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ABSTRACT
Query optimization has long been a fundamental yet challenging

topic in the database field. Instead of relying on hand-crafted cost

models, some recent works have shown the advantages of reinforce-

ment learning (RL) based learned query optimizers. These works

often use the cost (i.e., the estimation of cost model) or the latency

(i.e., the time of executing the plan) as guidance signals for training

their learned models. However, cost-based learning suffers from

unsatisfactory latency performance, while latency-based learning

is highly time-consuming. In order to bypass such a dilemma, re-

searchers attempt to transfer a learned value network from the cost

domain to the latency domain. In this paper, we identify several

valuable observations about cost/latency-based training, which mo-

tivate us to directly transfer the reward function, instead of the

value network. Based on this idea, we propose a two-stage RL-based

framework, BASE, to bridge the gap between cost and latency. After

learning a policy based on cost signals in its first stage, BASE formu-

lates the process of transferring the reward function as a variant of

inverse reinforcement learning. Intuitively, BASE learns to calibrate

the reward function and updates the policy regarding the calibrated

one in a mutually-improved manner. Extensive experiments exhibit

the superiority of BASE on two benchmark datasets: Our learned

optimizer saves 30% of training time on average to outperform

traditional DBMS compared with the time used by SOTA methods.

Meanwhile, BASE is also further applicable to other learning-based

optimizers, and makes these optimizers more efficient, confirming

the effectiveness of transferring the reward function.
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1 INTRODUCTION
The query optimizer is a critical component in database manage-

ment systems (DBMS) and is expected to find the most efficient exe-

cution plan for each given SQL query. Recently, studies on machine

learning (ML) enhanced DBMS have attracted more and more atten-

tion and shown the superiority of boosting database performance

in a data-driven way [1, 9, 17]. In particular, reinforcement learning

(RL) is applied to produce execution plans and demonstrates its

advantages in finding competitive execution plans without heuris-

tics [6, 11, 12, 21].

RL trains a policy in a trial-and-error manner to maximize/mini-

mize the cumulative return of a reward function. When applied to

the query optimization, the learned query optimizer generates an

execution plan instructed by its current policy and retrieve a reward

as feedback indicating how good/bad the plan is. Then the optimizer

can update its policy based on the reward to make good plans more

likely or bad plans less likely. Thus, the optimizer can learn from

a reward function to make its policy better. Generally, two types

of signals can be considered in a reward function: cost and latency.
Cost refers to the amount of computation estimation made by the

DBMS cost model for an execution plan. Latency, what database

users truly care about, is the actual time cost of executing a plan.

In fact, recent works have shown the promise of RL-based query

optimization. The common part of them is that they learn a value

network mapping an execution plan to the cumulative reward (i.e,
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the total cost/latency of an execution plan). Thus, they can choose

the best plan greedily by searching for the minimum value output

from the network. The difference is how they use these two signals

for setting reward functions, which can be categorized into three

types. The first type of work, such as Rejoin [12], consider only

cost signals in reward functions. The second type of work trains

their policies with latency signals. For example, Bao [10] trains

its value network by latency in a supervised regression manner.

Neo [11] pre-trains a value network by regressing the latency sig-

nals of demonstrations (i.e., plans generated by traditional query

optimizer). The pre-training strategy reduces the number of plans

that need to be executed. The third type of work exploits both cost

and latency. Both DQ [6] and RTOS [21] pre-train a value network

with cost and then transfer it from cost domain to latency domain.

They assume the feature extractor (all except for the last layer of

the network) can be shared between these two domains so that

only the last layer needs to be learned with the latency signals.

Although aforementioned works have shown decent results, we

dig deep into them and identify several observations (OBS) about
training query optimization policies. OBS-1: Cost and latency are of-
ten inconsistent, and thus the optimal policy regarding cost might

not produce the execution plan that results in the least latency.

OBS-2: Directly learning a policy with latency is time-consuming

because it requires a huge amount of time for executing generated

plans to collect latency signals, not to mention that some bad plans

even take several days to be completed.OBS-3:DespiteOBS-1, only a
small portion of queries exhibit a large gap between cost and latency

in terms of the behaviors of their corresponding optimal policies.

We provide more empirical evidence about these observations in

Section 3. OBS-1 and OBS-2 raise an effectiveness-v.s.-efficiency

dilemma: We need to learn an optimal policy regarding latency

rather than cost, but the number of execution has to be minimized

for efficient training. According to OBS-1, cost-only methods, such

as Rejoin, achieve efficient training, but their learned policies are

imperfect in terms of latency. The key problem of latency-only

methods, such as Neo and Bao, lies in how to reduce the number of

plans that need to be executed. The value regression they use needs

to be conducted on both good and bad experiences to learn which

execution plans should be taken [4]. The pre-trained value network

learns from barely good experiences so it still has to explore many

plans to improve itself. For DQ and RTOS, they try to achieve effi-

cient training. Even though the feature extractor assumption may

hold, learning the randomly-initialized last layer is still inefficient

since it has not exploited the experience from the cost domain when

performing exploration.

To benefit from both the cost domain and the latency domain,

now comes the question: how canwe sustain the knowledge learned

from the cost domain and improve it to the latency domain? We

propose a novel solution that instead of getting rid of the cost signal

like previous methods, we can transfer the reward function and

policy from the cost domain to the latency domain in a mutually-

improved manner. Intuitively, the gap between cost and latency

leads to different optimal policies. If we can bridge this gap, namely

calibrate “erroneous" cost-based reward function, solving the opti-

mal policy w.r.t. the calibrated reward function will readily result

in the policy with the best latency performance. Now comes the

second question: what is the benefit of directly working on reward

function instead of value function? According to OBS-3, only on a

modest portion of queries, cost and latency lead to different opti-

mal plans. By transferring the reward function, we only need to

eliminate such conflicts. By contrast, the discrepancy between cost

and latency’s corresponding optimal value functions is much more

significant than the optimal policies, making transferring the value

function require more training samples and fine-tuning steps.

Motivated by the benefit of transferring reward function, we

propose a two-stage RL-based framework BASE to learn a query

optimizer. In the first stage of BASE, we pre-train a policy with cost

signals, which is expected to converge toward the query optimizer

of the adopted DBMS efficiently. In the second stage of BASE, we
transfer the pre-train policy to the latency domain. Inspired by

OBS-3, BASE employs a calibration function for the reward function

to fill its gap against latency. The calibration function will correct

the cost that leads to bad execution plans in terms of latency. BASE
formulates the procedure of locating and filling the gap as a variant

of inverse reinforcement learning (IRL):

(1) To locate the gap, BASE utilizes the active learning (AL) tech-

nique to select potential queries and plans on which the current re-

ward function is likely to cause conflicts against latency. As conflicts

are discussed in terms of the behavior of corresponding optimal

policies, we define two selection criteria—diversity and informa-

tiveness, which are measured with the help of the current policy

network. Then selected plans will be executed to collect latency sig-

nals. This step is analogous to actively soliciting labels for updating

a classifier-based reward function in some IRL methods [18].

(2) To fill the gap, the calibration function is updated by encour-

aging it to correlate the current reward function with latency on

newly collected contradictory samples (i.e., query-plan pairs) while

preserving their consistency on other samples. Then the current

policy will be updated according to the calibrated reward function.

This step corresponds to the inner loop of the IRL formulation.

The policy improves the reward function by discovering more

conflicts to eliminate. And then the calibrated reward function

improves the policy by providing more consistent supervision. By

repeating such a procedure, conflicts are gradually discovered and

fixed, and the learned calibration function will make the reward

function close to latency. Consequently, the learned policy becomes

optimal w.r.t. latency.

We conduct extensive experiments to show training efficiency

and latency performance of our method. BASE shortens 30% of train-

ing time on average compared with existing methods to outperform

traditional DBMS. With a modest number of query execution, BASE
reduces latency by 9% more than other methods. Meanwhile, BASE
is also further applicable to other learning-based optimizers, such

as ML-steered query optimizer, and substantially improve training

efficiency, which confirms the robustness of BASE techniques.

Contributions of this paper are summarized as follows:

• We empirically analyse SOTA RL-based query optimizationmeth-

ods and identify the feasibility and challenges in their cost/latency-

based training courses (in Section 3).

• We propose a two-stage RL-based framework BASE to efficiently

learn an end-to-end query optimizer. The optimizer can predict

a complete execution plan for each given query, including join



order, index, and physical operator selection, with satisfactory

latency performance (in Section 4).

• To the best of our knowledge, it is the first work to transfer

a policy from the cost domain to the latency domain with an

IRL formulation. Meanwhile, we make a theoretical analysis to

provide the rationale for transferring the reward function (in

Section 5).

• We conduct extensive experiments on benchmarks, demonstrat-

ing the superiority and practicality of BASE (in Section 6).

2 PROBLEM STATEMENT
2.1 Problem Settings
Query Optimization. For a SQL query 𝑞, Rel(𝑞) is a set of all base
relations in 𝑞. Each query execution plan 𝑝 can be represented by a

plan tree. Every leaf node of the tree is a relation 𝑏𝑖 ∈ Rel(𝑞). Every
relation 𝑏 of a specific leaf node is also specified with a scan type

𝑒 ∈ 𝐸, where 𝐸 represents the set of all scan types, e.g., sequential

scan Seq(𝑏) and index scan Index(𝑏). Other non-leaf tree nodes

are join implementations ⊲⊳𝑖∈ 𝐽 , where 𝐽 represents the set of all

join implementations, e.g., nested loop join ⊲⊳𝑁 , merge join ⊲⊳𝑀 ,

and hash join ⊲⊳𝐻 . 𝑝 will be executed in a bottom-up order, thus it

specifies a join order.

An end-to-end query optimizer 𝑄𝑂 can map a given SQL query

𝑞 directly to an execution plan 𝑝 . The time of executing a plan is

often referred to as latency. The DBMS cost model can estimate the

cost for an execution plan, which is expected to reflect the latency

of the plan, but they are not positively correlated in practice. In this

paper, we study the following objective:

Objective 1. Given a DBMS, a dataset, and a training workload,
our objective is to efficiently learn a 𝑄𝑂 to replace the cost-based
optimizer in DBMS. The learned 𝑄𝑂 generates the query execution
plans of the test workload that have minimal execution latency.

Domain Transfer. BASE improves the training efficiency and sta-

bility of a learned query optimizer dramatically by first learning

from a data-rich source domain (cost) and then transferring knowl-

edge learned from the source domain to the data-scarce target

domain (latency). We defer the formulation of the domain transfer

problem in Section 5.1.

2.2 Plan Enumeration in Markov Decision
Process

An MDP consists of five components: state space S = {𝑠𝑡 }, action
space A = {𝑎𝑡 }, transition probability distribution T (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ),
reward 𝑟 (𝑠𝑡 , 𝑎𝑡 ) and discount factor 𝛾 , which is denoted by M =

(S,A,T , 𝑟 , 𝛾). For the query optimization problem, we use the

same formulation of MDP as previous RL-based works [11, 20].

For an MDP, a policy 𝜋 is a function that tells an agent

(query optimizer) which is the best action to choose in each

state. Denoting a trajectory as 𝜏 = ⟨𝑠0, 𝑎0, 𝑠1, . . . , 𝑠𝑇−1, 𝑎𝑇−1, 𝑠𝑇 ⟩,
the agent is tasked to minimize the expected cumulative reward

E𝜏∼𝜋,T [𝑅(𝜏)] = E𝑎𝑡∼𝜋 ( · |𝑠𝑡 ),𝑠𝑡+1∼T(· |𝑠𝑡 ,𝑎𝑡 ) [
∑𝑇−1
𝑡=0 𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 )].

Thus, different reward functions might lead to different optimal

policies. For Objective 1, the most straightforward design of the

reward function is to let 𝑟 (𝑠𝑡 , 𝑎𝑡 ) = 0,∀𝑡 < 𝑇−1 and 𝑟 (𝑠𝑇−1, 𝑎𝑇−1) =
𝐿(𝑠𝑇 ), where 𝐿(·) stands for a function that maps an input state
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Figure 1: PostgreSQL cost
and latency correlation.

Query Feedback Cost Latency

8a

Cost 66616.4 1766.6

Calibrated 151223.1 1233.8

12a

Cost 3865.15 87.3

Calibrated 4326.91 33.5

19b

Cost 4613.1 10098.8

Calibrated 253503.7 7674.7

24a

Cost 7826.3 1635.6

Calibrated 136361.4 448.5

Table 1: Discrepancies be-
tween cost and latency.

Table 2: Time spent on different training phases in three hours.

Training Signal

Time Consumption (h)

Episodes

Plan Execution Neural Network Get Cost

Latency 2.76 0.24 0 226

Cost 0 2.89 0.11 88,524

𝑠𝑡 to the latency signal of its corresponding plan (i.e., the plan 𝑙𝑡
represents). This setting is widely used in previous methods [11, 21].

Obviously, with such a reward function, the cumulative reward can

be minimized by generating the plan of least latency. However, it

is time-consuming for model training. The reward function needs

to be designed carefully to achieve the Objective 1. We elaborate

more about reward function design in Section 4.

3 OBSERVATIONS IN QUERY OPTIMIZATION
OBS-1: Cost is inconsistent with latency, which leads to different
optimal policy. As an example, we execute queries from the Join

Order Benchmark (JOB) [7] workload using a traditional DBMS,

i.e., PostgreSQL [19]. Figure 1 shows the correlation between cost

estimation and execution latency in PostgreSQL. Obviously, cost

signals do not align with latency signals. Cost is designed to reflect

the relative latency performance, while in reality, it could produce

execution plans with long-running time.

In another example, we train the value model proposed in [11]

based on two signals: the cost from PostgreSQL and the calibrated

cost from BASE. Then we use these two trained models to generate

execution plans for the JOB workload and compare their corre-

sponding performance. As shown in Table 1, the cost-based model

generates execution plans with lower cost, which indicates it learns

a policy w.r.t. cost signals. On the contrary, our fine-tuned model

generates plans with higher cost but with lower latency perfor-

mance. This contradiction shows the inconsistency between cost

and latency and its influence on RL policy learning.

OBS-2: The time consumption of purely latency-based training in
RL is catastrophic. As an example, we compare the efficiency of

training a value model on JOB based on cost and latency, where

the query execution timeout is set to 90𝑠 . Both latency-based and

cost-based model is trained for 3 hours, respectively. As shown in

Table 2, 92% of time is spent on query plan execution for latency-

based training, and the model is trained for only 226 episodes. For

comparison, 96% of time is used for training the neural network for

cost-based training, and it is trained for 88,524 episodes. In the end,

the cost-based model shows a much more robust performance than

a latency-based model in a limited training time since cost-based

training covers much more candidate query execution plans.



OBS-3: Although OBS-1 holds, only a small portion of queries ex-
hibit a large gap between cost and latency in terms of the behaviors
of their corresponding optimal policies.We train two value models

with cost and latency serving as the respective feedback for a suffi-

cient amount of time until convergence to investigate the impact of

the gap. Then, we allow two value models to serve as greedy cost-

and latency-based policies to produce query execution plans. Ac-

cordingly, less than 5% of execution plans generated by cost-based

policy leads to long-running plans compared to plans generated by

latency-based policy. This result proves that the cost-based policy

is close to the optimal policy in terms of latency. Thus, compared

to the enormous state-action space, only a limited number of cost

signals should be calibrated to produce the same optimal policy as

the latency does.

4 FRAMEWORK OVERVIEW
Based onOBS, we propose a two-stage RL-based framework, namely

BASE. Conceptually, BASE conducts transfer for RL from the source

(cost) domain to the target (latency) domain. In the jargon of RL, the

tasks to be solved are two MDPs, namelyM (𝑐 ) = (S,A,T , 𝑟 (𝑐 ) , 𝛾)
and M (𝑙 ) = (S,A,T , 𝑟 (𝑙 ) , 𝛾), where 𝑟 (𝑐 ) and 𝑟 (𝑙 ) denote cost-

based and latency-based reward functions, respectively. The work-

flow of BASE is shown in Figure 2.

Stage 1: In first stage, BASE solvesM (𝑐 )
for its optimal policy 𝜋 (𝑐 )∗

.

we adopt reward shaping [14] and define our cost-based reward

function as follows:

𝑟 (𝑐 ) (𝑠𝑡 , 𝑎𝑡 ) = 𝐶 (𝑠𝑡+1 ) − 𝐶 (𝑠𝑡 ), (1)

for 𝑡 = 1, . . . ,𝑇 −1. It is also worth noticing that𝐶 (𝑠0) = 0, since the

initial state corresponds to an empty plan. To solveM (𝑐 )
, we can

learn its optimal policy, its optimal value function, or both of them,

using corresponding RL algorithms as existing works [6, 11, 21]. For

ease of transfer, we choose a policy-based algorithm to learn the

optimal policy of M (𝑐 )
since it avoids learning the value function

𝑄𝜋 (𝑠, 𝑎) explicitly. Specifically, we employ a deep policy network to

represent a stochastic policy from which we can sample actions for

each input state: 𝑎 ∼ 𝜋𝜃 (·|𝑠). We adopt the same neural architecture

as Neo [11] to encode each input state.

Stage 2: In the second stage, BASE starts with 𝑟 (𝑐 ) and 𝜋 (𝑐 )∗
, and

transfers towards 𝑟 (𝑙 ) and the corresponding optimal policy 𝜋 (𝑙 )∗
,

in a mutually-improved manner. Eventually, the learned policy can

be applied as an end-to-end query optimizer that optimizes latency

performances. We describe details of stage 2 in Section 5.

5 REWARD FUNCTION CALIBRATION
5.1 Formulation
As defined in Section 4, the only difference between M (𝑐 )

and

M (𝑙 )
lies in their reward functions. In the first stage of BASE,

𝑟 (𝑐 ) is defined in Eq. (1). 𝑟 (𝑙 ) can be trivially defined according to

Section 2 to encourage a policy that minimizes the latency of its

generated plan. Then we study the condition under which 𝑟 (𝑐 ) and
𝑟 (𝑙 ) lead to the same optimal policy.

Lemma 1. Denoting the set of the terminal states (i.e., the states
corresponding to complete execution plans) that we can traverse
from 𝑠0 by 𝑈 (𝑠0), 𝑟 (𝑐 ) and 𝑟 (𝑙 ) lead to the same optimal policy, if
∀𝑠0 ∈ S, argmin𝑠∈𝑈 (𝑠0 ) 𝐶 (𝑠) = argmin𝑠∈𝑈 (𝑠0 ) 𝐿(𝑠).
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Figure 2: Framework overview.

In reality, this condition cannot be satisfied perfectly (see

OBS-3), where ∃𝑠0, 𝑆𝑇 = argmin𝑠∈𝑈 (𝑠0 ) 𝐿(𝑠), but ∃𝑆
′
𝑇

∈
𝑈 (𝑠0), s.t., 𝐶 (𝑆 ′𝑇 ) < 𝐶 (𝑆𝑇 ). We aim to eliminate such discrepancies

by calibrating 𝑟 (𝑐 ) so that the relationship between the cumulative

rewards of the corresponding trajectories of 𝑆𝑇 and 𝑆 ′
𝑇
becomes

consistent with 𝑟 (𝑙 ) . To this end, we propose to represent a cali-

brated reward function by applying a parameterized calibration

function 𝑔𝜙 (·) to the cost signals 𝐶 (·) and following Eq. (1):

𝑟𝜙 (𝑠𝑡 , 𝑎𝑡 ) = 𝑔𝜙 (𝑠𝑡+1 )𝐶 (𝑠𝑡+1 ) − 𝑔𝜙 (𝑠𝑡 )𝐶 (𝑠𝑡 ), (2)

where 𝑔𝜙 : S → R plays the role of cost model calibration and is

to be learned for making 𝑟𝜙 consistent with 𝑟 (𝑙 ) .
Note that our calibration function only makes the calibrated cost

signals and the latency signals more correlated (satisfying Lemma 1),

which is easier than making the prediction accurate. This goal

is fundamentally different from previous RL-based learned query

optimizers [11, 20, 21]. They all regard query optimization as a

regression task i.e., minimizing the mean square error between pre-

diction from value functions and actual latency. Latency prediction

will cause dramatic changes to the pre-trained model, as cost and

latency have different numeric ranges and basic statistics. As a re-

sult, it causes large fluctuations in query optimization performance.

This makes transferring the value function and policy require more

training samples and fine-tuning steps. We show the experiemental

results in Sections 6.3 and 6.4

BASE formulates the procedure of locating and filling the gap

between 𝑟𝜙 and 𝑟 (𝑙 ) as a variant of IRL. As shown in Figure 3, BASE
maintains 𝜋𝜃 and 𝑟𝜙 which, at the beginning of transfer, are close

to 𝜋 (𝑐 )∗
and 𝑟 (𝑐 ) , respectively. Then BASE utilizes 𝜋𝜃 to actively

locate discrepancies for updating 𝑟𝜙 . And 𝜋𝜃 is updated according

to the latest 𝑟𝜙 . These steps are alternatively repeated until the

convergence of 𝜋𝜃 and 𝑟𝜙 . With the discrepancies between 𝑟𝜙 and

𝑟 (𝑙 ) being gradually eliminated, 𝜋𝜃 is ensured to be close to 𝜋 (𝑙 )∗
.

5.2 Algorithm
As a transfer for RL, we collect experience by using the maintained

policy 𝜋𝜃 to interact with M (𝑐 )
and M (𝑙 )

. We first introduce how

to organize the collected experience. For each sampled trajectory



𝜋𝜋 𝑐𝑐 ∗

𝑟𝑟 𝑐𝑐

𝜋𝜋 𝑙𝑙 ∗

𝑟𝑟 𝑙𝑙𝑟𝑟𝜙𝜙

𝜋𝜋𝜃𝜃
Supervision

Figure 3: Transfer procedure.

𝜏 : 𝑠0, 𝑎0, . . . , 𝑎𝑇−1, 𝑠𝑇 , we store every (𝑠𝑡 ,𝐶 (𝑠𝑡 ), 𝐿(𝑠𝑡 )) triplet in
buffer B𝐶 . We also calculate the cumulative rewards 𝑅 (𝑐 ) (𝜏) and
𝑅 (𝑙 ) (𝜏) based on such triplets and store the (𝜏, 𝑅 (𝑐 ) (𝜏), 𝑅 (𝑙 ) (𝜏))
triplet in bufferB𝑇 . For any two collected trajectories 𝜏 and 𝜏

′ ∈ B𝑇 ,

if (𝑅 (𝑙 ) (𝜏) −𝑅 (𝑙 ) (𝜏 ′)) (𝑅 (𝑐 ) (𝜏) −𝑅 (𝑐 ) (𝜏 ′)) < 0, i.e., the condition in

Lemma 1 is violated, we call the trajectory pair (𝜏, 𝜏 ′) a discrepancy.
Otherwise, we call (𝜏, 𝜏 ′) a preservation. Then we define C𝑑 =

{(𝜏, 𝜏 ′, 𝑅 (𝑐 ) (𝜏), 𝑅 (𝑐 ) (𝜏 ′)) |𝜏, 𝜏 ′ ∈ B𝑇 , (𝜏, 𝜏 ′) is a discrepancy } and

its counterpart for preservation C𝑝 . For the ease of discussion, we
assume 𝑅 (𝑙 ) (𝜏) < 𝑅 (𝑙 ) (𝜏 ′) for each tuple in C𝑑 or C𝑝 , which avoids

the consideration of both (𝜏, 𝜏 ′) and (𝜏 ′, 𝜏).
In the beginning, all these buffers are initialized as an empty

set ∅. The pre-trained policy 𝜋𝜃 is adopted as an initialization and

to be updated, and the calibration function 𝑔𝜙 is initialized to out-

put around 1 for any input state so that 𝑟𝜙 (𝑠, 𝑎) = 𝑟 (𝑐 ) (𝑠, 𝑎). After
that, BASE trains the learned query optimizer iteratively, as shown

in Figure 2. In every iteration, BASE contains three steps: ① Ac-

tive Sampling: we first use our active sampling module to sample

queries from the training workload and corresponding execution

plans, where the sample criteria are based on the current policy

𝜋𝜃 . Then we collect the aforementioned experiences by executing

the selected queries and their corresponding execution plans. ②

Calibration Function Training: Then we update the reward function

𝑟𝜙 based on experiences collected in B𝐶 , C𝑑 , and C𝑝 . 𝜙 is updated

by minimizing an objective function L to encourage 𝑟𝜙 to elimi-

nate the discrepancy while maintaining the preservation. ③ Policy

update: Lastly, we fine-tune our policy 𝜋𝜃 according to the latest

reward function 𝑟𝜙 . Intuitively speaking, in each iteration, we push

the maintained reward function 𝑟𝜙 and policy 𝜋𝜃 towards 𝑟 (𝑙 ) and

𝜋 (𝑙 )∗
. We repeat such a procedure for at most𝑀 iterations, where

any convergence or early-stop criterion can be easily incorporated.

5.3 Active Sampling
In the sampling phase, we first sample queries from the training

workload 𝑄 and then sample valuable execution plans of the sam-

pled queries. We define two criteria for query sampling and plan

sampling: informativeness and diversity. Informativeness helps the

current policy locate the discrepancy efficiently. Denoting the tra-

jectory of an execution plan by 𝜏 , we define the following informa-

tiveness score:

𝑆𝜋𝜃 (𝜏 ) = −
𝑇 −1∑︁
𝑡=1

∑︁
𝑎∈A(𝑠𝑡 )

𝜋𝜃 (𝑎 |𝑠𝑡 ) log(𝜋𝜃 (𝑎 |𝑠𝑡 ) ), (3)

where the policy entropy−∑
𝑎∈A(𝑠 ) 𝜋𝜃 (𝑎 |𝑠) log(𝜋𝜃 (𝑎 |𝑠)) indicates

how certain it is to choose an action at the state 𝑠 . Diversity of

sampled queries and plans helps stabilize the learning dynamics of

our calibrated reward function, which will be explained later.

Query Sampling. We employ the weighted K-means algo-

rithm [23] to sample queries. Specifically, we first extract the em-

bedding representation of each query 𝑞 ∈ 𝑄 from the intermediate

layer of 𝜋𝜃 that embeds 𝑞 into a latent space. Then each query 𝑞

is represented by its embedding for the clustering algorithm. To

ensure the informativeness, each query is weighted based on its

execution plan 𝜏 greedily generated by 𝜋𝜃 . We use informativeness

score 𝑆𝜋𝜃 (𝜏) to serve as the weight of the query. Since 𝜏 is decided

by 𝜋𝜃 with the largest probability, 𝑆𝜋𝜃 (𝜏) reveals the uncertainty of
𝜋𝜃 for the current query 𝑞. To ensure the diversity, after |𝑄 | queries
being clustered into ⌊𝑘% × |𝑄 |⌋ clusters, each query closest to the

centroid of a specific cluster will be selected. Finally, the ⌊𝑘%× |𝑄 |⌋
selected queries form the mini-batch used in current iteration.

Plan Sampling. To ensure diversity, we use Monte Carlo

dropout [13] by plugging dropout layers into 𝜋𝜃 . Our pre-trained

policy tends to be deterministic, which results in a narrow range of

samples and thus cannot effectively explore the target domain with-

out the dropout mechanism. Specifically, for each sampled query,

we sample its plans from 𝜋𝜃 multiple times with a drop-out layer.

The dropout mechanism will turn off some neurons randomly at

each time, thus it gives diverse results. To ensure informativeness,

then we select the plan with the largest informativeness score.

After that, we will execute the selected query execution plans

and get cost and latency feedback for each corresponding trajectory

𝜏 : 𝑠0, 𝑎0, . . . , 𝑎𝑇−1, 𝑠𝑇 . As a result, we collect (𝑠𝑡 ,𝐶 (𝑠𝑡 ), 𝐿(𝑠𝑡 )) triplet
in B𝐶 . B𝑇 stores the trajectory and corresponding accumulated

reward (𝜏, 𝑅 (𝑐 ) (𝜏), 𝑅 (𝑙 ) (𝜏)). For every newly selected trajectory 𝜏 ,

we will compare it to existing ones (i.e., every 𝜏 ′ ∈ B𝑇 ). If the

following inequality is satisfied:

(𝑅 (𝑙 ) (𝜏 ) − 𝑅 (𝑙 ) (𝜏 ′ ) ) (𝑅 (𝑐 ) (𝜏 ) − 𝑅 (𝑐 ) (𝜏 ′ ) ) < 0,

then (𝜏, 𝜏 ′) is a discrepancy, and we add it to C𝑑 . Discrepancies
from different queries allow 𝑟𝜙 to learn from the shared partial plans,

which is helpful for its generalization. If there is no discrepancy,

we also want to preserve the consistency, so we add that pair to C𝑝 .

5.4 Calibration Function Training
After collecting discrepancies and preservation, we aim to update

𝜙 so that 𝑟𝜙 leads to the same optimal policy as 𝑟 (𝑙 ) . We propose to

gradually tune our reward function by eliminating the discrepancies

while keeping the preservation.

For the discrepancies, we aim to update 𝜙 so that

∀((𝜏, 𝜏 ′, 𝑅 (𝑐 ) (𝜏), 𝑅 (𝑐 ) (𝜏 ′)) ∈ C𝑑 , 𝑅𝜙 (𝜏) ≤ 𝑅𝜙 (𝜏 ′). However,

as a parameterized function 𝑔𝜙 (·), the updates may simultaneously

bring in “wrong” reward values on other state-action pairs.

Therefore, 𝑔𝜙 (·) is also expected to keep the consistency with 𝑟 (𝑙 )

for the preservation. To this end, we define a hinge loss as follow:

L (1) (𝜙 ) =
∑︁

(𝜏,𝜏 ′ ) ∈C𝑑∪C𝑝

max(0, 𝑅𝜙 (𝜏 ) − 𝑅𝜙 (𝜏 ′ ) + 𝛿 ), (4)

where 𝛿 > 0 is a pre-specified margin. In our implementation, we

use all elements from C𝑑 and sample the recently added elements

of C𝑝 with higher priority.

Furthermore, locating the discrepancy becomes even more ineffi-

cient, along with the improvement of our policy. To further improve

the sample efficiency in calibration function training, we present

the following proposition to motivate another objective function.



Proposition 1. If the calibrated cost signals 𝑔𝜙 (·)𝐶 (·) and the
latency signals 𝐿(·) are linearly positive correlated, 𝑟𝜙 leads to the
same optimal policy as 𝑟 (𝑙 ) .

Thus, we define our another objective function as follow:

L (2) (𝜙 ) =
∑︁
𝑠∈B𝑐

|CorrCoef[𝑔𝜙 (𝑠 )𝐶 (𝑠 ), 𝐿 (𝑠 ) ] − 1 |, (5)

where CorrCoef(·, ·) is Pearson product-moment correlation coeffi-

cient, which is adopted to measure the linear relationship between

𝑔𝜙 (𝑠)𝐶 (𝑠) and 𝐿(𝑠). We want it to be as close to one as possible.

We combine the constraint objective (Eq. (4)) and the linear

relationship objective (Eq. (5)) as the final objective L:

L(𝜙 ) = 𝜆L (1) (𝜙 ) + L (2) (𝜙 ), (6)

where 𝜆 ≥ 0 is a factor to control the penalty of samples that

violate the constraints. We gradually increase 𝜆 during the training

iterations. In training our calibration function, we update 𝜙 by

minimizing this L(𝜙).

6 EXPERIMENTS
6.1 Experiment Setup
We evaluate our model on two widely-used benchmarks. The

datasets are split into training and testing parts based on previ-

ous work [11]: Join Order Benchmark (JOB) [7]: a real-world
dataset based on IMDB to provide realistic workloads. It has 113

queries from 33 templates. It has 3.6GB of data (11GB when count-

ing indexes) and 21 tables. The number of relations in each query

ranges from 4 to 17. STACK [10]: STACK consumes 100GB storage

space. We adopt 500 queries from 16 templates. The number of

relations in each query ranges from 4 to 12.

Compared Methods: BASE is trained in two stages, namely pol-

icy pre-training (denoted by Pp) and reward function calibration

(denoted by Rfc). We compare BASE with the following methods:

• PG: The vanilla cost-based optimizer of PostgreSQL [19]. The

optimizer is based on dynamic programming.

• Neo: The end-to-end learned optimizer proposed in [11]. The

Neo is trained in two stages: (1) It is first trained by execution

plans provided by PG (denoted by Lfd). (2) It is further trained
by the RL algorithm (denoted by Lt).

• Balsa: The end-to-end learned optimizer proposed in [20]. For a

fair comparison, we bootstrap Balsa from PG. And we use a local

model instead of a cluster model as the same hardware resource

as other baselines.

• LO: The Neo trained by latency without any pre-training. It

provides a baseline for all learned optimizers.

To study the efficiency of different transfer methods that transfer

a pre-trained policy based on the cost to a better policy based on

latency, we fix the pre-trained value/policy model in the first stage

and vary the method for the second stage. We denote the second

stage of our method as BASE-Rfc. The variants are listed as follows:

• Direct Transfer: We change the feedback directly from cost to

latency for the second stage. In the experiment, we consider two

variants of direct transfer: value-based (Q-Late) algorithm and

policy-based (P-Late) algorithm.

• RTOS (Q-RTOS): It uses the multi-task learning method pro-

posed in [21] for the second stage.

• DQ (Q-DQ): It uses the inductive transfer learning method pro-

posed in [6] for the second stage.

• Classifier-Based Reward Function (P-Clf): It uses a classifier-
based reward function proposed in [3] for the second stage.

Evaluation Metrics:
• Geometric Mean Relevant Latency (GMRL) [21]: 𝐺𝑀𝑅𝐿 =∏𝑛

𝑖=1
𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝑞)

𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑃𝐺 (𝑞) . The lower the numerical value is, the better

the latency performance is compared to PG.

• Jumpstart Performance (JP) and Asymptotic Performance
(AP): The initial performance and the ultimate performance of

the learned query optimizer at the latency training stage.

• Performance with Fixed Demonstration Amount (PA): Fi-
nal performance within certain training examples.

• Transfer Ratio (TR): The amount of performance increases in

a certain period of time i.e., increasing from JP to PA. The larger

the TR is, the better the transferability is.

6.2 Overall Performance

Table 3: GMRL comparison within 10 hours training time.

Methods

GMRL Workloads
JOB STACK

LO 2.22 1.24

Neo 0.85 0.94

Balsa 0.69 0.75

BASE 0.64 0.61

To show the overall performance, we conduct end-to-end ex-

periments on two benchmarks from the aspects of latency per-

formance and training efficiency. Specifically, all algorithms are

trained within 10 hours for a fair comparison. During that time,

BASE and Balsa model is trained on cost for 50000 iterations (about

two hours). Given the execution plans provided by PG, Neo is

trained on demonstrations for 1000 iterations (around two hours).

Latency Performance. To measure the latency performance, Ta-

ble 3 shows GMRL of all methods. Overall, BASE outperforms all

the other methods including PG on these two benchmarks: For

the JOB workload, BASE improve Balsa by 7% Neo by 24%, PG by

36% and LO by 71% within the same training time. For the STACK

workload, BASE outperforms Balsa by 18%, Neo by 35%, PG by 4%

and LO by 50%. It is worth noting that STACK is more complex and

has larger storage space. It takes a long time for model training.

Training Efficiency. Table 4 exhibits the time that a learned

optimizer needs to take to outperform the traditional optimizer, PG,

which is when GMRL=1 in this experiment. We observe that:

(1) Among all algorithms, BASE is the fastest one. BASE takes

94% and 81% training time of Balsa on JOB and on STACK to make

the optimizer reach the threshold. BASE only takes 57% and 56%

training time of Neo on JOB and on STACK to make the optimizer

reach the threshold. In our experiment, LO cannot achieve PG

performance in 10 hours, which reflects its low training efficiency.

(2) In the second stage, BASE shows better efficiency in running

more episodes per hour (e/h in Table 4). This is beneficial from

the active sampling module. Instead of sampling greedily w.r.t the

current policy, BASE samples more diverse query execution plans,



Table 4: Time used to reach GRML=1.

Workloads Methods Pre-training Fine-tuning Total Timeepisode time (h) episode time(h) e/h

JOB

LO 0 0 1650 10 165 10+

Neo 1000 2.09 1180 6.13 192 8.22

Balsa 50000 2.05 614 2.97 207 5.02

BASE 50000 2.02 590 2.71 218 4.73

STACK

LO 0 0 1890 10 189 10+

Neo 800 1.58 1050 6.02 174 7.60

Balsa 50000 2.01 602 3.22 187 5.23

BASE 50000 2.03 470 2.24 210 4.27

Table 5: Transfer methods comparison.

Workloads Methods JP PA TR AP

JOB

Q-Late 1.20 1.87 -55.83% 0.60

Q-RTOS 1.15 0.82 28.70% 0.56

Q-DQ 1.14 1.87 -64.04% 0.94

P-Clf 0.99 0.97 2.02% 0.91

P-Late 0.97 0.84 13.40% 0.55

BASE-Rfc 0.97 0.66 31.96% 0.53

STACK

Q-Late 1.16 0.96 17.24% 0.71

Q-RTOS 1.18 0.75 36.44% 0.56

Q-DQ 1.13 1.08 4.42% 0.88

P-Clf 1.09 0.67 38.34% 0.74

P-Late 1.05 0.75 28.57% 0.62

BASE-Rfc 1.03 0.52 49.51% 0.43

which makes the query optimizer unlikely to be trapped in subop-

timal plans for a long time. This helps the query optimizer explore

potential execution plans efficiently.

6.3 Evaluation of Transfer Strategies
With the help of cost training, the learned optimizer can imitate the

traditional DBMS behaviors after the first stage. To examine how

far the learned optimizer can go beyond the traditional DBMS in the

second stage, we compare five transfer methods in previous works

(in Section 6.1) with BASE-Rfc. For a fair comparison, in the first

stage, we train two types of learned optimizers (i.e., value-based

and policy-based) until convergence to achieve similar performance

as PG in terms of cost. And then we transfer the first-stage model

to adapt to the latency environment. All methods are implemented

with the same number of query executions. We show the evaluation

metrics in Table 5.

(1) The transferability can be ranked as BASE-Rfc > Q-RTOS >

P-Late ≈ P-Clf > Q-Late ≈ Q-DQ according to TR in Table 5. This

shows the superiority of BASE-Rfc in terms of effectiveness and

efficiency. BASE-Rfc and Q-RTOS have better performance because

they can absorb more knowledge from the source domain (i.e., cost).

So the near-oracle policy in the source domain helps them transfer

easier in the target domain (i.e., latency). It can be seen that Q-Late

and Q-DQ almost fail in the fine-tuning phase. This is expected

because taking latency as feedback can result in drastically different

optimal Q values compared to taking cost as feedback, which causes

hindrance to transfer learning.

(2) As for JP, both policy-based RL and value-based RL are fea-

sible for cost training. They achieve similar performance before

transferring. However, policy-based RL is more suitable for transfer

learning: Their TR (19.08%) is better on average compared to the

TR of value-based methods (−10.63%).
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Figure 4: Effectiveness of calibration function training.

(3) As for AP, as long as the training time is long enough, all

learned query optimizers can achieve better performance than PG

(All GMRL results are less than 1), which shows the upper limit of

RL-enhanced DBMS.

6.4 Evaluation of Design Choices
Calibration Function Training. To test the transferability of

BASE, we conduct an empirical study of transferring different pre-

trained query optimizers on the JOB workload. We will use three

pre-trained query optimizers: (i) a query optimizer initialized ran-

domly (Rand) (ii) a query optimizer pre-trained by a minimal cost

model (Minimal Cost: cardinality estimator from PG) (iii) a query

optimizer pre-trained by an expert cost model (Expert Cost: default
cost model from PG). After the pre-training stage, we conduct the

second stage in BASE: We calibrate the cost model and progressively

train the learned query optimizer with the cost model.

Figure 4(a) shows the training curve of the different learned

query optimizers. It is obvious that the randomly initialized query

optimizer has a bad performance at the beginning (27×). And it

takes about 10 hours to outperform PG. The learned optimizer pre-

trained with a minimal cost model has a much better performance

at the beginning (14×). It takes much less time to exceed PG. The

learned optimizer pre-trained with an expert model achieves almost

the same performance as PG (1.27×) and it takes less than 2 hours to
outperform PG. In conclusion, BASE can fine-tune the different pre-

trained or even random initialized learned query optimizers tailored

to certain workloads or hardware. However, different pre-training

methods do make a big difference in fine-tuning efficiency.

Based on the collected experience buffer, we calibrate the expert

cost model with two different methods: Calibrated Cost (our pro-
posed hinge loss) andRegression Cost (commonly used regression

loss: mean square error). Figure 4(b) shows the accuracy of the dif-

ferent cost models. The accuracy indicates whether the calibrated

cost model has a discrepancy with latency for every trajectory pair

(𝜏, 𝜏 ′). It can be shown that the accuracy of those cost models ranks

as Calibrated Cost (94%) > Regression Cost (83%) > Expert Cost

(72%) > Minimal Cost (61%) > Random Cost (51%). It empirically

proves that our proposed correlation learning goal is much more

effective than the regression goal.

Active Sampling. To show the effectiveness of plan sampling in

our active sampling (AS) module, we conduct a micro-benchmark
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Figure 5: Effectiveness of plan sampling.

about the active learning methods. Specifically, we reuse the opti-

mizer trained on JOB and then train it on the new workload called

Ext-JOB [11]. We use different active learning methods to pick

valuable training queries and physical plans to collect in our expe-

rience buffer. All methods are trained for 10 episodes. We compare

with the following methods: LO: same as the previous definition.

Uncertain [8]: Select potential training query and plans with the

highest uncertainty score.Greedy: Select potential training queries
randomly and then generate physical plans greedily based on the

current query optimization policy.UCB [5]: A common exploration

strategy used in RL problems. RBMAL [2]: A SOTA active learning

method that combines the uncertain score with a weighted distance

of each sample data to the labeled training data.

Figure 5(a) shows the training curve of different methods used

to train the learned query optimizer. The effectiveness of different

active learning methods can be ranked as AS > RBMAL > UCB

> Uncertain > Greedy > LO. AS perform best as it ensures both

diversity and informativeness of the potential queries and plans.

RBMAL performance is pretty close to AS. However, the overhead

of calculating data point distance is quadratic to the number of data

points. Thus, in practice, BASE adopt AS as a more efficient method.

Figure 5(b) shows the average number of unique plans in one

episode during the policy update phase. Especially for a mature

learned query optimizer, the policy tends to be deterministic, which

results in a narrow range of samples. For every episode, the AS

module samples a diversified batch of query execution plans as

valuable experience. The diversified experience helps the query op-

timizer to explore diversified physical plans during policy updates.

Thus, the unique plans generated from AS are much more than that

of LO, greedy, and uncertain methods.

6.5 Applying BASE to ML-steered Optimizer
DBMSes provide hint sets (e.g, disable loop join) to fine-tune the

behavior of the corresponding query optimizer. Bao [10], a recently

proposed learned optimizer that learns to choose hint sets. Similar

to previous work, it trains a predictive model to estimate plan

performance. BASE domain transfer technique can also be applied

to training the predictive from a data-rich knowledge base instead

of an empty knowledge base. BASE substantially optimizes Bao

source code [16] in two aspects (denoted by BASE +Bao): Firstly,

BASE initialize the Bao predictive model following Eq (2) from
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Figure 6: Applying BASE to ML-steered query optimizer.

cost model. Secondly, BASE train a predictive model based on our

calibration function training strategy to transfer the knowledge.

Figure 6 shows the training procedure of our optimization on

two datasets. It is not surprising to see that BASE +Bao has signifi-

cantly better initial performance (GMRL On JOB: BASE +Bao: 1.30,

Bao: 1.44; GMRL On STACK: BASE +Bao: 1.08, Bao: 1.19) and then

reach the peak performance much faster (Time on JOB:BASE +Bao:

2.9h, Bao: 3.8h; Time on STACK: BASE +Bao: 2.1h, Bao: 5+h). It

demonstrates that BASE can enhance learning efficiency to achieve

better performance for the learning-based query optimizer.

7 RELATEDWORK
Neo [11] builds an end-to-end query optimizer that produces com-

plete execution plans. However, Neo is trained completely based on

latency signals, which requires DBMS to execute numerous plans

including potentially bad ones. Some other similar works include

Rejoin [12], DQ [6], and RTOS [21] leverage cost as a trade-off to

increase training efficiency and then transfer the pre-trained model

based on the cost to a new model that can adapt to latency signals.

Since the feature representations are the same in source and target

domain for the query optimization settings, DQ and RTOS leverage

inductive transfer learning methods [15] that change representa-

tions in the output layer. Bao [10] and QO-Advisor [22] steer the

traditional query optimizer by tuning hint sets. They learn a pre-

dictive model to estimate the latency of a plan generated by the

query optimizer. Instead of training the ML model from an empty

or randomly filled knowledge base, BASE calibrate the ML model

by transferring domain knowledge from cost to latency.

8 CONCLUSIONS
In this paper, we propose BASE, a two-stage RL-based framework

that bridges the gap between cost and latency for learning an end-

to-end query optimizer with satisfactory latency performances. We

conduct extensive experiments on two public benchmarks to offer

evidence that BASE has better training efficiency and transferability

than SOTA methods. Meanwhile, BASE is also applicable to ML-

steered optimizers for better training efficiency.
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