Linux drivers
without any existing traces or source code. Specifically,
SyzGen++ employs symbolic execution to perform inter-
procedural and path-sensitive analysis on drivers’ entry
points, during which it collects all the accesses to user
inputs to recover types, constraints on user inputs to refine
the valid input ranges, and insertion/lookup operations for
dependency identification. The majority of the code is for
type and constraint recovery and taming symbolic execution
as we will explain in the rest of the section. We omitted
some details in the paper due to space limits and referred
to SyzGen [9]. Additionally, we set a ten-minute timeout
for each run of symbolic execution to avoid indefinite ex-
ecution and model some common functions (e.g., malloc
and copy_from_user) from the core kernel to make it
more performant and support type recovery. In total, we
have modeled 256 functions for Linux and macOS, among
which 175 (e.g., printk) can be simply replaced with a
dummy function. Furthermore, SyzGen++ does not target
any specific kernel version. This is because it recovers the
structure of input during symbolic execution, making it
structure-aware and eliminating the need to know the driver
structure in advance.

It is possible to have multiple dependencies within
the same structure. For instance, three interfaces A, B,
and C need to be invoked sequentially as follows: A →
handler ‘a’ → B → handler ‘b’ → C, in which B con-
sumes handler ‘a’ and generates another one ‘b’, requir-
ing an input of type ‘struct foo { int dep1; int
dep2;..}’. SyzGen++ can analyze these three inter-
faces separately in any order. Upon analyzing A and B,
SyzGen++ discerns the dependency between them. It then

re-examines B, given that its input structures/constraints
have been updated, and subsequently identifies the second
dependency between B and C.

Since SyzGen++ aims to generate specifications for
device drivers, it only supports the most common interfaces
(i.e., open, ioctl, read, and write for Linux drivers,
and IOServiceOpen and IOConnectCallMethod for
macOS IOKit drivers), leaving others (e.g., mmap) to future
work. We also set a soft limit (i.e., 8 in our experiment) on
the maximum number of loop iterations, meaning it yields
the current path exceeding the limit instead of terminating
it. Following SyzGen, SyzGen++ generates a test case that
can reach the entry point of the target interface (ioctl
handler), takes a snapshot through kernel debuggers at the
entry point as the context, and then continue the execution
with symbolic execution. As with other symbolic execution-
based solutions, SyzGen++ is susceptible to the notorious
path explosion problem. SyzGen partially addresses this
issue by leveraging a concrete snapshot to concretize all
memory, except for the user inputs. However, this approach
limits the paths it can potentially explore, as we will discuss
in detail in §4.3. To alleviate this issue, we have devised
specific techniques tailored to kernel drivers, which are
described below.

4.1. Exploration Strategy

One promising approach to cope with path explosion is
to guide the exploration toward paths of interest. As de-
scribed in §3, SyzGen++ conducts symbolic execution for
three purposes, including type recovery, constraint recovery,
and dependency inference. We observe that data copying
from user space to kernel (e.g., copy_from_user) and
most sanity checks against user inputs often occur at the
beginning of syscalls. Therefore, SyzGen++ initially ap-
plies Breadth First Search (BFS) to explore all feasible paths
equally and then generates a specification for each path.

Unfortunately, some type information and dependency
operations (i.e., insertion and lookup) cannot be discovered
unless the analysis reaches the end of the syscalls. Functions
like copy_to_user are usually invoked just before the
syscall ends and are crucial to identify output buffers. To
address it, we propose refining each specification generated
in the first round with another run of symbolic execution,
using the Coverage-Optimized Search (COS) strategy [32]
that prioritizes paths with uncovered code. Notably, the sec-
ond run of symbolic execution imposes the same constraints
on the user inputs reserved from the previous run and thus
effectively continues the execution from where it stopped
previously (though it still starts from the entry function).

Furthermore, we observe that most paths differ only on
global variables and their generated specifications are the
same. Consequently, the total number of specifications that
SyzGen++ needs to refine is manageable. Although other
exploration strategies exist, we find that BFS combined with
COS suffices in most cases and leave further optimization
to future work.



4.2. Path Pruning

Another technique we realized to alleviate the path
explosion problem is to prune paths that lead to error
handling as early as possible. SyzGen++ aims to generate
specifications for valid inputs and thus invalid inputs failing
to pass sanity checks are of less interest. Additionally,
error handling code can be complex, resulting in substantial
state forks and hence introducing significant overhead. We
observe that modern OSes specify a set of special negative
values as error codes, and it is common to pass an error code
through the return value. Based on the insight, SyzGen++
examines the return value upon every return instruction and
prunes paths that return error codes. It is possible that a
function that does not return a value uses the return register
(e.g., eax for x86) for internal computation and happens
to set a negative value to the return register. To prevent
mistakenly pruning these paths, SyzGen++ also checks the
immediate basic block at the call site to ensure the return
value is indeed used. Note that those pre-defined error codes
are different from valid pointers and can be differentiated
easily (e.g., Linux uses IS ERR(void *ptr)).

Furthermore, SyzGen++ conducts a backward intra-
procedure analysis to identify basic blocks that lead to
returning an error code and thus could terminate paths even
before they reach the return instruction. This additional
analysis helps eliminate those paths as early as possible.

4.3. Selective Symbolic Execution

Symbolic execution requires making decisions about
which data should be symbolized or concretized. This de-
cision affects not only the scalability but also access path
collection. Conventional under-constraint symbolic execu-
tion [33] can directly start from any function but require
symbolizing all unknown data (e.g., global variables), lead-
ing to exploring infeasible paths and exacerbating the path
explosion problem. Moreover, it cannot resolve function
pointers initialized inside other interfaces, which blocks
deep code exploration. In contrast, S2E [34] proposes in-
vivo symbolic execution, leveraging a full system emulator
to execute the kernel concretely and only needs to symbolize
user inputs. SyzGen [9] further augments it by generating
proper test cases that guide the kernel to reach a certain state,
e.g., setting global variables properly. While concretizing the
kernel state helps resolve pointers and reduce symbolized
memory, it limits the paths that can be explored, e.g., a
global boolean variable can be toggled to trigger different
behaviors via another interface, but we may fail to drive
the kernel to reach both states. More importantly, it may
prevent access path collection to identify lookup operations.
For instance, in the second motivating example shown in
Fig. 2b where it iterates through a linked list to obtain the
target object, we cannot enter the loop if global data is
concretized because the list is empty unless we know how
to prime the test case to set up the kernel properly.

To balance this delicate relationship, we take advantage
of both approaches and propose a hybrid solution that

performs in-vivo symbolic execution but selectively sym-
bolizes global data to unlock more paths to explore. Our
current policy concretizes only two kinds of data: (1) global
data that reside in certain areas (e.g., const sections); (2)
pointers that SyzGen++ cannot be resolved. This allows us
to achieve reasonable scalability while still collecting access
paths with relatively free exploration.

Note that even with our concretization strategy, reaching
the end of a producer can still be difficult due to path
explosion. This is why we had to resort to the dynamic trial-
and-error approach to determine the offset of the handler in
the output buffer, as described in §3.2.4.

5. Evaluation

In this section, we present our empirical test results to
answer the following questions:
• How many dependencies SyzGen++ can infer compared

to prior work (§5.2)?
• How accurate are the syscall specifications automatically

generated by SyzGen++ (§5.3)?
• What is the performance of symbolic execution (§5.4)?
• Can SyzGen++ find more vulnerabilities (§5.5)?

5.1. Evaluation Setup

We consider the vanilla Syzkaller as the baseline and
compare SyzGen++ against five other state-of-the-art ker-
nel fuzzers, namely SyzGen [9], DIFUZE [7], KSG [8],
Moonshine [12] and SyzDescribe [15]. We obtained the
original traces from SyzGen and Moonshine, whereas we
received the KSG executable from its authors for testing.
Unfortunately, we did not receive any responses from the au-
thors of FUZZNG [14], and as a result, we excluded it from
the evaluation. Nevertheless, we believe that SyzGen++ has
the potential to outperform FUZZNG, as it only handles
a specific type of explicit dependencies (i.e., file descrip-
tor). For HFL, we attempted to feed it with the minimum
specifications that contain driver interfaces without type and
constraint information, but our preliminary result showed
that it significantly underperformed compared to the vanilla
Syzkaller. We contacted its authors to get their perspectives.
It turns out that one static analysis component crucial to de-
pendency inference and symbolic execution is missing from
its repository. Thus, we excluded HFL from our evaluation.

We also found some deficiencies in DIFUZE when port-
ing it to a newer version of LLVM and Linux kernel, making
it broken for some drivers. Thus, we improved DIFUZE
by fixing bugs and correcting some hard-coded domain
knowledge to support newer kernel versions. Moreover,
DIFUZE does not open source the component responsible
for specification generation, and we also re-implemented it
to have an end-to-end comparison. The enhanced version is
referred to as DIFUZE+.
Dataset. We evaluated the accuracy of explicit dependency
inference on two datasets, one from SyzGen containing 25



Linux Driver #Dependencies
Ground Truth+ Syzkaller SyzGen++

autofs 11 11(+3) 11
dri 23 22(+9) 7
fuse 17 17 1
kvm 94 93(+19) 94
loop control 2 1 2
ppp 1 0 1
ptmx 108 108 106
rdma cm 21 21 20
Total 277 304 242
+: We collected the ground truth by cross-checking the source
code, Syzkaller’s specifications and SyzGen++’s results.

TABLE 2: Comparison of dependency inference between
manually-crafted specifications and SyzGen++. In the
Syzkaller column, the numbers within parentheses denote
the false positives we manually identified given the default
Linux configuration from syzbot. The preceding bold num-
bers that are smaller than the ground truth indicate missing
dependencies that were uncovered by SyzGen++.

macOS IOKit services and another one for Linux which
includes eight Linux drivers with dependencies, as shown in
Table 3 and Table 2, respectively. Note that most drivers are
simple and only contain explicit dependencies that are trivial
to learn, e.g., the return value of ‘open‘ is the first argument
of ‘ioctl‘. This domain knowledge is encoded in most tools
including DIFUZE, SyzDescribe, and our tool. We would
like to evaluate all work against the difficult ones and thus
constructed the second dataset by checking the existing
specifications from Syzkaller to find drivers with non-trivial
dependencies, assuming the handcrafted specifications were
mostly correct. Additionally, since our work focuses on
device drivers that lack support for specifications due to
their large volume, our current prototype only supports ana-
lyzing open, ioctl, read, and write syscalls and their
relevant dependencies. Consequently, we did not include
other subsystems (e.g., bpf and network) and collected eight
drivers in total.

We ran all the following experiments on two machines,
one Ubuntu 18.04 LTS equipped with Intel(R) Xeon(R)
Gold 6248 CPU (having 80 2.50GHz cores) and 394 GB
RAM, and one Macbook Air with 2.2 GHz Intel Core i7 and
8GB RAM. Our tool relies on SyzGen to support macOS,
which currently only supports IOKit drivers and a VMware
Fusion-based macOS setup. As VMware Fusion does not
support macOS 12.3 Monterey or later at the time of our
evaluation [35], we were limited to testing on the same older
version (macOS 10.15.4 and VMware Fusion 11.5.7) as used
by SyzGen. As for the Linux kernel, we chose Linux 5.15
with the same configuration from Syzbot and ran it inside
QEMU. Each fuzzing campaign utilizes four CPU cores
(i.e., two QEMU instances with two CPU cores each) and
tests one particular driver for 24 hours with five repetitions.

5.2. Explicit Dependency Inference

To assess the accuracy of explicit dependency infer-
ence, we first compared SyzGen++ against Moonshine and

macOS Driver Has #Dependencies
Traces? SyzGen SyzGen++

AudioAUUCDriver Yes 5 5
AppleAPFSUserClient Yes 21 21
AppleUpstreamUserClient Yes 5 5
IOBluetoothHCIUserClient Yes 235 170
IONetworkUserClient Yes 5 5
AppleUSBHostFrameworkDevice No 0 1
AppleUSBHostFrameworkInterface No 0 1
AppleUSBHostInterface No 0 1
Total 271 209

TABLE 3: Comparison of dependency inference between
SyzGen and SyzGen++. We exclude targets where nei-
ther SyzGen nor SyzGen++ could find any dependencies.
SyzGen++ has comparable performance when traces are
available (except the IOBluetoothHCIUserClient case) and
surpasses SyzGen in cases where traces are absent. Note
that for tools such as SyzGen, Moonshine, and IMF that
require traces, they are unable to identify any dependencies
if no traces are provided.

manually-curated specifications in terms of the numbers of
identified dependencies counted based on the number of
consumers (i.e., the interfaces that consume a ‘handler’).
We also manually collected ground truth data for Linux
by inspecting the source code of tested drivers. Unfortu-
nately, upon examining the traces provided by Moonshine’s
authors, we discovered that only five drivers are being
exercised, none of which correspond to our tested drivers
with dependencies. Hence, it is infeasible for Moonshine or
any other trace-based solutions to detect any dependencies.
As Moonshine was published in 2018, it may not include
some new test suites added since then. Therefore, we ex-
amined the latest test suites from the same sources as men-
tioned in its paper, including Linux Testing Project (commit
63e8c1e) [36], Linux Kernel selftests (v6.5.0-rc4) [37], and
Open Posix Tests (v1.5.1) [38]. As expected, these test suites
cover 21 device drivers in total, among which only two (i.e.,
kvm and fuse) have explicit dependencies, meaning that at
least 58.3% of the dependencies shown in Table 2 would be
missed by trace-based solutions.

In contrast, SyzGen++ can infer 242 out of 277 ground
truth dependencies and we found four dependencies missed
by existing handcrafted specifications. We have reported our
findings to Syzkaller, resulting in the resolution of one issue.
Interestingly, we observed that Syzkaller specifies 31 more
dependencies than the ground truth. Upon further investi-
gation, we determined that these additional dependencies
are either false positives or related to code that is not
enabled by its default configuration, as explained in detail
in Appendix A.1.

Although HFL is the closest work to SyzGen++, we
found that it did not perform well due to one missing static
analysis component from its repository, thus preventing it
from being included in our comparison. In practice, HFL
suffers from scalability challenges because it relies on a
full-system emulation solution S2E, which limits its ability
to support other platforms (e.g., macOS and Android). Ad-
ditionally, HFL requires drivers to function properly inside



S2E, and we found that it does not leverage KVM, which
can lead to S2E getting stuck at booting time when too
many drivers are enabled. Moreover, it requires precise exe-
cution to explore specific paths of syscalls since it employs
concolic execution and relies on fuzzing to explore the
codebase. Assuming HFL operates perfectly, it can only
detect explicit dependencies in 5 out of the 16 drivers shown
in Table3 and 2. This is because HFL’s assumption regarding
the usage of ‘handler’ (see §2 for details) holds true only
for those 5 drivers in our dataset.

Furthermore, we evaluate SyzGen++ against the ma-
cOS IOKit drivers tested by SyzGen and present the re-
sults in Table 3. SyzGen++ identifies 209 dependen-
cies compared to 271 by SyzGen. We manually reverse-
engineered the binaries to confirm the validity of the re-
sults. Notably, SyzGen++ was able to identify more de-
pendencies than SyzGen in three cases where no traces
were available, thereby demonstrating its effectiveness.
SyzGen++ also exhibited comparable performance to Syz-
Gen when traces were available, except for the driver
IOBluetoothHCIUserClient. Upon further investiga-
tion, we discovered that some dependencies were handled
by the firmware, which is not analyzed by SyzGen++. Note
that this is a limitation of our current implementation, not
the design. We believe this issue could be addressed with
additional engineering efforts.
False Negatives. We investigated the reasons why
SyzGen++ failed to identify the 35 dependencies (com-
pared to ground truth). They correspond to 16, 16, 2, and
1 false negatives for dri, fuse, ptmx, and rdma_cm,
respectively. One prominent reason is that certain code is
not reachable due to unresolved indirect call. As mentioned
in §4, SyzGen++ generates a simple testcase and runs
it concretely inside a virtual machine to reach the entry
point of the target interface (e.g., ioctl) where it takes a
snapshot as the context and leverages it to resolve function
pointers. However, some function pointers are only initial-
ized when certain hardware is available and registered. Al-
though our approach can be applied to physical machines to
circumvent this problem, it requires significant engineering
efforts, which we leave for future work. Additionally, our
assumption that the producer must create a kernel object
and return its associated ‘handler’ within one interface may
not hold in some cases, where the interface that performs
the object creation is different from the one that actu-
ally returns its ‘handler’. For instance, in the dri module,
ioctl$DRM_IOCTL_GEM_FLINK creates and returns a
global ID for a specified object created in another interface
ioctl$DRM_IOCTL_GEM_OPEN. In such cases, correlat-
ing these two interfaces is not supported yet. Furthermore,
SyzGen++ focuses on analyzing open, ioctl, read and
write, and thus misses dependencies in drivers like fuse
where additional syscalls (e.g., mount) unlock more code.
False Positives. Our solution did not produce any false
positives for the tested drivers, indicating the robustness of
our approaches, including identifying insertion and lookup
operations as dependencies (as discussed in §3.2.3) and
verifying the sequential allocation of “handler” (as described

in §3.2.4). Interestingly, we found only two drivers, namely
rdma_cm and kvm, have false positives if we only rely on
the pairing of insertion and lookup. We provide a detailed
explanation in Appendix A.2.

Moreover, it is worth noting that all the dependencies
identified by SyzGen++ adhere to the sequential allocation
pattern, and we have not encountered any counterexamples,
except the one in key module demonstrated below and an-
other one involving string type “handlers”, which are outside
the scope of our tool and its capabilities (see limitations in
§6 for more details).
Generality of Our Approach. Our algorithm captures the
high-level semantics of the two fundamental operations for
explicit dependency, making it agnostic to the underlying
data container. We manually examined the source code
or disassembled binaries of the drivers for cases where
SyzGen++ successfully identified dependencies, and dis-
covered six types of data containers: six drivers use one-
dimension array, two use linked list, one uses XArray
(eXtensible Arrays, ∼2K LOC in Linux), three use radix
tree (which uses XArray internally and has ∼3K LOC), one
uses OSArray and three use OSSet. The latter two are C++
classes for collections. Additionally, out of the 16 drivers
with dependencies, 11 were detected based on the single-
memory-read lookup that uses the index of an array (or any
advanced data structures built on Array) as the ‘handler’. For
the rest 5 cases following the multiple-memory-read lookup,
all of them maintain a ‘handler’ inside each object and use
a counter as the ‘handler’, which is incremented by some
constant every time a new object is allocated.

To further demonstrate our approach works for the
most common and prevalent cases, we checked the exist-
ing specifications from Syzkaller for all other syscalls that
SyzGen++ does not support and collected 484 producers
that could generate ‘handlers’ (i.e., resources in Syzlang’s
terminology). We randomly sampled 50 cases and inspected
their source code to verify whether they follow the pat-
terns of insertion/lookup and sequential allocation. As a
result, we found 37 out of 50 cases matched our proposed
patterns. For the remaining unmatched ones, 9 requires
correlating more than two syscalls as aforementioned, e.g.,
bpf$BPF_PROG_GET_NEXT_ID returns the ID (or ‘han-
dler’) of the next eBPF program previously loaded via
bpf$PROG_LOAD, three do not meet our requirements for
lookup, e.g., clock_getres finds the resolution (preci-
sion) of the specified clock, which is not used in a lookup
operation, and one does not follow the pattern of sequential
allocation, i.e., add_key adds a key to the kernel’s key
management facility and returns its serial number which is
randomly assigned, and upon further investigation, we found
that this is intentional to prevent covert channel problems,
according to the comments in Linux.

5.3. Effectiveness of Interface Recovery

To evaluate the end-to-end performance of SyzGen++,
we compared its fuzzing results with those of Syzkaller,
enhanced DIFUZE+, KSG, and SyzDescribe, as presented



Driver #Avg. Coverage p-value

Syzkaller DIFUZE+ KSG Desc∗ SyzGen++
w/o dep infer SyzGen++ Syzkaller DIFUZE+ KSG Desc∗ SyzGen++

w/o dep infer
autofs 3427 N/A 2866 2325 3374 3651 0.004 N/A 0.004 0.004 0.004
dri 20260 2988 9575 13877 12107 17762 1 0.004 0.004 0.004 0.004
fuse 17867 2635 2355 2195 2566 3064 1 0.028 0.004 0.004 0.008
kvm 19498 11458 8761 14423 11611 16370 1 0.004 0.004 0.004 0.004
loop
control 5690 9037 7554 7185 9179 10227 0.004 0.004 0.008 0.004 0.075

ppp 7556 7416 6527 7203 7446 7389 1 0.5 0.004 0.004 0.79
ptmx 16487 10754 14751 10596 21417 24620 0.004 0.004 0.006 0.004 0.004
rdma cm 5840 2238 2678 N/A 7513 7880 0.004 0.004 0.004 N/A 0.004
Desc∗ stands for SyzDescribe.

TABLE 4: Comparison between SyzGen++ and previous work, encompassing Syzkaller, DIFUZE+(i.e., DIFUZE with
bug fixes), KSG, and SyzDescribe. We conducted five 24-hour trials for each driver, and report the average code coverage.
P-values were calculated using the Mann-Whitney U test on coverage. For the ablation study, we incorporated SyzGen++
w/o dependency inference.

Driver #Avg. Crashes

Syzkaller DIFUZE+ KSG SyzDes-
cribe

SyzGen++
w/o dep

infer

Syz-
Gen++

autofs 0 N/A 0 0 0 0
dri 4 0 0 0 0.2 2.2
fuse 0 0 0 0 0 0
kvm 3.2 0.4 0 0.8 0.4 2
loop
control 0 2 1.2 1 2.0 3

ppp 0.6 0 0 0 0.6 0.6
ptmx 4.0 3.4 0 0.4 0.4 1.6
rdma cm 0.6 0 1.0 N/A 0.6 1.6

TABLE 5: Comparison between SyzGen++ and previous
work in terms of the average number of unique crashes. For
each driver, we conducted five 24-hour trials.

in Table 4 and Table 5. Although we fixed some prominent
bugs in DIFUZE to support Linux 5.15, it still failed to
recover device file names for four out of eight drivers due
to its static analysis approach with ad-hoc domain knowl-
edge. In contrast, our dynamic approach is more accurate.
Nevertheless, DIFUZE+successfully identified the ioctl
entry points for seven out of eight drivers and produced
the corresponding specifications. To give it a fair chance,
we corrected the device file names for those four broken
drivers, enabling us to measure the overall effectiveness of
interface recovery by comparing the fuzzing results. We ran
five trials for each target and applied the Mann-Whitney U
test, as suggested by [39], to compare the performance.

As we can see from Table 4, for all drivers ex-
cept ppp, SyzGen++’s improvement on coverage is
statistically significant (i.e., p-value < 0.05) compared
to DIFUZE+, achieving 71% coverage improvement on
average. SyzGen++’s performance is comparable to
DIFUZE+on the ppp driver, likely because the driver has
only one explicit dependency, which limits the potential con-
tributions of dependency inference. Additionally, it is noted
that ppp uses sequential allocation for the handler, starting
from zero, and Syzkaller is optimized to favor special values
including zero when randomly generating an integer. Simi-
larly, SyzGen++ outperforms both KSG and SyzDescribe

significantly in all tested drivers, resulting in 67% and
39% coverage improvement on average, respectively. This is
expected since KSG does not consider dependencies, while
SyzDescribe only deals with special dependencies like file
descriptors and omits constraints on the inputs. As shown in
Table 5, more code coverage typically leads to more crashes.

Surprisingly, SyzGen++ surpasses Syzkaller with hand-
crafted specifications in four of the eight cases tested. The
main reason for this is that SyzGen++ identified more com-
mand values than Syzkaller, which unblocked more code.
Take the module ptmx as an example, we found that some
command values are hidden behind indirect function calls,
presumably overlooked by humans. Conversely, SyzGen++
underperforms Syzkaller for fuse and dri as it misses
some dependencies. Regarding KVM, Syzkaller implements
some helper functions specific to KVM that enable proper
setup of virtual CPUs into a state that is sufficiently inter-
esting.

To investigate the extent to which dependency inference
benefits fuzzing, we conducted an ablation study by dis-
abling dependency inference in SyzGen++. This effectively
ruled out the difference introduced by type and constraint
recovery. As shown in Table 4, SyzGen++ outperformed its
inferior version in all cases except ppp for the same reasons
mentioned earlier. The coverage improvement ranges from
5% to 47%. In general, the more dependencies a driver
has, the greater the benefits that SyzGen++ can bring.
Interestingly, compared to DIFUZE+and KSG which do not
support dependency inference, SyzGen++ without depen-
dency inference still achieved 54% and 38% more coverage,
respectively, indicating that SyzGen++’s structure and con-
straint recovery is more accurate.

5.4. Performance

Although generating specifications is a one-time effort
and the interfaces of kernel drivers do not change frequently,
we measure its overhead and break it down into three parts
to better understand its performance, including symbolic
execution, specification generation, and dependency gener-
ation as shown in Table 6. We set a 10-minute timeout



Driver SE SG
DG

including
fuzzing

#CMD Total/Avg

autofs 9.4h 7.6h 2.4h 14 19.5h/1.4h
dri 14.7h 1.1h 1.3h 108 17.1h/0.2h
fuse 0.3h <0.1h 0.03h 1 0.5h/0.5h
kvm 39.1h 24.9h 18.4h 109 82.4h/0.75h
loop control 1.5h 0.8h 0.04h 3 2.4h/0.8h
ppp 3.6h 0.4h 0.4h 23 4.7h/0.2h
ptmx 12.2h 4.2h 3.4h 58 20h/0.3h
rdma cm 13.8h 5h 3.2h 23 22h/1h

TABLE 6: Time cost of SyzGen++. SE, SG, and DG
represent the time cost of symbolic execution, specification
generation, and dependency generation, respectively. The
last column shows the total time cost and the average cost
per CMD.

for each run of symbolic execution, though this may be
exceeded because Angr (the symbolic execution engine we
use) does not support precise timeout yet. As mentioned in
§4.1, the number of rounds of symbolic execution required
for each interface (i.e., CMD) depends on the number of
generated specifications, as SyzGen++ needs to refine each
specification using the Coverage-Optimized Search (COS)
strategy. As a result, the overhead of symbolic execution
is proportional to the number of CMD values and the
complexity of the interface. For instance, we found that
the driver kvm is the most expensive to analyze due to
the following reasons: 1) it has the most CMD values; 2)
this module is more complex than others, resulting in more
constraints introduced on the inputs and hence more solving
time in generating specifications; 3) due to missing bounds
for nested array mentioned in §5.2, SyzGen++ initially
identifies lots of false dependencies which are later pruned
based on our heuristic of sequential allocation of “handler”,
leading to more fuzzing time in generating valid testcases for
dependency validation. On average, for the 8 tested Linux
drivers, each CMD takes 0.6 hours to finish and SyzGen++
generates 1.2 specifications per CMD.

We also conducted an evaluation of the effectiveness of
the selective symbolic execution approach discussed in §4.3.
The evaluation revealed that if we disable this optimization,
SyzGen++ was unable to identify dependencies for four out
of eight drivers, resulting in a 51% dependency miss rate.
The primary reason for this was the inability of symbolic
execution to resolve some function pointers, which impeded
further execution. Additionally, path explosion was another
common reason for missing dependencies. With the opti-
mization enabled, we were able to eliminate some infeasible
paths and alleviate this issue to some extent.

5.5. Bug Findings

To evaluate SyzGen++’s ability to uncover new bugs,
we conducted a one-month fuzzing campaign on Linux ker-
nel v6.2, using the same configuration as Syzkaller and spec-
ifications produced by SyzGen++. As mentioned in §5.1,
SyzGen++ is built on top of SyzGen, which does not sup-
port the latest macOS version. We did not attempt to fuzz the

old version (macOS 10.15.4) as it is less likely to yield new
bugs, particularly considering the limited number of IOKit
drivers available within a Virtual Machine that do not require
root access. Furthermore, since Linux has been continuously
fuzzed for years with Syzkaller, we do not expect to find
many bugs in this code. Nonetheless, SyzGen++ found
previously-unknown bugs in code fuzzed by Syzkaller. In
addition, we found 10 other drivers, including bsg, btrfs,
dlm, dm, dma, dmxdev, dvb, md, mtd, and ubi, which
are enabled by Syzkaller’s Linux config but do not have
Syzlang specifications, and thus we ran SyzGen++ against
them to generate corresponding specifications for fuzzing.
In total, SyzGen++ found 10 previously-unknown bugs as
listed in Table 7. We have responsibly disclosed these bugs
to the respective maintainers, and so far, we have received 6
CVEs and patched 5 of them. Our investigation revealed that
6 of the bugs came from drivers without any specifications
in Syzkaller, despite using the same Linux configuration and
not enabling additional drivers for testing, indicating the
lack of manual efforts in implementing specifications for
all drivers since it is time-consuming and requires domain
expertise. Given the substantial amount of drivers that were
not enabled in our test and do not have any specifications,
we believe that SyzGen++ could continue benefiting the
Linux Kernel community.

SyzGen++ found 4 bugs from drivers that necessi-
tate accurate dependency analysis as indicated in the third
column of Table 7. The only one found within KVM re-
quires dependencies to trigger —- dependencies that were
overlooked by Syzkaller but identified by SyzGen++. This
does not mean accurate dependency inference is unnecessary
for the following reasons: 1) those drivers with non-trivial
dependencies already have manually written specifications
and were fuzzed for years. Thus it is expected that we didn’t
find many bugs in those codes given that SyzGen++ only
identifies four more dependencies missed by Syzkaller; 2)
we only reported previously unknown bugs. We have tried
fuzzing some old kernel versions (e.g., 5.15) and found
more N-day bugs that need accurate dependency inference,
but only zero-day bugs are worth reporting. Thus, we only
chose Linux v6.2 as our target for bug finding. We expect
to find more bugs requiring accurate dependency inference
in Android given that it lacks support from Syzkaller. Next,
we discuss some case studies.

Use-After-Free in KVM: The root cause of this bug is
that KVM installs file descriptors to enable userspace to
read VM and vCPU statistics, but it does not acquire a
reference to the VM to ensure the VM and its vCPUs remain
active until the statistics file descriptors are closed. To find
the bug, SyzGen++ had to use independent syscalls to
create a VM, request a file descriptor bound to the newly-
created VM specified by its handler obtained earlier, free
the VM, and finally read from this file descriptor to trigger
the UAF. Although Syzkaller already has a handcrafted and
comprehensive specification for KVM (893 LOC in Sy-
zlang), it misses the critical dependency between requesting
a file descriptor for VM statistics and reading from that file
descriptor, which was revealed by SyzGen++.



Crash Type Affected function Driver Status
UAF∗ kvm stats read kvm+ Confirmed
UAF do raw spin lock rdma+ Confirmed
UAF put mtd device mtd Confirmed
Divide-
by-zero

∗ ubi attach mtd dev ubi CVE-2023-31085

Null-ptr-def vidtv mux stop thread demux CVE-2023-31081
Null-ptr-def hci uart tty ioctl ptmx+ CVE-2023-31083
Deadlock∗ dm get inactive table dm CVE-2023-2269
Deadlock∗ cec transmit msg cec Confirmed
Deadlock∗ dvb frontend get event dvb CVE-2023-31084
Deadlock gsmld write ptmx+ CVE-2023-31082
+: Has explicit dependencies
∗: Patched bugs

TABLE 7: Previously-unknown bugs found by SyzGen++.
UAF is short for Use-After-Free.

Null-Ptr-Deref at hci uart tty ioctl: This bug is a race
condition in which one ioctl call sets the flag and then
initializes a data pointer, while another ioctl call checks the
flag before dereferencing the pointer. Due to race conditions,
the second call may access the uninitialized pointer even
when the flag is set. Although the existing manually-curated
specification does not miss any dependencies, we find that
it omits two valid command values necessary to trigger the
bug. This part of the code may have been overlooked be-
cause it is concealed by some indirect calls. SyzGen++ can
successfully extract those command values, as it leverages
a dynamic environment to resolve most indirect calls (see
§4 for details).

6. Limitation and Future Work

Aside from the false negatives mentioned earlier, we
point out some other limitations of our proposed approach as
follows. SyzGen++ assumes that all objects within a single
data container are of the same type. This can lead to less
accurate specifications when dealing with data containers
that contain objects of different types, e.g., file descriptors
and their associated struct file. While the kernel can
distinguish between different file types using the subfield
f_ops, SyzGen++ treats all file descriptors as the same,
as they are maintained within a single data container via
specific APIs (e.g., alloc_fd and fget). This can lead to
generated specifications that are too generic, as they assume
that any file descriptor can be used interchangeably. How-
ever, we note that this limitation is not critical for fuzzing,
as coverage feedback can guide the fuzzer to produce valid
sequences from the generated candidates.

Although we have observed one case involving a macOS
driver where a string is used as the key to perform lookup
operations, Syzkaller supports only the ‘handler’ of type int
(int8, int16, int32, and int64 to be more specific), and thus
we consider it out of scope. Even if Syzkaller supports it
in the future, we anticipate difficulty in identifying such
cases if we directly apply our proposed approach. This
particular macOS driver serves as a key-value storage using
a hashmap, and therefore retrieves an object based on the
hash value of the given string, rather than the string itself.

In this case, SyzGen++ would not be able to associate
the input string with the lookup operation. One approach
to tackle this challenge is to model these data containers
by hooking all their APIs (e.g., HashMap.get(string)), as
the computation of the hash value is typically implemented
internally as libraries that are exposed for other drivers to
use. Moreover, there is prior work on inferring function
names based on code semantics using code embedding [40],
which we could potentially leverage to identify standard data
containers in an automated manner.

Additionally, we would like to point out some other
directions worthy of exploration. In this work, we only
focus on explicit dependencies as Syzlang does not support
specifying implicit dependencies. There is also prior work
on learning implicit relations between syscalls by leveraging
existing traces/test suites [6], [9], [12] or coverage [27]. Ad-
ditionally, Syzlang does not support a particular dependency
in which users are responsible for specifying a unique value
for a ‘handler’. It would be interesting to extend Syzlang
to support these dependencies. Although there are some
common drivers between Android and Linux, we found
that they do not necessarily share the same interfaces and
Syzkaller only maintains one specification for one driver
without separation for different downstream distributions.
Similarly, driver code may evolve, requiring different spec-
ifications for different versions. Since it is time-consuming
for manual development of syscall specifications, let alone
long-term maintenance upon new code changes, we believe
we could apply SyzGen++ to keep specifications updated
and maintain different ones for different kernel versions and
distributions.

7. Conclusion

This paper introduces SyzGen++, aiming to infer ex-
plicit dependencies between syscalls and automatically gen-
erate syscall specifications with driver binaries only. We
abstract two key operations, namely insertion, and lookup,
to identify dependency and leverage a lightweight trial-and-
error-based approach to validate it. Our evaluation demon-
strates that SyzGen++ achieves comparable performance
in terms of dependency inference for drivers with good
test suites and identifies 245 more dependencies for drivers
without test suites. Additionally, SyzGen++ outperforms
DIFUZE, KSG, and SyzDescribe in terms of code coverage,
achieving 71%, 67%, and 39% improvement on average,
respectively. Additionally, we found 10 previously-unknown
bugs in Linux 6.2 and got 6 CVEs, using specifications
generated by SyzGen++.
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struct autofs_dev_ioctl *param;
/* Copy the parameters into kernel space. */
param = copy_dev_ioctl(user);
if (cmd != AUTOFS_DEV_IOCTL_VERSION_CMD &&
         cmd != AUTOFS_DEV_IOCTL_OPENMOUNT_CMD &&
         cmd != AUTOFS_DEV_IOCTL_CLOSEMOUNT_CMD) {

    struct super_block *sb;
    fp = fget(param->ioctlfd);
    ... ...

Figure 4: Excerpt from Linux kernel for the driver autofs

Appendix A.

A.1. Dependency in Syzkaller

We observed Syzkaller specifies 31 more dependencies
than the ground truth, which we found to be either false
positives or for code that is not enabled by its default con-
figuration. They are present in three drivers (i.e., autofs,
dri and kvm) due to the following reasons: (1) To ease
the development of specifications, Syzkaller supports type
templates allowing developers to factor out common fields
for similar types and declare derived types through inher-
itance. Thus, for the driver autofs, Syzkaller specifies a
base type with a dependency, and all 14 interfaces reuse it
to reduce redundancy. However, as illustrated in Fig. 4, we
can observe that all commands share the same input struc-
ture struct autofs_dev_ioctl but there are three
exception cases where the specified handler ioctlfd is
not used (i.e., false positives) despite being declared in the
input structure. Syzkaller follows the type definitions from
the source code without validating them. (2) As for dri,
Syzkaller specifies seven dependencies for legacy code that
is not enabled by its configuration. (3) Similarly, Syzkaller
consolidates specifications for different architectures into
one file for KVM. For instance, Syzkaller specifies the
following interface which is only available when the kernel
is built for a particular architecture (i.e., S390):

ioctl$KVM S390 UCAS MAP ( fd fd kvmcpu , cmd c o n s t [
KVM S390 UCAS MAP] , a r g p t r [ in ,
kvm s390 ucas mapping ] )

A.2. False Positives

Our solution did not produce any false positives, indicat-
ing the robustness of our approaches, including identifying
insertion and lookup operations as dependencies (as dis-
cussed in §3.2.3) and the sequential allocation of “handler”
(as described in §3.2.4). Interestingly, we found only two
drivers, namely rdma_cm and kvm, have false positives if
we simply rely on the first heuristic due to the following
reasons:

1) SyzGen++ found a plausible dependency between
two interfaces rdma_listen and rdma_bind_ip.
While rdma_listen allocates a port number and creates
an associated kernel object that is stored in some data
container and can be retrieved through the port number,
rdma_bind_ip binds to a certain IP address combined
with a user-provided port number after it ensures the port
number is available. The way it checks the availability of

a port number is to look up the data container with it,
and it only proceeds when it fails to retrieve an object.
Although rdma_listen and rdma_bind_ip satisfy the
requirements of insertion and lookup, respectively, they do
not conform to our definition of explicit dependency because
the lookup operation is to ensure there is no corresponding
object instead of retrieving one created by the insertion
operation. Since rdma_bind_ip does not reuse the port
number produced by rdma_listen, rdma_listen does
not return the newly-assigned port number to userspace.
Thus, SyzGen++ easily rejects this potential dependency
based on the second heuristic because rdma_listen does
not have any output buffer.

2) As mentioned in §3.2.3, SyzGen++ utilizes field
offsets to represent access paths and thus cannot distinguish
different subfields within kvm as shown below.

s t r u c t kvm {
. . . . . .
kvm io bus * b u s e s [KVM NR BUSES ] ;
. . . . . .
h l i s t h e a d i r q a c k n o t i f i e r l i s t {

h l i s t n o d e * f i r s t ;
} ;

}
I n s e r t i o n : kvm−> i r q a c k n o t i f i e r l i s t −> f i r s t
Lookup : kvm−>b u s e s + i n d e x * s i z e o f ( kvm io bus )

SyzGen++ does not consider the constraints upon the
user input when matching pairs due to the overconstraint
issue introduced by symbolic execution [41]. As a result,
SyzGen++ may incorrectly assume that the lookup opera-
tion can retrieve more objects beyond the fixed-sized array
“buses”. Thanks to the second heuristic (i.e., sequential al-
location of “handler”), SyzGen++ could successfully prune
this false positive.

Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

SyzGen++ automatically infers dependencies between
syscalls to generate specifications for more efficient fuzzing.
The paper uses symbolic execution to look for a dependency
design pattern (insert and lookup). In a one-month fuzzing
campaign, they find four new CVEs depending on these
specifications.

B.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Addresses a Long-Known Issue
• Provides a Valuable Step Forward in an Established

Field



B.3. Reasons for Acceptance

1) Creates a new tool to enable future science, in case
that SyzGen++ would be open-sourced.

2) Addresses a long-known issue, which is the depen-
dencies of syscalls that create a barrier in finding
bugs deeper in the Linux kernel.

3) Provides a valuable step forward in an established
field, by creating a fuzzer that found new CVEs in
the Linux kernel.

B.4. Noteworthy Concerns

1) SyzGen++ cannot handle dependencies of more
complex syscalls like mmap.

2) During the one-month fuzzing campaign on the
Linux kernel, half of the bugs uncovered were not
found due to the SyzGen++ dependency improve-
ments. It is unclear how effective SyzGen++ is in
practice, as bugs are the only metric in the paper.

3) The reviewers did not have source code access to
SyzGen++. As SyzGen++ has more than 12k
lines of code, it could contain a lot of special cases,
and the algorithm description indicates it tends to
produce a lot of false positives. Applicability to
multiple Linux kernel versions was not shown.

4) Unfair comparison with other works, claiming that
Moonshine would not find any dependencies.

5) The macOS evaluation is limited. While the au-
thors state that dependencies could also be in-
ferred for macOS, the dependencies identified are
way lower than SyzGen’s findings. SyzGen found
65 dependencies not found by SyzGen++, while
SyzGen++ only found 3 dependencies not found
by SyzGen.

6) The paper considers a very limited set of macOS
IOKit drivers. With IOKit being open-sourced by
Apple, regular releases of Apple’s Kernel Develop-
ment Kits for macOS, various reversing done by the
Asahi Linux project, and knowledge about IOKit
being documented in Jonathan Levin’s books, ana-
lyzing more drivers should be possible.

7) The paper did not attempt to fuzz the macOS
kernel, even though various drivers are reachable
from user space without disabling SIP.

Appendix C.
Response to the Meta-Review

We provide our responses below to address those note-
worthy concerns one by one.

1) We agree that SyzGen++ cannot handle some
complex cases yet and have discussed the limita-
tions of our approach in §5.2 and §6.

2) We added the discussion of the necessity of accu-
rate dependency inference in §5.5.

3) As mentioned in §1, we have opened source
our tool at https://github.com/seclab-ucr/
SyzGenPlusPlus. As we discussed in §4, we
do not target any specific kernel versions, nor
handle any special cases. We do model some
common functions like kmalloc and free as any
other symbolic execution-based solutions, but we
don’t expect them to change frequently across
different versions. As mentioned in §5.2, we didn’t
find any false positives thanks to our dynamic
checker based on the observation of sequential
allocation of handlers. Even without the checker,
we found only two drivers (i.e., rdma cm and
kvm) have false positives and provided a detailed
explanation in Appendix A.2.

4) We have realized that including our test results
for Moonshine without sufficient explanation could
potentially mislead readers, giving the incorrect im-
pression that Moonshine is entirely ineffective. To
rectify this, we have provided a detailed explanation
in §5.2. Moonshine, along with any other trace-
based solutions, can discover dependencies if valid
traces exercising those dependencies are supplied.

5) We explained the reason why SyzGen++ failed
to identify those dependencies found by SyzGen
in §5.2. This is because those dependencies were
handled by the underlying firmware, which is not
analyzed by our tool. This is more like a limita-
tion of our current implementation, not the design.
We believe it could be addressed with additional
engineering efforts.

6) SyzGen++ leverages SyzGen to support macOS,
which only supports IOKit drivers and VMWare
Fusion-based macOS setup. Additionally, VMWare
Fusion does not support macOS 12.3 Monterey or
later yet [35]. Hence, we can only test the same
old version (macOS 10.15.4) as SyzGen and reused
the same dataset of IOKit drivers. Note that the
number of IOKit drivers running inside a VM is
much less than that of a physical machine and
SyzGen excludes drivers that require root access.
It is possible to analyze more drivers if we could
improve SyzGen to either utilize a physical ma-
chine or switch to another VM that supports new
macOS versions, though it may require significant
engineering efforts. Even if we could achieve it,
we do not have the test suites/traces for those
new drivers and it would be unfair to conduct the
comparison between SyzGen and SyzGen++. We
added more details in §5.1.

7) Same as 6. Fuzzing an older macOS kernel is less
likely to yield new bugs, particularly considering
the limited number of IOKit drivers available within
a Virtual Machine that do not require root access.
We have clarified it in §5.5.


