
Two Sides of the Same Coin: Exploiting the Impact
of Identifiers in Neural Code Comprehension

Shuzheng Gao1, Cuiyun Gao1∗, Chaozheng Wang1, Jun Sun2, David Lo2, Yue Yu3
1 School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China

2 Singapore Management University, Singapore
3 National University of Defense Technology

szgao98@gmail.com, gaocuiyun@hit.edu.cn, wangchaozheng@stu.hit.edu.cn, junsun@smu.edu.sg, davidlo@smu.edu.sg,
yuyue@nudt.edu.cn

Abstract—Previous studies have demonstrated that neural code
comprehension models are vulnerable to identifier naming. By
renaming as few as one identifier in the source code, the
models would output completely irrelevant results, indicating
that identifiers can be misleading for model prediction. However,
identifiers are not completely detrimental to code comprehension,
since the semantics of identifier names can be related to the
program semantics. Well exploiting the two opposite impacts of
identifiers is essential for enhancing the robustness and accuracy
of neural code comprehension, and still remains under-explored.
In this work, we propose to model the impact of identifiers
from a novel causal perspective, and propose a counterfactual
reasoning-based framework named CREAM. CREAM explicitly
captures the misleading information of identifiers through multi-
task learning in the training stage, and reduces the misleading
impact by counterfactual inference in the inference stage. We
evaluate CREAM on three popular neural code comprehension
tasks, including function naming, defect detection and code
classification. Experiment results show that CREAM not only
significantly outperforms baselines in terms of robustness (e.g.,
+37.9% on the function naming task at F1 score), but also achieve
improved results on the original datasets (e.g., +0.5% on the
function naming task at F1 score).

I. INTRODUCTION

With the rapid development of artificial intelligence tech-
niques, automated code comprehension has drawn more and
more attention in the software engineering community [1]–
[5]. Recently, many neural code comprehension models have
been proposed to learn the code semantics with deep neural
networks (DNNs), and achieved state-of-the-art performance
on various tasks, such as code summarization [3], [6], [7],
function naming [8]–[10], and defect detection [11]–[14].

Despite these success cases, recent studies [15], [16] show
that the neural code comprehension models are sensitive to
identifier naming. On the one hand, identifier names can be
misleading for model prediction [15], [17]–[19]. For example,
as illustrated in Figure 1 (a), given the original code snippet,
the popular function naming model NCS [20] correctly pre-
dicts the function name as “sort”. However, if the identifier
name “arr” is renamed to “f ”, the model outputs an irrelevant

∗ Corresponding author. The author is also affiliated with Peng Cheng
Laboratory and Guangdong Provincial Key Laboratory of Novel Security
Intelligence Technologies.

 1 public static void (int[] arrf) {
 2 for (int i = 1; i < arrf.length; i++){
 3 int x = arrf[i];
 4 int j = i - 1;
 5 while (j >= 0 && arrf[j] > x) {
 6 arrf[j + 1] = arrf[j];
 7 j--;
 8 }
 9 arrf[j + 1] = x;
10 }
11 }

Ground Truth: sort

Prediction: open

(a) An example for illustrating that identifiers can be misleading
for neural code comprehension models. By changing the identifier
name “arr” to “f ”, the model outputs a wrong result.

35.07

25.68

30.42

17.93

10

15

20

25

30

35

40

Java Python

Original Code
Abstracted Code

F1 Score

(b) Results illustrating that code abstraction leads to performance
drop on F1 score of the task.

Fig. 1: Illustration of the opposite impact of identifiers on the
function naming task.

function name “open”. On the other hand, identifier names
are not completely harmful to code comprehension and can
provide rich information about the code semantics [21]. As
shown in [17], [21], discarding identifier semantics results
in poor model performance. As illustrated in Figure 1 (b),
the code abstraction technique [21], [22], which renames all
the identifiers with placeholders (e.g., “VAR 0”), leads to an
obvious performance degradation on the prediction, showing
13.26% and 30.18% drop in terms of the F1 score for Java and
Python, respectively. Therefore, the robustness issue caused by
identifier names and their useful semantics are two sides of
the same coin. Properly leveraging the useful information and
alleviating the misleading impact of identifiers are essential for
building an accurate and robust code comprehension model,
which is a problem that remains under-explored.

ar
X

iv
:2

20
7.

11
10

4v
2

 [
cs

.S
E

]
 7

 F
eb

 2
02

3

Counterfactual Model
open

sort

Counterfactual Inference (CREAM)

open

sort

open

sort

open

sort- =

Total Effect Direct Effect

Total Effect

Direct Effect

Conventional Model

open

sort

What is the name of
this funciton if the whole

code is given?

Indirect Effect

a

b

c

Prediction

What is the name of this
funciton if only its
identifiers are given?

:

Prediction:

Prediction:

Fig. 2: Our causal view on the impact of identifiers in
neural code comprehension. The conventional model (a) and
counterfactual model (b) estimate the result of corresponding
question, respectively. Counterfactual inference (c) eliminates
the direct effect of identifiers, and gets more accurate and
robust prediction. The prediction results are from the example
in Figure 1 (a).

However, it is challenging to well balance the useful and
misleading impact of identifiers on the model performance.
The main challenge is that it is difficult to explicitly dis-
tinguish the two opposite impacts, the deep learning models
are black-box at this stage [23]. Besides, although producing
more training instances might be helpful, the process would
require non-trivial manual labeling efforts and extra training
costs [24], [25]. In this work, we aim at exploiting the impact
of identifiers without the cost of more training data.

Inspired by causal inference from the statistics field [26],
which has proven effective in analyzing opposite impacts in
fields such as psychology [27] and politics [28], we propose to
solve the problem from a causal view. Specifically, the impact
of the identifiers on model prediction can be divided into two
separate causal effects, direct effect and indirect effect. By
formulating the useful and misleading information as the direct
effect and indirect effect respectively, we propose to preserve
the useful information and mitigate the misleading impact of
identifiers names by counterfactual inference [29], [30], i.e.
subtracting the direct identifier effect from the total effect. As
illustrated in Figure 2 (a), conventional models perform pre-
diction by estimating the total effect of the input code snippet,
and thereby are sensitive to identifier names. From the causal
perspective, we first compute the direct effect of identifiers by
estimating “what the name of this function would be if only
its identifiers were given?”, as shown in Figure 2 (b). The
direct effect is then removed through counterfactual inference
for alleviating the misleading information of identifiers, as
depicted in Figure 2 (c).

In this work, we propose CREAM, a Counterfactual
REAsoning-based fraMework (CREAM) to exploit the impact

of identifiers in neural code comprehension. Specifically, in the
training stage, CREAM distinguishes and captures direct effect
and indirect effect by multi-task learning. In the inference
stage, CREAM eliminates the misleading impact by reducing
the direct identifier effect from the prediction. We evaluate the
performance of CREAM on three popular code comprehension
tasks, including function naming, software defect detection
and code classification. For each task, we choose no fewer than
three popular conventional models and enhance them with the
proposed framework CREAM. For evaluating the robustness
improvement brought by removing the misleading information
of identifiers, we establish a transformed test set for each
dataset by randomly substituting each identifier in the original
test set with another one in the dataset. Experimental results
demonstrate that the models equipped with CREAM not only
significantly improve robustness on the transformed test sets
but also achieve improved performance on the original test
sets. Specifically, CREAM improves the robustness of Code-
BERT on the transformed test set by 37.9%, 8.3% and 1.9%
on function naming, defect detection, and code classification
respectively; while on the original test set, CREAM achieves
an improvement of 0.5%, 0.9%, and 0.3% on function naming,
defect detection, and code classification respectively.

The main contributions of this paper are summarized as
follows:

1) To the best of our knowledge, we are the first to exploit
the two-sided impact of identifiers in neural code com-
prehension from a causal view.

2) We propose a novel counterfactual reasoning-based
framework CREAM for capturing the misleading infor-
mation of identifiers via multi-task learning, and mit-
igating the misleading information via counterfactual
inference.

3) Extensive experiments show that the proposed framework
CREAM is more robust to identifier renaming than con-
ventional models on various code comprehension tasks.
The removal of misleading impact also improves the
overall performance of CREAM on the original datasets.

II. PRELIMINARIES

In this section, we review the key concepts we used in causal
inference. In the following, we use the capital letter (e.g., T)
and lowercase letter (e.g., t) to denote a variable and a specific
value respectively.

Structural Causal Model. The Structural Causal Model
(SCM) [26], [31] reflects the causal relations between variables
through a directed acyclic graph G = {V,E}, where V
denotes the set of variables and E denotes the set of edges
that describe the direct causal relationship between variables.
These causal relationships can be further parameterized with
structural equation [32]. Figure 3 is a simple example of SCM
involving three variables, treatment variable medicine (M),
mediator variable placebo effect (P) and outcome variable
disease (D) [26]. Their causal relationships can be presented
as follows:

Pm = fP (M = m), (1)

2

m D

p

p

m* D

p*

m
��, �

m*

M D

P p*

M: Medicine

P: Placebo Effect

D: Disease
D

D

��∗, � ��∗, �∗

��, �∗

m

m*

Fig. 3: An example of SCM. White and gray nodes denote the
variables are at the value of factual and counterfactual status
respectively. Counterfactual notations Dm,p, Dm∗,p, Dm,p∗

and Dm∗,p∗ are illustrated in the four graphs on the right.

Dm,p = fD(M = m,P = p), (2)

where fP and fD denote the structural equation of corre-
sponding variable, respectively. In this case, the causal effect
of medicine on disease exists in two paths. The first path M→
D denotes that medicine has a direct effect on disease through
the biological mechanism. The other path M→ P→ D shows
that taking medicines can also alleviate the disease through the
mediator, placebo effect. Thus when estimating to what extent
the medicine affects the disease through the placebo effect, we
need to exclude the bias caused by the biological mechanism
of medicine, i.e., M → D.

Counterfactual Inference. Counterfactual inference [26],
[31] is used to estimate for the same individual what the
outcome variable would be if the value of some variables were
different from the value we observed in the reality. As shown
in Figure 3, counterfactual inference can answer the following
question: whether the disease of the patient could be alleviated
if he didn’t receive the placebo effect but took medicines.
Specifically, it estimates the value of D when P receives
M = m through M → P , while D receives M = m∗ through
M → D. Here we use the asterisk notation to represent the
situation where the value of the node is muted from the reality,
e.g., p∗ denotes that the patient did not receive placebo effect.
This estimation can be achieved by using do(P = p∗):

Dm,p∗ = fD(M = m, do(P = p∗)), (3)

where do(·) operator denotes the intervention defined by
SCM [26], [33]. It forcibly substitutes p = fP (M = m)
with p∗ = fP (M = m∗) in the structural equation fD. Note
that do(P = p∗) does not affect the ascendant variable of
P , i.e., M retains its value m on the direct path M → D.
In clinical trials, it represents that the patient takes medicine
without being informed.

Causal effects. The causal effects measure to what extent
value change of the treatment variable (e.g., the value of
M change from m∗ to m) affects the value of the outcome
variable (e.g., D). For example in Figure 3, the total effect
(TE) [26] of M on D is defined as:

TE = Dm,p −Dm∗,p∗ , (4)

where Dm∗,p∗ denotes the situation that the patient neither
took medicines nor received the placebo effect. We can see
that TE calculates the causal effect of M to D from both the
direct causal path M→ D and the indirect causal path M→ P
→ D. For a detailed analysis, existing work often decomposes
TE into natural direct effect (NDE) and total indirect effect
(TIE) through TE = NDE+TIE [29], [34]. NDE represents the
value change of the outcome variable when value change of
the treatment variable only affects it through the direct path
M → D. Formally, NDE is defined as follows:

NDE = Dm,p∗ −Dm∗,p∗ , (5)

Accordingly, the TIE can be obtained by subtracting NDE
from TE:

TIE = TE −NDE = Dm,p −Dm,p∗ , (6)

TIE measures value change of the outcome variable when
value change of the treatment variable only affects it through
the indirect path M → P → D. Equipped with the above
causality concepts, we solve the problem of estimating the
influence of placebo effect via calculating TIE of M on D.

III. METHODOLOGY

In this section, we first present our causal view of the
prediction process for neural code comprehension models,
during which the impact of identifiers on the model prediction
is formulated with an SCM. Then we describe our proposed
CREAM framework for preserving the useful impact while
eliminating the misleading impact of identifiers.

A. A Causal View on Neural Code Comprehension

As shown in Figure 4 (a), we abstract the prediction process
of neural code comprehension by defining four variables: 1)
naming information T, which denotes the code tokens related
to identifier naming, i.e., user-defined identifiers; 2) non-
naming information F, which denotes the code properties
irrelevant to identifier naming, i.e., the code tokens other than
the identifiers; 3) combined knowledge K, which serves as
a mediator exploiting both the naming information and non-
naming information for model prediction; 4) model prediction
R, which denotes the prediction results of code comprehension
tasks, e.g., classification scores for code classification tasks.

Based on the above variable definitions and SCM introduced
in Section II, we formulate the causal structure of conventional
models, as illustrated in Figure 4 (a). The causal relationships
are shown as follows:

1) F → R represents the causal relationship from non-
naming information F to the model prediction R. For
the example shown in Figure 1 (a), the code structure
which contains two loops corresponds to the variable F .
Since the code structure is about data sorting-related swap
operations, it is helpful for predicting the function name
as “sort”. We regard this path as a “beneficial” path, since
the prediction based on only the non-naming information
is robust to identifier renaming.

3

F TK

RT: Naming information

F: Non-naming information

K: Combined knowledge

R: Model prediction

(a) The SCM of conventional neural code comprehension model.

f tk

R

f* k*

-
t

R

t*

��, �, � ��∗, �∗, �

(b) The SCM of our counterfactual reasoning-based neural code
comprehension model.

Fig. 4: Illustration for the SCM of conventional neural code
comprehension model (a), and our counterfactual reasoning-
based neural code comprehension model (b).

2) T → R represents the causal relationship from naming
information T to the model prediction R, For the example
in Figure 1 (a), the identifier “f ” which corresponds to
variable T , misleads the model to predict “open” as
the function name. The possible reason of the wrong
prediction is that the identifier “f ” commonly appears
in the functions named “open” in the training set. For
example, in a Java function named “open”, “f ” is usu-
ally used as an abbreviation of a file handling object,
e.g., “File f = new File()”. The phenomenon is also
called spurious correlation [26] between identifiers and
prediction results. Since the spurious correlation will
mislead models’ understanding of the code semantics, we
regard this direct causal effect as the misleading impact
of identifiers.

3) F, T → K→ R represents the process that models predict
based on the combined knowledge K which exploits both
the naming information T and non-naming information
F . We also regard this path as a “beneficial” path since
it not only leverages the robust non-naming information
F and also the useful information in identifier names
T. Although identifier names are essentially irrelevant to
program behaviors, the semantics are helpful for accurate
code comprehension [17], [21]. The path represents that
we leverage the useful information of identifiers through
the combined knowledge K instead of completely dis-
carding the identifiers.

As shown in Figure 4 (a), conventional neural code com-
prehension models predict through the total effect, i.e., Rf,k,t

- Rf∗,k∗,t∗ , which integrates the direct effect from all the
three paths. In this way, the inclusion of the “bad” path
T → R will inevitably introduce the misleading impact of
identifiers to the prediction of conventional models. Thus, to
improve the robustness and accuracy of the models, the direct
effect of T → R from the total effect should be excluded

during model prediction. To achieve the goal, we introduce
the counterfactual reasoning-based neural code comprehension
model which estimates the causal effect of T and F on the
prediction R with direct effect T → R blocked, as shown
in Figure 4 (b). We describe how we implement the idea
and details of the proposed general framework CREAM for
eliminating the misleading impact of identifiers in the next
section.

B. Details of CREAM

In this section, we elaborate on the details of CREAM.
Figure 5 (a) and (b) illustrate the overall workflow of the
conventional model and the proposed CREAM, respectively.
For conventional models, the training and inference stages are
the same; while for CREAM, the calculation of classification
scores 1 in the training and inference stage are different.
Specifically, in the training stage, CREAM captures each
direct effect in SCM through multi-task learning; while in
the inference stage, it eliminates the misleading impact of
identifiers by counterfactual inference.

1) Task formulation: In this work, we broadly divide
neural code comprehension tasks into two paradigms, i.e.,
classification-based and generation-based. Considering that the
generation-based task can be viewed as a successive classifi-
cation task, where the models output classification scores over
the vocabulary at each time step, we unify the workflow of
the neural code comprehension tasks as follows. Assume that
we have a source code database X = {x1, x2, ..., xn} and
corresponding ground truth Y = {y1, y2, ..., yn}, where n is
the number of training data and yj is a class label or target
sequence of the j-th training instance for classification and
generation task, respectively. In the training stage, our goal is
to train a neural model F to minimize the prediction error on
the training set. Formally, F can be formulated as:

F̄ = arg min
F

∑
(x,y)∈{X,Y }

L(F(x), y), (7)

where L(·) denotes the loss function such as cross entropy
and F can be a large variety of existing neural models such as
Long Short-Term Memory (LSTM) [37] and Transformer [38].
In the inference stage, given a sample x′ in the test set, the
model first calculates the classification score, i.e., Z and Z ′r for
the conventional model and CREAM, respectively (as shown
in Figure 5). Following the widely-used greedy search strategy,
the class with the highest classification score is selected as
prediction result:

yr = arg max
c

(z′), (8)

where c is the set of candidate classes and yr is the prediction
result.

1It is also called logits in many machine learning papers [35], [36].

4

Source code

Basic Model

𝑍

𝐿

Inference Stage: 𝑍

Training Stage: 𝑍

Loss

Classification

score

(a) Conventional model.

Parse

public static void (int[]){
for(int =1; < .length; ++){
int = [];
...

f i i f i x f i ...

public static void (int[]f){
for(int i=1;i<f.length;i++){
int x = f[i];
...

Basic Model ��

 ��

 ��

Basic Model

Basic Model

Training Stage: �� =
�
�

(�� + �� + ��)

+ + =

 ��

 ��

 ��
Fusion

��

 1 public static void (int[] f) {
 2 for (int i = 1; i < f.length; i++){
 3 int x = f[i];
 4 int j = i - 1;
 5 while (j >= 0 && f[j] > x) {
 6 f[j + 1] = f[j];
 7 j--;
 8 }
 9 f[j + 1] = x;
10 }
11 }

Naming
branch

Combined
branch

Non-naming
branch

Inference Stage:

+ + (1 − �) ∗ =

sharing

sharing
 Source code

An example of source code

�’� = �� + �� + (� − �) ∗ ��

Identifiers Removed

Full Code

Identifiers Only

(b) CREAM.

Fig. 5: The overall workflow of conventional neural code comprehension model (a) and CREAM (b). The basic model in (a)
and (b) denotes the conventional code comprehension models.

2) Framework Design: As shown in Figure 5 (b), our
proposed CREAM framework follows the SCM illustrated in
Section III-A. Specifically, we distinguish the three causal
paths including F → R, K → R and T → R by designing
three branches in CREAM, i.e., non-naming branch, combined
branch, and naming branch, respectively. To avoid increasing
the model size, the parameters of the basic models for the three
branches are shared. CREAM first parses the input source
code into three types of input, including non-naming input f ,
combined input k, and naming input t for the three branches,
respectively. CREAM then estimates the direct causal effect
of each path by calculating the classification score for each
branch based on the basic model, formulated as:

Zf = F(f), Zk = F(k), Zt = F(t). (9)

To obtain the total effect of the input code on prediction,
we combine the direct causal effect from three branches and
fuse their outputs into the final classification score Zr which
is corresponding to the variable R in SCM. Here we compute
Zr by an averagely weighted method

Zr =
1

3
(Zf + Zk + Zt), (10)

According to the definition of structural equation in Section II,
the fusion method also indicates that the structural equation
of the variable R is parameterized as follows:

Rf,k,t =
1

3
(F(f) + F(k) + F(t)). (11)

Based on the above framework design of CREAM, we intro-
duce the computation process which includes two stages, i.e.,

training stage and inference stage. The details are illustrated
in Algorithm 1.

Multi-task Training: In the training stage, CREAM needs
to realize multiple goals: 1) to accurately estimate the total
effect of source code on prediction results; and 2) to capture
the direct effect of each path and distinguish it from total
effect. To achieve the goals, we adopt the multi-task learning
strategy [30], [39] for model training:

Lf = L(Zf , y), Lr = L(Zr, y), Lt = L(Zt, y), (12)

Ltotal = Lf + Lr + Lt, (13)

Here, Lr is used to train the model for accurately estimating
the total effect (i.e., the first goal); while Lf and Lt are
involved to capture the direct effect and distinguish it from the
total effect (i.e., the second goal). Besides, to simultaneously
capture the direct effect and distinguish it from total effect,
we also adopt the deferred training strategy [40]. Specifically,
we first train the three branches separately to well capture
each direct effect, and then fuse their classification scores after
Ifusion iterations (Lines 4-7 of the multi-task training stage
in Algorithm 1).

Counterfactual Inference: As illustrated in Section III-A,
the key to eliminate the misleading impact of identifiers is
to remove the direct effect T → R from the total effect. To
this end, during the inference stage, CREAM first estimates
the total effect of the input code on model prediction R as
follows:

TE = Rf,k,t −Rf∗,k∗,t∗ , (14)

5

where f∗, k∗ and t∗ denote the corresponding empty input.
Following [29], [30], we set the classification score to a uni-
form distribution (i.e., the classification scores for all classes
are the same) if the input is empty, which is formulated as:

F(f∗) = F(k∗) = F(t∗) = u (15)

where u is the classification score under uniform distribution.
Then CREAM estimates the misleading impact by calculating
the natural direct effect of identifier names on model predic-
tion, i.e., the direct effect of T = t on prediction R under the
situation F = f∗ and K = k∗:

NDE = Rf∗,k∗,t −Rf∗,k∗,t. (16)

We finally eliminate the misleading impact by subtracting the
natural direct effect from the total effect. We propose to control
the degree of elimination by involving a hyper-parameter α,
defined as:

TE − α ∗NDE ∝ Rf,k,t − α ∗Rf∗,k∗,t, (17)

where α ranges from 0 to 1. By omitting the constant, the
final classification score Z ′r is calculated as follows:

Z ′r = Rf,k,t − α ∗Rf∗,k∗,t∗

=
1

3
(F(f) + F(k) + F(t))− α

3
(F(f∗) + F(k∗) + F(t))

=
1

3
(F(f) + F(k) + F(t))− α

3
(u+ u+ F(t))

∝ F(f) + F(k) + (1− α) ∗ F(t)

= Zf + Zk + (1− α) ∗ Zt.
(18)

IV. EXPERIMENTAL SETUP

In this section, we detail the experimental settings for the
three popular code comprehension tasks including function
naming, defect detection and code classification, which have
been active areas of software engineering research for years.

A. Evaluation Tasks

1) Function naming: Function naming aims to automati-
cally generate a meaningful and succinct name for a function.
In software industry, it can help engineers correct the incon-
sistent method and API name for program readability and
maintainability [10], [41], [42]. In this work, we formulate
it as a generation task with the greedy search strategy and
cross-entropy loss function.

2) Defect detection: Given a code snippet, defect detection
aims to identify whether a given code snippet is vulnerable,
which is crucial to defend a software system from cyberat-
tack [11], [12]. In the previous work, it is formulated as a
binary classification task and generally uses the binary cross-
entropy [43] as the loss function.

3) Code classification: Code classification is the task of
classifying a code snippet by its functionality, which is helpful
for program comprehension and maintenance [1], [44]. It is
formulated as a multi-class classification task and utilizes
cross-entropy as the loss function.

Algorithm 1 Algorithm of CREAM framework

Input: training set {Xtrain, Ytrain}, test set {Xtest}, fusion
iteration threshold Ifusion, total iteration I

Output: neural model F , prediction result yr
Multi-task Training:

1: for i ∈ {1, ..., I} do
2: Extract f , t, k from Xtrain

3: Zf = F(f), Zt = F(t), Zk = F(k)
4: if i¡Ifusion then
5: Zr = Zk

6: else
7: Zr = 1

3 (Zf+Zk+Zt)
8: end if
9: Calculating Lr, Lt, Lf with Ytrain

10: Update model F with Ltotal = Lr+Lt+Lf

11: end for
12: return model F

Counterfactual Inference:
1: Extract f , t, k from Xtest

2: Zf = F(f), Zt = F(t), Zk = F(k)
3: Zr = Zf + Zk + (1− α) ∗ Zt

4: yr = arg max(Zr)
5: return Prediction result yr

B. Baselines

1) Function naming: For function naming, we adopt three
well-known code-to-text models for evaluation. CodeNN [6]
is a classical sequence-to-sequence model which generates
source code summaries with an LSTM network and attention
mechanism. NCS [20] is a recent state-of-art-model on code
summarization. CodeBERT [45] is a widely-used pre-trained
model for source code. We fine-tune CodeBERT with the
pre-trained encoder with an additional decoder training from
scratch.

2) Defect detection: For defect detection, we follow the
popular benchmark CodeXGLUE [46] and adopt the following
models. TextCNN [47] and BiLSTM Att [37] are two widely
used methods for text classification in NLP. Here, BiLSTM
Att is the combination of BiLSTM and attention mecha-
nism [48]. Many defect detection works [49], [50] employ
them for model construction. Devign [11] is proposed to
learn the various vulnerability characteristics with a composite
code property graph and graph neural network. We also use
CodeBERT as the basic model since it has shown promising
results on defect detection [46].

3) Code classification: We adopt three representative works
in this field as the basic model for CREAM. TBCNN [44] is
a classical code classification model which captures structural
information of the Abstract Syntax Tree (AST) with a tree-
based convolution neural network. ASTNN [11] learns the
code representation by splitting the large AST into a sequence
of small statement trees. We also involve the pre-trained model
CodeBERT for evaluation.

6

TABLE I: Statistics of the benchmark datasets.

Datasets Train Validation Test
CSN-Java 164,923 5,183 10,955
CSN-Python 251,820 13,914 14,014
CSN-Go 167,288 7,325 8,122
CSN-PHP 241,241 12,982 14,014
CSN-Ruby 24,927 1,400 1,261
CSN-JavaScript 38,499 2,745 2,232
Defect Detection 21,854 2,732 2,732
Code Classification 31,200 10,400 10,400

C. Datasets and Metrics

1) Function naming: For function naming, we use the
widely used CodeSearchNet (CSN) [51] dataset which con-
tains six programming languages including Java, Python, Go,
PHP, JavaScript and Ruby. Specifically, we use the cleaned
dataset which is pre-processed and open sourced in Code-
BERT [45]. For JavaScript, we further filter the samples
without a function name. To measure the similarity between
generated function names and the reference names, we employ
the standard metrics including Precision, Recall and F1.

2) Defect detection: We use the defect detection dataset
released by Devign [11]. The dataset contains 27,318 C code
snippets collected from the QEMU and FFmpeg projects. As
for the dataset split, we use the benchmark open sourced by
CodeXGLUE [46], in which the dataset is split into training
set, validation set and test set in a proportion of 8:1:1.
Following [11], [52], we use accuracy as the evaluation metric.

3) Code classification: For code classification, we use the
POJ dataset [44] which contains 52,000 code snippets of C
language with 104 classes. It is collected from Online Judge
(OJ) and code snippets in the same class are used to solve the
same programming problem. We follow ASTNN [11] to split
the dataset into training set, validation set and test set in a
proportion of 3:1:1. We follow previous work [1], [44] in this
field and use accuracy as the evaluation metric.

We list the statistics of the benchmark datasets in Ta-
ble I. When evaluating the robustness, we follow previous
work [53]–[55] and validate whether the model can output the
same results under semantic-preserving code transformations,
i.e., identifier renaming. Therefore we also create a trans-
formed test set for each dataset. Specifically, following the
procedure in previous work [53]–[55], we randomly substitute
the identifier names in the test set with another identifier name
that appeared in the dataset.

D. Implementation Details

During the experiment, we reproduce each model either
directly using the code released by the author or strictly
following the steps described in their paper2. For a fair
comparison, we make sure that the hyperparameters such as
training epochs and learning rate for models with and without
CREAM are exactly the same. The value of α in Equ. (17) is
set as 0.4, 0.5, 0.6, 0.7 or 0.8 for different datasets. The Ifusion

2For the baseline Devign in the defect detection, we reproduce the method
based on the re-implementation code in [56] due to the lack of original code.

is set as 10% of total training iterations. We will discuss how
we select parameters for each dataset in Section V-D.

When applying CREAM to each baseline, we parse the
source code into three sequences (Figure 5) for the models
that treat source code as plain text (e.g., NCS and CodeBERT)
for the function naming task. For models that treat the source
code as a tree [1] or graph [11], we divide the tree or graph
into two parts which contain the nodes with and without the
naming information, respectively. To extract the identifiers in
source code, we first parse the code into AST with tree-sitter3,
and filter the leaf node according to its type and the type of its
parent. For example, we extract the identifiers for C/C++ by
selecting the leaf node whose type is “identifier” and parent’s
type is not “call expression”.

All the experiments are conducted on a server with 4 Nvidia
Tesla V100 GPUs and 32 GB graphic memory. We run each
baseline and CREAM three times and report the best results.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of CREAM by
answering the following research questions:

RQ1: Does CREAM improve the robustness of existing
models?

RQ2: Is CREAM beneficial for improving the accuracy of
existing models?

RQ3: What is the impact of multi-task learning and coun-
terfactual inference on the performance of CREAM?

RQ4: How do different parameter settings affect the perfor-
mance of CREAM?

A. RQ1: Evaluation on the Robustness of CREAM

We evaluate the robustness of CREAM on the transformed
datasets for the three tasks, with results illustrated in Table II-
IV, respectively. Due to the page limit, we only present the
F1 scores of different models for the function naming task in
Table II. The scores for the precision and recall metrics are
presented on the GitHub repository.4. Based on the results, we
have the following observations:

Conventional models are not robust to identifier naming.
By comparing the results of conventional models on the
original test set and transformed test set, we find that identifier
renaming leads to significant performance degradation on the
three tasks. For example, the average performance of the
models for function naming, defect detection, and code clas-
sification drop by 55.4%, 8.9% and 12.3%, respectively. The
results indicate that conventional neural code comprehension
models are easily misled by identifier names.

CREAM consistently and significantly improves the
model robustness. As can be seen in Table II-IV, CREAM
consistently outperforms the conventional models on all the
task datasets, demonstrating its capability and generalizability
in improving the robustness of neural code comprehension
models. Besides, the improvement over the conventional mod-
els is substantial, for example, for function naming CREAM

3https://github.com/tree-sitter/tree-sitter
4https://github.com/ReliableCoding/CREAM

7

https://github.com/tree-sitter/tree-sitter
https://github.com/ReliableCoding/CREAM

TABLE II: Experimental results (F1 score) on function naming. Percentages listed within parantheses are computed improvement
or reduction in F1 score as compared with the results of the corresponding basic model. “*” denotes statistical significance in
comparison to the baselines (i.e., two-sided t-test with p-value < 0.05)

Approach Java Python JavaScript PHP Go Ruby Average
Transformed test set

CodeNN 23.05 4.00 4.72 17.61 17.79 5.98 12.19
+CREAM 28.35(↑22.99%)∗ 5.44(↑36.00%)∗ 6.00(↑27.12%)∗ 22.44(↑27.43%)∗ 24.91(↑40.02%)∗ 7.25(↑21.24%)∗ 15.73(↑29.04%)
NCS 21.61 3.65 3.32 17.56 21.68 5.70 12.25
+CREAM 27.28(↑26.24%)∗ 4.67(↑27.95%)∗ 7.20(↑116.87%)∗ 24.38(↑38.84%)∗ 27.33(↑26.06%)∗ 10.47(↑83.68%)∗ 16.89(↑37.88%)
CodeBERT 25.90 5.05 4.61 23.43 27.72 20.72 17.91
+CREAM 36.72(↑41.78%)∗ 7.29(↑44.36%)∗ 10.54(↑128.63%)∗ 35.80(↑52.80%)∗ 38.62(↑39.32%)∗ 27.49(↑32.67%)∗ 26.08(↑45.62%)

Original test set
CodeNN 33.18 22.64 14.40 36.83 34.64 12.24 25.66
+CREAM 33.69(↑1.54%)∗ 22.69(↑0.22%) 14.16(↓1.67%) 36.87(↑0.11%) 34.79(↑0.43%) 12.36(↑0.98%) 25.76(↑0.39%)
NCS 35.07 25.68 16.31 40.19 40.52 12.93 28.45
+CREAM 35.63(↑1.59%)∗ 25.40(↓1.09%) 16.46(↑0.92%) 40.25(↑0.04%) 40.21(↓0.77%) 13.64(↑5.5%)∗ 28.60(↑0.53%)
CodeBERT 46.38 37.64 29.55 49.36 49.88 32.04 40.81
+CREAM 47.04(↑1.42%)∗ 37.66(↑0.05%) 27.11(↓8.26%) 50.35(↑2.01%)∗ 50.28(↑0.80%)∗ 30.49(↓4.84%) 40.49(↓0.78%)

TABLE III: Experimental results (accuracy) on defect detec-
tion. “*” denotes statistical significance in comparison to the
baselines (i.e., two-sided t-test with p-value < 0.05)

Approach Original test set Transformed test set
TextCNN 58.57 54.36
+CREAM 59.96(↑2.37%) 55.78(↑2.61%)
BiLSTM Att 62.08 54.90
+CREAM 62.34(↑0.42%) 56.55(↑3.01%)
Devign 55.77 52.03
+CREAM 56.74(↑1.74%) 53.98(↑3.75%)
CodeBERT 63.47 57.24
+CREAM 64.05(↑0.91%) 62.01(↑8.33%)∗

TABLE IV: Experimental results (accuracy) on code classi-
fication. “*” denotes statistical significance in comparison to
the baselines (i.e., two-sided t-test with p-value < 0.05)

Approach Original test set Transformed test set
TBCNN 96.76 68.45
+CREAM 97.00(↑0.24%) 83.08(↑21.37%)∗

ASTNN 98.04 89.43
+CREAM 98.18(↑0.14%) 96.06(↑7.41%)∗

CodeBERT 97.96 95.76
+CREAM 98.28(↑0.33%) 97.56(↑1.88%)∗

improves the performance of CodeNN, NCS and CodeE-
BRT on the transformed test set by 29.0%, 37.9%, and
45.6%, respectively; for defect detection and code classifica-
tion CREAM also improves the performance of CodeBERT
on the transformed test set by 8.3% and 1.9%, respectively.
The results suggest that CREAM can eliminate the misleading
impact of identifiers, enabling the models reliable to identifier
renaming.

The robustness improvement on smaller datasets are
more obvious. As shown in Table II, by analyzing the results
on the datasets with different sizes for the function naming
task, we find that CREAM achieves higher improvement on
the smaller datasets. For example, CREAM boosts NCS by
116.9% and 83.7% on JavaScript and Ruby, respectively.
This may be attributed to that neural models are prone to
overfitting on datasets with small sizes [57], [58], thus the
direct misleading information is prominent. Our proposed

CREAM can render the models less affected by identifier
names especially on small datasets.

B. RQ2: Performance Evaluation

In this section, we evaluate the accuracy of CREAM on the
code comprehension tasks. From Table II-IV, we observe that
CREAM improves the performance of conventional models in
most cases.

Function Naming. As shown in Table II, we find that
CREAM improves the performance of each basic model in a
vast majority of cases. Specifically, the average improvement
of CREAM over CodeNN and NCS is 0.4% and 0.5%,
respectively, regarding the F1 score. Although the averaged
F1 score for CodeBERT+CREAM drops slightly, the perfor-
mance on most languages still increases. The results show the
effectiveness of CREAM on function naming.

Defect Detection. As shown in Table III, we can observe
that CREAM improves the accuracy of all the basic models
with an average improvement of 1.4%. Specifically, Code-
BERT+CREAM and Devign+CREAM outperform their cor-
responding baselines by 0.9% and 1.7%, respectively, which
indicates that CREAM can facilitate conventional models to
capture the patterns of vulnerable code snippets.

Code Classification. As shown in Table IV, we can ob-
serve a consistent improvement of CREAM on different basic
models. For example, although the performance of ASTNN
and CodeBERT are strong enough, i.e., achieving 98.04%
and 97.96% accuracy, respectively, CREAM can further boost
them by 0.1% and 0.3%, respectively. This indicates that
CREAM is also effective to comprehend the code function-
ality.

C. RQ3: Ablation Study

We further perform ablation studies to verify the effective-
ness of two key stages in CREAM, i.e., multi-task learning and
counterfactual inference. We select CodeBERT as the basic
model, since it is used for evaluation on all the tasks. For
function naming, we use the PHP dataset for evaluation.

Multi-task learning: Lf and Lt are introduced to dis-
tinguish the direct causal effect from the total effect. From

8

TABLE V: Ablation study. Best and second best results are marked in bold and underline respectively.

Approach Function Naming (F1) Defect Detection (accuracy) Code Classification (accuracy)
Original Transformed Original Transformed Original Transformed

CodeBERT 49.36 23.43 63.47 57.24 97.96 95.76
+CREAM 50.35 35.80 64.05 62.01 98.28 97.56
-w/o Lf 49.67 32.80 64.20 58.38 98.12 89.90
-w/o Lt 49.79 36.68 63.65 61.42 98.16 98.02
-w/o Lt and Lf 48.69 34.52 63.69 59.08 97.74 96.81
-w/o Counterfactual Inference 50.16 31.26 63.87 61.31 98.36 97.18

31.0

34.0

37.0

40.0

43.0

49.0

49.4

49.8

50.2

50.6

0 0.2 0.4 0.6 0.8 1

Original
Transformed

(a) α on PHP function naming.

32.0

35.0

38.0

41.0

44.0

49.0

49.4

49.8

50.2

50.6

0 0.2 0.4 0.6 0.8 1

Original
Transformed

(b) α on GO function naming.

95.0

95.4

95.8

96.2

96.6

98.00

98.05

98.10

98.15

98.20

0 0.2 0.4 0.6 0.8 1

Original
Transformed

(c) α on defect detection.

53.2

54.0

54.8

55.6

56.4

58.8

59.1

59.4

59.7

60.0

0 0.2 0.4 0.6 0.8 1

Original
Transformed

(d) α on code classification.

35.4

35.6

35.8

36.0

36.2

50.0

50.1

50.2

50.3

50.4

0 0.1 0.2 0.3

Original
Transformed

(e) If on PHP function naming.

37.5

38.0

38.5

39.0

39.5

49.2

49.5

49.8

50.1

50.4

0% 10% 20% 30%

Original
Transformed

(f) If on GO function naming.

55.2

55.4

55.6

55.8

56.0

59.2

59.4

59.6

59.8

60.0

0% 10% 20% 30%

Original
Transformed

(g) If on defect detection.

95.5

96.0

96.5

97.0

97.6

97.8

98.0

98.2

98.4

0% 10% 20% 30%

Original
Transformed

(h) If on code classification.

Fig. 6: Parameter analysis on α and Ifusion. If is the abbreviation of Ifusion. The vertical axis means the F1 score, accuracy
and accuracy for function naming, defect detection and code classification respectively. The left and right vertical axes indicate
results on the original and transformed dataset, respectively.

Table V, we can observe that models without them suffer
from different degree of performance loss on the original test
set or transformed test set. Specifically, removing Lf leads
to a significant decrease on the transformed test set, with the
decrease rate at 8.4%, 5.9% and 7.9% for function naming,
defect detection and code classification, respectively; while
without Lt, the framework performance drops consistently on
the original test set. This indicates that removing Lf prevents
the model from fully capturing the misleading information,
which is harmful to model robustness; while removing Lt

makes the model unable to distinguish T→ R and K→ R well,
resulting in poorly exploiting the beneficial knowledge brought
by K→ R. Moreover, removing both Lf and Lt leads to worse
performance, e.g., a drop of 3.3% and 3.6% on the original
and transformed test set of function naming, respectively.

Counterfactual inference: We validate the effectiveness of
counterfactual inference by setting α in Equ. (11) to zero.
As shown in the last row in Table V, without counterfactual
inference, the framework’s performance decreases on all tasks
except a slightly improvement on the original test set for code
classification. Specifically, the performance on the transformed
test set drop by 12.7%, 1.1%, and 0.4% on function naming,
defect detection and code classification, respectively. The

results show that the removal of misleading information by
counterfactual inference improves the robustness of CREAM.

D. RQ4: Parameter Analysis

In this section, we analyze how the two key hyper-
parameters α and Ifusion affect the performance of CREAM.
Due to the page limitation, in figure 6, we only present the
experimental results with CodeBERT on the Go and PHP
dataset, TextCNN and ASTNN as basic models for function
naming, defect detection, and code classification, respectively.
The results on other language and basic models are presented
on our GitHub repository.5

The parameter α. As shown in Figure 6 (a), (b), (c) and
(d), the model performance shows similar trend along with
the increase of α on the original dataset for all the tasks.
CREAM’ performance first increases and achieves its peak,
and then descends obviously with a larger α. The optimal α
value is around 0.6 for the tasks. However, for the transformed
dataset, the performance increases monotonically as α grows
from 0 to 1. Recall that α in Equ. (17) is designed to control
the degree of eliminating the misleading impact of identifiers,
and a larger α will remove more misleading impact of the

5https://github.com/ReliableCoding/CREAM

9

https://github.com/ReliableCoding/CREAM

identifiers. Since the misleading impact in the transformed
dataset is more serious than that in the original dataset, a larger
α in the transformed dataset is more appreciated. During the
experimentation, to balance the performance of CREAM on
both original and transformed datasets, we choose the value
of α from the set {0.4, 0.5, 0.6, 0.7, 0.8}. Specifically, we test
the model with α set from 0.4 to 0.8, and select the α with
best robustness under the condition that the performance on
the original dataset is not sacrificed too much.

The parameter Ifusion. We study the effect of Ifusion, as
introduced in Section III-B2, by varying it from 0% to 30%
of the total training iterations for the tasks. From Figure 6 (e),
(f), (g) and (h), we can observe that involving Ifusion benefits
the performance on both original and transformed datasets for
all the tasks. However, for function naming, we also observe
that the F1 score when Ifusion is set as 30% on the original
dataset is lower than that when Ifusion is set as zero. This
may be attributed to that models need more training epochs to
well distinguish T→ R and K→ R for the complex generation
task. In this work, we set Ifusion as 10% of the total training
iterations due to the relatively better results on all tasks.

VI. DISCUSSION

A. Why Counterfactual Inference Helps?

In this section, we provide another Bayesian perspective to
understand how CREAM eliminates the misleading impact of
identifiers through counterfactual inference. We use pt(x, y)
and ps(x, y) to denote the data distributions of the training
set and test set, respectively. We focus on the common
classification tasks [44], [47] which normalize classification
scores with the softmax function. Based on Bayes’ theorem,
the posterior on the training and test set can be expressed as
follows:

pt(y|x) =
pt(y)pt(x|y)∑
y pt(y)pt(x|y)

, (19)

ps(y|x) =
ps(y)ps(x|y)∑
y ps(y)ps(x|y)

, (20)

where p(.) is parameterized by a neural network. Our goal is to
learn a set of parameters from training set, which is expected
to estimate the posterior of test set well. Formally, given a
sample x′ in test set, we estimate its posterior by:

p̄(y|x′) =
pt(y)pt(x

′|y)∑
y pt(y)pt(x

′|y)
=

ez
′∑
ez
′ , (21)

where z′ is the classification score for x′. Under random data
split, we can assume that the prior on training and test set are
the same, i.e. pt(y) = ps(y). However, in practice, we cannot
ensure that the likelihood on training set pt(x|y) is the same
as that on test set ps(x|y) [59], [60]. For example, with respect
to defect detection, if functions that contain the identifier
“ss” are all labeled as vulnerable code in the training set,
model will learn a higher vulnerable likelihood for the function
with “ss”, i.e., pt(ss|vulnerable) > pt(ss|invulnerable).

TABLE VI: Comparison results of attack success rates on
attacking CodeBERT and CodeBERT+CREAM. MHM-NS
denotes MHM attack with natural substitution [61].

Approach Model Defect detection Code classification

ALERT CodeBERT 53.97 46.43
+CREAM 24.62(↓54.38%) 20.77(↓55.27%)

MHM-NS CodeBERT 33.27 4.15
+CREAM 17.32(↓48.21%) 1.21(↓70.84%)

Thus, conventional models that directly predict based on the
likelihood learned on the training set may be misled, since the
identifier “ss” is irrelevant to the vulnerability of the function.
Different from conventional models, our framework adaptively
estimates and subtracts the misleading impact of identifiers
from the classification score in the inference stage:

ez
′−fz′∑

z e
z′−fz′

=
pt(y)pt(x

′|y)βy∑
y pt(y)pt(x

′|y)βy
(22)

where fz′ is corresponding to α ∗Rf,k∗,t∗ in Equ. (17). Here,
the stronger the correlation between the identifiers in x′ and
y, the larger (smaller) the value of fz′ (βy) will be. This
indicates that CREAM eliminates the misleading impact of
identifiers by rectifying the incorrect estimation of likelihood
learned from the training set. In this work, we mainly focus
on the misleading information caused by identifiers, and will
explore other potential misleading sources in future work.

B. Performance under adversarial attacks

In this section, we follow previous work [61]–[63] and
further evaluate the robustness improvement of CREAM by
adversarial attack. Specifically, we experiment with Code-
BERT on defect detection and code classification since it show
the best performance on both tasks. For adversarial attack
methods, we select two state-of-the-art black-box methods
ALERT [61] and MHM [16] with natural substitution [61]. We
evaluate the robustness of model by the widely-used Attack
Success Rates (ASR) metric [61], [63], [64], which measures
the fraction of samples that can be attacked among all of
the test samples. A higher ASR indicates that a model is
more vulnerable to adversarial attack. From Table VI, we can
observe that CREAM consistently improves the robustness of
CodeBERT on both tasks under both attack approaches. For
example, CREAM reduces 54.38% and 55.27% possibility
of being attacked by ALERT on defect detection and code
classification, respectively. This indicates that CREAM can
also effectively improve the robustness of neural code compre-
hension models under adversarial attacks. We will experiment
with more basic models and adversarial attack methods in our
future work.

C. Threats to Validity

We identify three main treats to validity of our study:
1) The selection of code comprehension tasks. In this

work, we select three popular code comprehension tasks
to evaluate CREAM, including function naming, de-
fect detection and code classification. Although CREAM

10

shows superior performance on these tasks, other tasks
such as code search [4], [5] and code summarization [6],
[7], [65] are also important and not involved in our
experiment. In the future, we will validate CREAM on
more code comprehension tasks.

2) The selection of basic models. For each task, we select
at least three basic models to validate the effectiveness of
CREAM. The selected basic models are representative of
the corresponding task. To comprehensively evaluate the
performance of CREAM, more basic models should be
considered. In the future, we will experiment with more
basic models to evaluate the generality of CREAM.

3) The selection of datasets. For each task, we select one
popular dataset for evaluation. However, there are other
datasets such as [66] for function naming. In the future,
we will conduct experiments on more datasets.

4) Comparison to ensemble techniques. CREAM aggre-
gates the prediction from three branches with different
inputs, which can also be framed as ensemble learning.
There is thus a threat that some simple ensemble learning
methods can also improve the model’s performance. In
the future, we will compare CREAM with other ensem-
ble techniques to validate the benefits of counterfactual
reasoning.

VII. RELATED WORK

A. Code Comprehension

In this section, we focus on deep-learning-based methods
on three tasks that are covered in our work including function
naming, defect detection and code classification. Besides, the
related work on pre-trained models for code are also discussed.

Function Naming: Alon et al. [8] present Code2seq that
represents the code snippets by sampling certain paths from the
ASTs. Another work proposed by Zügner et al. [9] focuses on
multilingual code summarization and proposes to build upon
language-agnostic features such as source code and AST-based
features. A recent work [67] propose to encodes tree paths into
transformer.

Defect Detection: Russell et al. [50] empirically eval-
uate the ML techniques on defect detection and find that
TextCNN with an ensemble tree algorithm achieves the best
performance. Another work [49] proposes the first deep
learning-based vulnerability detection system VulDeePecker.
Devign [11] is proposed to learn the various vulnerability
characteristics with a composite code property graph and graph
neural network.

Code classification: TBCNN [44] is a classical code
classification model which captures structural information of
the AST with a tree-based convolutional neural network.
ASTNN [11] learns the code representation by splitting the
large AST into a sequence of small statement trees. Another
recent work [68] propose to capture the tree structure of code
with a capsule network.

Pre-trained models for code: Recently, a number of pre-
trained models for source code have been proposed [45], [52],
[69]. CodeBERT [45] is an encoder-only pre-trained model

based on Masked language modeling and replaced token de-
tection. GraphCodeBERT [69] further leverage code structure
information by data flow graph. Another recent work [70]
proposes a sequence-to-sequence pre-trained model with the
encoder-decoder architecture.

B. Causal Inference

Causal inference has attracted increasing attention in fields
including computer vision [29], [71], natural language process-
ing [72], [73] and recommendation [30], [39]. The general
purpose of causal inference is to help model pursue causal
effect rather than correlation effect. Niu et al. [29] propose
a counterfactual framework to remove the language bias in
visual question answering. In recommendation, [39] and [30]
also employ similar methods to eliminate the popularity bias.
Some works [74], [75] also consider to build the causal graph
from data generation view and remove the confounder with
back-door adjustment. In text classification, some works [72],
[76] focus on alleviate the spurious correlation by generating
counterfactual samples. Different from the above studies,
we are devoted to extracting and eliminating the misleading
impact of identifiers in neural code models. To the best of our
knowledge, we are the first to introduce the causal inference
into neural code comprehension.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present CREAM, a counterfactual
reasoning-based framework to eliminate the misleading impact
of identifiers in neural code comprehension. CREAM captures
the misleading information in the training stage through multi-
task learning and reduces it by counterfactual inference in the
inference stage. CREAM is flexible and easy to be applied
to various tasks and basic models. The evaluation on three
popular tasks demonstrates the effectiveness of CREAM on
original test sets and its robustness to identifier renaming. In
the future, we will explore to apply more causal inference
techniques to solve the challenges in code intelligence tasks.

Data availability: The implementation repository of
this work is publicly available at https://github.com/
ReliableCoding/CREAM.

REFERENCES

[1] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in Pro-
ceedings of the 41st International Conference on Software Engineering,
ICSE 2019. IEEE / ACM, 2019, pp. 783–794.

[2] F. Liu, G. Li, Y. Zhao, and Z. Jin, “Multi-task learning based pre-trained
language model for code completion,” in 35th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2020. IEEE,
2020, pp. 473–485.

[3] B. Wei, Y. Li, G. Li, X. Xia, and Z. Jin, “Retrieve and refine: Exemplar-
based neural comment generation,” in 35th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2020. IEEE,
2020, pp. 349–360.

[4] W. Gu, Z. Li, C. Gao, C. Wang, H. Zhang, Z. Xu, and M. R. Lyu,
“Cradle: Deep code retrieval based on semantic dependency learning,”
Neural Networks, vol. 141, pp. 385–394, 2021.

[5] J. Shuai, L. Xu, C. Liu, M. Yan, X. Xia, and Y. Lei, “Improving code
search with co-attentive representation learning,” in ICPC ’20: 28th
International Conference on Program Comprehension. ACM, 2020,
pp. 196–207.

11

https://github.com/ReliableCoding/CREAM
https://github.com/ReliableCoding/CREAM

[6] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source
code using a neural attention model,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics, ACL 2016.
The Association for Computer Linguistics, 2016.

[7] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment
generation,” in Proceedings of the 26th Conference on Program Compre-
hension, ICPC 2018, Gothenburg, Sweden, May 27-28, 2018, F. Khomh,
C. K. Roy, and J. Siegmund, Eds. ACM, 2018, pp. 200–210.

[8] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating
sequences from structured representations of code,” in 7th International
Conference on Learning Representations, ICLR 2019. OpenReview.net,
2019.

[9] D. Zügner, T. Kirschstein, M. Catasta, J. Leskovec, and S. Günnemann,
“Language-agnostic representation learning of source code from struc-
ture and context,” in 9th International Conference on Learning Repre-
sentations, ICLR 2021. OpenReview.net, 2021.

[10] Y. Li, S. Wang, and T. N. Nguyen, “A context-based automated ap-
proach for method name consistency checking and suggestion,” in 43rd
IEEE/ACM International Conference on Software Engineering, ICSE
2021. IEEE, 2021, pp. 574–586.

[11] Y. Zhou, S. Liu, J. K. Siow, X. Du, and Y. Liu, “Devign: Effective vulner-
ability identification by learning comprehensive program semantics via
graph neural networks,” in Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, 2019, pp. 10 197–10 207.

[12] D. Zou, Y. Zhu, S. Xu, Z. Li, H. Jin, and H. Ye, “Interpreting
deep learning-based vulnerability detector predictions based on heuristic
searching,” ACM Trans. Softw. Eng. Methodol., vol. 30, no. 2, pp. 23:1–
23:31, 2021.

[13] Y. Li, S. Wang, and T. N. Nguyen, “Vulnerability detection with fine-
grained interpretations,” in ESEC/FSE ’21: 29th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Athens, Greece, August 23-28, 2021. ACM,
2021, pp. 292–303.

[14] V. Nguyen, D. Q. Nguyen, V. Nguyen, T. Le, Q. H. Tran, and D. Phung,
“Regvd: Revisiting graph neural networks for vulnerability detection,”
in 44th IEEE/ACM International Conference on Software Engineering:
Companion Proceedings, ICSE Companion 2022, Pittsburgh, PA, USA,
May 22-24, 2022. ACM/IEEE, 2022, pp. 178–182.

[15] M. R. I. Rabin, N. D. Q. Bui, K. Wang, Y. Yu, L. Jiang, and M. A.
Alipour, “On the generalizability of neural program models with respect
to semantic-preserving program transformations,” Inf. Softw. Technol.,
vol. 135, p. 106552, 2021.

[16] H. Zhang, Z. Li, G. Li, L. Ma, Y. Liu, and Z. Jin, “Generating adversarial
examples for holding robustness of source code processing models,”
in The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020. AAAI Press, 2020, pp. 1169–1176.

[17] N. Yefet, U. Alon, and E. Yahav, “Adversarial examples for models of
code,” Proc. ACM Program. Lang., vol. 4, no. OOPSLA, pp. 162:1–
162:30, 2020.

[18] H. Zhang, Z. Fu, G. Li, L. Ma, Z. Zhao, H. Yang, Y. Sun, Y. Liu,
and Z. Jin, “Towards robustness of deep program processing models–
detection, estimation and enhancement,” ACM Transactions on Software
Engineering and Methodology, 2022.

[19] G. Ramakrishnan, J. Henkel, Z. Wang, A. Albarghouthi, S. Jha, and
T. W. Reps, “Semantic robustness of models of source code,” CoRR,
vol. abs/2002.03043, 2020.

[20] W. U. Ahmad, S. Chakraborty, B. Ray, and K. Chang, “A transformer-
based approach for source code summarization,” in Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics,
ACL 2020. Association for Computational Linguistics, 2020, pp. 4998–
5007.

[21] N. Chirkova and S. Troshin, “Empirical study of transformers for
source code,” in ESEC/FSE ’21: 29th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 2021, pp. 703–715.

[22] A. Mastropaolo, S. Scalabrino, N. Cooper, D. Nader-Palacio, D. Poshy-
vanyk, R. Oliveto, and G. Bavota, “Studying the usage of text-to-text
transfer transformer to support code-related tasks,” in 43rd IEEE/ACM
International Conference on Software Engineering, ICSE 2021, Madrid,
Spain, 22-30 May 2021. IEEE, 2021, pp. 336–347.

[23] D. Castelvecchi, “Can we open the black box of ai?” Nature News, vol.
538, no. 7623, p. 20, 2016.

[24] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green ai,”
Communications of the ACM, vol. 63, no. 12, pp. 54–63, 2020.

[25] X. Zhu and A. B. Goldberg, “Introduction to semi-supervised learning,”
Synthesis lectures on artificial intelligence and machine learning, vol. 3,
no. 1, pp. 1–130, 2009.

[26] J. Pearl, Causality. Cambridge university press, 2009.
[27] D. P. MacKinnon, A. J. Fairchild, and M. S. Fritz, “Mediation analysis,”

Annu. Rev. Psychol., vol. 58, pp. 593–614, 2007.
[28] L. Keele, “The statistics of causal inference: A view from political

methodology,” Political Analysis, vol. 23, no. 3, pp. 313–335, 2015.
[29] Y. Niu, K. Tang, H. Zhang, Z. Lu, X. Hua, and J. Wen, “Counterfactual

VQA: A cause-effect look at language bias,” in IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2021. Computer
Vision Foundation / IEEE, 2021, pp. 12 700–12 710.

[30] T. Wei, F. Feng, J. Chen, Z. Wu, J. Yi, and X. He, “Model-agnostic
counterfactual reasoning for eliminating popularity bias in recommender
system,” in KDD ’21: The 27th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining. ACM, 2021, pp. 1791–1800.

[31] J. Pearl and D. Mackenzie, The book of why: the new science of cause
and effect. Basic books, 2018.

[32] J. Pearl, “Graphs, causality, and structural equation models,” Sociologi-
cal Methods & Research, vol. 27, no. 2, pp. 226–284, 1998.

[33] M. Glymour, J. Pearl, and N. P. Jewell, Causal inference in statistics:
A primer. John Wiley & Sons, 2016.

[34] T. J. VanderWeele, “A three-way decomposition of a total effect into di-
rect, indirect, and interactive effects,” Epidemiology (Cambridge, Mass.),
vol. 24, no. 2, p. 224, 2013.

[35] G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” CoRR, vol. abs/1503.02531, 2015.

[36] A. K. Menon, S. Jayasumana, A. S. Rawat, H. Jain, A. Veit, and
S. Kumar, “Long-tail learning via logit adjustment,” in 9th International
Conference on Learning Representations, ICLR 2021. OpenReview.net,
2021.

[37] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[38] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 2017, pp. 5998–6008.

[39] W. Wang, F. Feng, X. He, H. Zhang, and T. Chua, “Clicks can be
cheating: Counterfactual recommendation for mitigating clickbait issue,”
in SIGIR ’21: The 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM, 2021, pp.
1288–1297.

[40] K. Cao, C. Wei, A. Gaidon, N. Aréchiga, and T. Ma, “Learning imbal-
anced datasets with label-distribution-aware margin loss,” in Advances
in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, 2019, pp.
1565–1576.

[41] S. Nguyen, H. Phan, T. Le, and T. N. Nguyen, “Suggesting natural
method names to check name consistencies,” in ICSE ’20: 42nd In-
ternational Conference on Software Engineering. ACM, 2020, pp.
1372–1384.

[42] F. Liu, G. Li, Z. Fu, S. Lu, Y. Hao, and Z. Jin, “Learning to recommend
method names with global context,” CoRR, vol. abs/2201.10705, 2022.

[43] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine
learning. Springer, 2006, vol. 4, no. 4.

[44] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,” in
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence.
AAAI Press, 2016, pp. 1287–1293.

[45] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained model for
programming and natural languages,” in Findings of the Association for
Computational Linguistics: EMNLP 2020, ser. Findings of ACL, vol.
EMNLP 2020. Association for Computational Linguistics, 2020, pp.
1536–1547.

[46] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. B.
Clement, D. Drain, D. Jiang, D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou,
M. Tufano, M. Gong, M. Zhou, N. Duan, N. Sundaresan, S. K. Deng,
S. Fu, and S. Liu, “Codexglue: A machine learning benchmark dataset
for code understanding and generation,” CoRR, vol. abs/2102.04664,
2021.

12

[47] Y. Kim, “Convolutional neural networks for sentence classification,” in
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014. ACL, 2014, pp. 1746–1751.

[48] Z. Yang, D. Yang, C. Dyer, X. He, A. J. Smola, and E. H. Hovy,
“Hierarchical attention networks for document classification,” in NAACL
HLT 2016, The 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies. The Association for Computational Linguistics, 2016,
pp. 1480–1489.

[49] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability de-
tection,” in 25th Annual Network and Distributed System Security
Symposium, NDSS 2018. The Internet Society, 2018.

[50] R. L. Russell, L. Y. Kim, L. H. Hamilton, T. Lazovich, J. Harer,
O. Ozdemir, P. M. Ellingwood, and M. W. McConley, “Automated
vulnerability detection in source code using deep representation learn-
ing,” in 17th IEEE International Conference on Machine Learning and
Applications, ICMLA 2018. IEEE, 2018, pp. 757–762.

[51] H. Husain, H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“Codesearchnet challenge: Evaluating the state of semantic code search,”
CoRR, vol. abs/1909.09436, 2019.

[52] Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi, “Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code understand-
ing and generation,” in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2021. Association
for Computational Linguistics, 2021, pp. 8696–8708.

[53] N. D. Q. Bui, Y. Yu, and L. Jiang, “Self-supervised contrastive learning
for code retrieval and summarization via semantic-preserving transfor-
mations,” in SIGIR ’21: The 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval. ACM, 2021,
pp. 511–521.

[54] W. Zhang, S. Guo, H. Zhang, Y. Sui, Y. Xue, and Y. Xu, “Challenging
machine learning-based clone detectors via semantic-preserving code
transformations,” CoRR, vol. abs/2111.10793, 2021.

[55] Z. Zeng, H. Tan, H. Zhang, J. Li, Y. Zhang, and L. Zhang, “An extensive
study on pre-trained models for program understanding and generation,”
in ISSTA ’22: 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis, Virtual Event, South Korea, July 18 - 22, 2022,
S. Ryu and Y. Smaragdakis, Eds. ACM, 2022, pp. 39–51.

[56] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning
based vulnerability detection: Are we there yet,” IEEE Transactions on
Software Engineering, 2021.

[57] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few
examples: A survey on few-shot learning,” ACM Comput. Surv., vol. 53,
no. 3, pp. 63:1–63:34, 2020.

[58] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Un-
derstanding deep learning requires rethinking generalization,” in 5th
International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017.

[59] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Comput. Surv., vol. 46, no. 4,
pp. 44:1–44:37, 2014.

[60] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under
concept drift: A review,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 12,
pp. 2346–2363, 2019.

[61] Z. Yang, J. Shi, J. He, and D. Lo, “Natural attack for pre-trained models
of code,” in 44th IEEE/ACM 44th International Conference on Software
Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM,
2022, pp. 1482–1493.

[62] Z. Li, Y. Li, T. Li, M. Du, B. Wu, Y. Cao, X. Xie, Y. Li, and Y. Liu,
“Unveiling project-specific bias in neural code models,” CoRR, vol.
abs/2201.07381, 2022.

[63] Z. Li, Q. G. Chen, C. Chen, Y. Zou, and S. Xu, “Ropgen: Towards
robust code authorship attribution via automatic coding style transfor-
mation,” in 44th IEEE/ACM 44th International Conference on Software
Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM,
2022, pp. 1906–1918.

[64] Y. Dong, Q. Fu, X. Yang, T. Pang, H. Su, Z. Xiao, and J. Zhu,
“Benchmarking adversarial robustness on image classification,” in 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2020, Seattle, WA, USA, June 13-19, 2020. Computer Vision
Foundation / IEEE, 2020, pp. 318–328.

[65] S. Gao, C. Gao, Y. He, J. Zeng, L. Y. Nie, X. Xia, and M. R. Lyu,
“Code structure guided transformer for source code summarization,”
ACM Trans. Softw. Eng. Methodol., 2022.

[66] M. Allamanis, H. Peng, and C. Sutton, “A convolutional attention
network for extreme summarization of source code,” in Proceedings of
the 33nd International Conference on Machine Learning, ICML 2016,
ser. JMLR Workshop and Conference Proceedings, vol. 48. JMLR.org,
2016, pp. 2091–2100.

[67] H. Peng, G. Li, W. Wang, Y. Zhao, and Z. Jin, “Integrating tree path in
transformer for code representation,” Advances in Neural Information
Processing Systems, vol. 34, 2021.

[68] N. D. Q. Bui, Y. Yu, and L. Jiang, “Treecaps: Tree-based capsule
networks for source code processing,” in Thirty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2021. AAAI Press, 2021, pp. 30–38.

[69] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. B. Clement,
D. Drain, N. Sundaresan, J. Yin, D. Jiang, and M. Zhou, “Graphcodebert:
Pre-training code representations with data flow,” in 9th International
Conference on Learning Representations, ICLR 2021. OpenReview.net,
2021.

[70] C. Niu, C. Li, V. Ng, J. Ge, L. Huang, and B. Luo, “Spt-code:
Sequence-to-sequence pre-training for learning source code represen-
tations,” CoRR, vol. abs/2201.01549, 2022.

[71] T. Wang, C. Zhou, Q. Sun, and H. Zhang, “Causal attention for unbiased
visual recognition,” in 2021 IEEE/CVF International Conference on
Computer Vision, ICCV 2021. IEEE, 2021, pp. 3071–3080.

[72] Z. Wang and A. Culotta, “Robustness to spurious correlations in text
classification via automatically generated counterfactuals,” in Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2021. AAAI
Press, 2021, pp. 14 024–14 031.

[73] C. Qian, F. Feng, L. Wen, C. Ma, and P. Xie, “Counterfactual inference
for text classification debiasing,” in Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021. Association for Computational Linguistics, 2021,
pp. 5434–5445.

[74] Y. Zhang, F. Feng, X. He, T. Wei, C. Song, G. Ling, and Y. Zhang,
“Causal intervention for leveraging popularity bias in recommendation,”
in SIGIR ’21: The 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM, 2021, pp.
11–20.

[75] X. Yang, F. Feng, W. Ji, M. Wang, and T. Chua, “Deconfounded video
moment retrieval with causal intervention,” in SIGIR ’21: The 44th
International ACM SIGIR Conference on Research and Development
in Information Retrieval. ACM, 2021, pp. 1–10.

[76] L. Yang, J. Li, P. Cunningham, Y. Zhang, B. Smyth, and R. Dong,
“Exploring the efficacy of automatically generated counterfactuals for
sentiment analysis,” in Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing, ACL/IJCNLP 2021.
Association for Computational Linguistics, 2021, pp. 306–316.

13

	I Introduction
	II Preliminaries
	III METHODOLOGY
	III-A A Causal View on Neural Code Comprehension
	III-B Details of CREAM
	III-B1 Task formulation
	III-B2 Framework Design

	IV Experimental setup
	IV-A Evaluation Tasks
	IV-A1 Function naming
	IV-A2 Defect detection
	IV-A3 Code classification

	IV-B Baselines
	IV-B1 Function naming
	IV-B2 Defect detection
	IV-B3 Code classification

	IV-C Datasets and Metrics
	IV-C1 Function naming
	IV-C2 Defect detection
	IV-C3 Code classification

	IV-D Implementation Details

	V Experimental Results
	V-A RQ1: Evaluation on the Robustness of CREAM
	V-B RQ2: Performance Evaluation
	V-C RQ3: Ablation Study
	V-D RQ4: Parameter Analysis

	VI Discussion
	VI-A Why Counterfactual Inference Helps?
	VI-B Performance under adversarial attacks
	VI-C Threats to Validity

	VII Related work
	VII-A Code Comprehension
	VII-B Causal Inference

	VIII Conclusion and future work
	References

