
Zef: Low-latency, Scalable, Private Payments

Mathieu Baudet
mathieu.baudet@zefchain.com

Joint work with Alberto Sonnino, Mahimna Kelkar, and
George Danezis

mailto:mathieu.baudet@zefchain.com

Wire Transfers

12

Transferring funds between accounts with identifiable owners

Anonymous Payments

??

Transferring funds between accounts designated by addresses

We want to hide

I account balances and payment amounts (opacity)

I the link between sending and receiving addresses
(unlinkability)

Building Scalable Decentralized Systems

I Faster blockchain (e.g. Solana)

I Blockchain + sharding + Layer 2 (e.g. Ethereum 2.0 with ZK
rollups)

I Sidechain with 2/3 honest validators
I BFT consensus (e.g. Cosmos/Tendermint)
I BFT consistent broadcast (this talk)

Towards Decentralized Anonymous Payments at Scale 1/2

ZCash, Monero

I anonymous
I high confirmation time (~30min)
I throughput limited by hardware (perhaps 10..500 TPS)
I blockchain with PoW

FastPay (AFT’2020)

I linearly scalable
I quick BFT finality (200ms)
I not anonymous
I sidechain with 2/3 honest validators

Towards Decentralized Anonymous Payments at Scale 2/2

Zef = FastPay + opaque coins + removable accounts

I https://arxiv.org/abs/2201.05671

I Opaque coins are based on the Coconut scheme [Sonnino
et al. NDSS’19]

I Deleting accounts to optimize (hot) storage requires generating
non-replayable addresses (aka UIDs)

https://arxiv.org/abs/2201.05671

Anonymous Payments - Opaque coins

coins

Accounts hold coins – whose face values are secret.

Users reveal some of their addresses and keep others secret.

Ok to leak account activity:

I source address of a transfer

I #coins per transfer

I #coins in an account

Anonymous Payments - More Disclaimers

coins

Also probably ok:

I public fees

I corrupt senders can reveal the addresses of receivers

I a private network (Tor) is needed to operate accounts secretly

Performance of Anonymous Payments with Zef

Benchmarks - Latency

0 10 20 30 40 50 60
Throughput (tx/s)

0

500

1,000

1,500

2,000

2,500

3,000

La
te

nc
y

(m
s)

10 nodes (10 shards)
20 nodes (10 shards)
30 nodes (10 shards)
50 nodes (10 shards)

Benchmarks - Linear Scalability

0 2 4 6 8 10
Shards per authority

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (

tx
/s

) Latency cap: 1,000 ms
Latency cap: 500 ms

Benchmarks - Fault Tolerance

0 20 40 60 80 100
Throughput (tx/s)

0

500

1,000

1,500

2,000

2,500

3,000

La
te

nc
y

(m
s)

10 nodes (35 shards)
10 nodes (35 shards) - 1 faulty
10 nodes (35 shards) - 3 faulty

The FastPay Protocol

The FastPay/Zef Security Model

I N = 3f + 1 validators (aka “authorities” or “the committee”)

I At most f validators are malicious

I Asynchronous network

A statement S signed by a quorum of validators (2f + 1 of them) is
called a certificate: C = cert[S].

The FastPay/Zef Communication Model

I FastPay/Zef validators are sharded services

I Validators do not interact with each other.

I Clients query every validator in parallel and wait for a quorum
of answers.

I No mempool

I During execution, shards may send asynchronous messages to
other shards of the same validator

Account Operations in FastPay/Zef

Account
Owner

Recipients
(if any)

Committee

1 Request R

3 Send vote sigα[R]

4 Confirm cert[R]

4 Confirm cert[R]

2 Validate R

5 Execute R

4 Show cert[R]

Example: R = Transfer{from : Alice, seq : 1, to : Bob, amount : 3}

Eventual* Consistency

�&�

-HIE�����)ZIRXYEP�'SRWMWXIRG]

Ɣ)ZIV]�ZEPMHEXSV�LEW�XLI�WEQI�WXEXI�EJXIV�

I\IGYXMRK�EPP�XLI�GIVXMƻIH�XVERWEGXMSRW�

Ɣ 'PMIRXW�WLEVI�GIVXMƻGEXIW�ZSPYRXEVMP]

ĺ�WMQTPIV�ERH�JEWXIV�XLER�E�4�4�RIX[SVO�

FIX[IIR�ZEPMHEXSVW

Ɣ +IRIVEPM^IW�XS�QER]�HEXE�WXVYGXYVIW�[MXL�

GSQQYXEXMZI�YTHEXIW��EOE�ƈ'6(8WƉ

%PMGI���� � ��%� �%�

����&SF��� �%� � ��&�

'LEVPMI���� ��%� �

:EPMHEXSV�ᵙ

%PMGI���� � ��%� �%�

����&SF��� ���&� �%� �

'LEVPMI���� �&� � �%� �

:EPMHEXSV�ᵚ

-R�ᵚ��EW]RGLVSRSYW�YTHEXI��%��JSV�&SF�MW�TVSGIWWIH�
EJXIV�E�GIVXMƻGEXI��&��TVSHYGIH�F]�SXLIV�ZEPMHEXSVW

(*) with clients’ help

Replicated State of a FastPay Account

I Owner’s public key, used as address

I Public balance

I Next sequence number

I Current pending request (possibly ⊥)

I Logs for executed requests (sent and received)

Validation, Sequencing, and Execution

Let R = Transfer{from : Alice, seq : n, to : Bob, amount : x}

I R is valid iff Alice’s account satisfies pending ∈ {⊥,R},
nextseq = n, balance ≥ x .

I Voting on a valid R sets pending ← R

I Executing C = cert[R]
I ensure that n = nextseq(Alice)
I in Alice’s account: let pending ← ⊥, nextseq ← nextseq + 1,

balance ← balance − x
I in Bob’s account: balance ← balance + x
I in both accounts: logs ← logs :: C

Analysis of FastPay/Zef Account Operations

I Under BFT assumption, two certified requests for the same
account and same sequence number are equal.

I Every honest validator eventually* executes the same certified
requests
I in the same order for senders
I in arbitrary order for receivers

I If one honest validator validates a transaction, then it will
eventually* “look valid” for everybody.

I To receive/spend money, clients may have to obtain missing
certs (from available logs) and update lagging validators.

(*) with clients’ help (unless the protocol is modified so that
validator interacts)

Adding Opaque Coins

New cryptographic primitives

I Random commitment: cm = commit(v , r)

I Blind signatures:
M ′ = blind(M, u)⇒ unblind(sigα[M ′], u) = sigα[M]

I NIZK proofs: ∃secrets s.t. predicate(inputs, secrets)

I Threshold signature (optional):
aggregate((sigα[M])α∈quorum) = cert[M]

Our implementation uses a high-level library based on Coconut and
Bulletproofs over BLS12-381 instead of abstract primitives.

Opaque Coin in FastPay++

I An opaque coin σ = cert[(pk, cm)] binds a commitment
cm = commit(v , r) to some address pk

I v ≥ 0 is the value and r is a secret random seed

I The owner of σ must know v and r and own the address pk.

Coin Creation in FastPay++

Sender

Recipients

Committee2 Spending request R

4 Send vote sigα[R]

5 Coin creation req.R∗

7 Signed blinded value sigα[Bj]

3 Validate R

6 Verify cert[R], input
coin certificates, and ZK-
proof.

8 Unblind
sigα[Bj] &
aggregate

9 New
coin σj =
cert[(pkj , cmj)]

1 pkj , vj , rj

Replicated State of a FastPay++ Account

I Public key pk (“address”)

I Public balance

I . . .

I Spent list = set of all coin commitments cm that have been
spent by this account.

How to Spend a Coin . . .

I New account operation
R = SpendInto{from : Alice, seq : 2, coin : σ, into : h}

I R is valid only if σ = cert[(Alice, cm)] and cm is not in the
spent list of Alice’s account

I Executing C = cert[R] adds cm to the spent list

. . . and Make New Coins (R∗)

I Let Bj = blind((pkj , cmj), uj) for the j-th output coin

I Assume h = hash(π, cm, (Bj)) was used to produce
C = cert[R] for some σ = cert[(Alice, cm)] and
R = SpendInto{from : Alice, seq : n, coin : σ, into : h}

I Upon receiving a valid coin creation request
R∗ = CreateCoins{proof : π, input : C , outputs : (Bj)}
each validator returns a signature on Bj

I Unblinding and aggregating the signatures on Bj gives the new
coin σj = cert[(pkj , cmj)]

. . . and Make New Coins (ZK proof)

π is valid iff it is a NIZK-proof that ∃v , r , vj , rj , pkj , cmj , uj s.t. all
of the following hold on (cm, (Bj))

I v ≥ 0 and vj ≥ 0

I
∑

j vj = v

I cm = commit(v , r) and cmj = commit(vj , rj)

I Bj = blind((pkj , cmj), uj)

Analysis of Opaque Coins

I The total coin value of an account is the sum of over distinct
coins

I Coins are burnt first then new coins are created for an
equivalent value

I When coins are burnt, h commits to a particular coin creation
operation R∗. Replaying R∗ just creates the same blinded
signatures, hence the same coins again.

I Blinding factors uj and NIZK proof π keep information on
output coins secret from validators (and the rest of the
network)

Generalization

I Multiple input coins:
I R∗ = CreateCoins{proof : π, inputs : (Ci), outputs : (Bj)}
I h = hash(π, (cmi), (Bj))
I Input coins (pki , cmi) must be mutually distinct

I Transparent inputs:
I R = SpendInto{from : Alice, seq : 2, amount : v , into : h}

I Transparent output:
I R = SpendAndTransfer{from : Alice, seq : 2, coinvalue :

v , coinseed : r , to : Bob}

I Inputs must always be controlled by the same participant

I Transparent coins also possible: σ = cert[(pk, v , nonce)]

The Storage Problem

I FastPay accounts (indexed by users’ pk) can never be removed

I Except for public address (e.g. crowdfunding), there is an
incentive not to re-use accounts.

I Storage to prevent replay attacks is not cold storage

I High throughput ⇒ high storage cost

Adding Non-Replayable Addresses

Replicated State of a Zef Account

I A unique identifier uid
I used as an address
I “unique” = account creation for this UID cannot be replayed

I The owner’s public key pk
I for authentication purposes only
I can change over time
I ⊥ for inactive account

I . . . (same as before)

Unique Identifiers (“UIDs”)

I A Zef address is a non-empty list of sequence numbers:
uid = [1, 3, 5]

I The parent of [1, 3, 5] is [1, 3]

I [2] is a root

I Roots are used for initial accounts given to validators

I Zef uses existing (parent) accounts to derive fresh UIDs

Activation of New Accounts

Broker

New
account
owner

Committee

2 Request R

4 Send vote sigα[R]

5 Confirm cert[R]

5 Confirm cert[R]

3 Validate R

6 Create new account

5 cert[R]

1 Public key pk

R = OpenAccount{from : [1, 0], seq : 2, for : pk}

The new account has uid = [1, 0, 2] and initial public key pk.

Benefits

Deactivated accounts cannot validate/execute requests and can
never be reactivated, therefore do not need to remain in hot storage.

I In practice, we may limit #operations per account and
incentivize users to deactivate unused accounts voluntarily.

I Some coordination between validators may also be needed to
ensure that accounts are deactivated for every honest validator.

Additional account operations:

I R = ChangeOwner{from : [1, 0, 2], seq : 7, for : pk}

I R = CloseAccount{from : [1, 0, 2], seq : 7}
(this sets pk ← ⊥)

One Last Difficulty

What happens if we transfer funds to uid = [1, 0, 2] and this
account does not exist yet in some validators?

I R = Transfer{from : [3], seq : 1, to : [1, 0, 2], amount : 5}

I Executing R may create a not-yet-active account with
uid = [1, 0, 2], balance 5, and pk = ⊥

I Later, R ′ = OpenAccount{from : [1, 0], seq : 2, for : pk}
updates pk but keeps the balance 5.

Analysis of the Protocol

I OpenAccount is the only operation that can transition an
account public key from ⊥ to pk 6= ⊥

I Inactive accounts cannot create or execute requests

I ⇒ By induction on |uid |, every validator may only execute uid
operations in sequential order and the deactivation of an
account uid is final

I Account “brokers” do not have to be trusted for safety

I . . . but clients must check the certificate of account creation
before using an account

Wrapping up: Coin Creation in Zef

Sender

Recipients

Committee2 Spending request R

4 Send vote sigα[R]

5 Coin creation req.R∗

7 Signed blinded value sigα[Bj]

3 Validate R

6 Verify cert[R], input
coin certificates, and ZK-
proof.

8 Unblind
sigα[Bj] &
aggregate

9 New
coin σj =
cert[(uidj, cmj)]

1 uidj, vj , rj

Conclusion

I New point in the design space of decentralized systems for
anonymous payments

I Linear scalability

I Strong anonymity properties

I We did not try to optimize NIZK proofs (e.g. Bulletproofs →
transparent SNARKs?)

I More extensions of Zef to follow (e.g. Atomic Swaps)

Thanks!

	Performance of Anonymous Payments with Zef
	The FastPay Protocol
	Adding Opaque Coins
	Adding Non-Replayable Addresses
	Thanks!

