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Compacting Points-To Sets through Object Clustering
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Inclusion-based set constraint solving is the most popular technique for whole-program points-to analysis

whereby an analysis is typically formulated as repeatedly resolving constraints between points-to sets of

program variables. The set union operation is central to this process. The number of points-to sets can grow

as analyses become more precise and input programs become larger, resulting in more time spent performing

unions and more space used storing these points-to sets. Most existing approaches focus on improving

scalability of precise points-to analyses from an algorithmic perspective and there has been less research into

improving the data structures behind the analyses.

Bit-vectors as one of the more popular data structures have been used in several mainstream analysis

frameworks to represent points-to sets. To store memory objects in bit-vectors, objects need to mapped to

integral identifiers. We observe that this object-to-identifier mapping is critical for a compact points-to set

representation and the set union operation. If objects in the same points-to sets (co-pointees) are not given

numerically close identifiers, points-to resolution can cost significantly more space and time. Without data on

the unpredictable points-to relations which would be discovered by the analysis, an ideal mapping is extremely

challenging.

In this paper, we present a new approach to inclusion-based analysis by compacting points-to sets through

object clustering. Inspired by recent staged analysis where an auxiliary analysis produces results approximating

a more precise main analysis, we formulate points-to set compaction as an optimisation problem solved by

integer programming using constraints generated from the auxiliary analysis’s results in order to produce an

effective mapping. We then develop a more approximate mapping, yet much more efficiently, using hierarchical

clustering to compact bit-vectors. We also develop an improved representation of bit-vectors (called core

bit-vectors) to fully take advantage of the newly produced mapping. Our approach requires no algorithmic

change to the points-to analysis. We evaluate our object clustering on flow-sensitive points-to analysis using

8 open-source programs (>3.1 million lines of LLVM instructions) and our results show that our approach can

successfully improve the analysis with an up to 1.83× speed up and an up to 4.05× reduction in memory usage.
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1 INTRODUCTION

Points-to analysis is a static program analysis which determines the possible memory objects each
pointer may point to at runtime. Ideally an analysis is sound, meaning no objects are missing
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from points-to sets, and precise, meaning no spurious objects appear in points-to sets, but this is
exceedingly difficult. Typically, for whole-program analyses, we build off a sound base, subject to
some soundiness [Livshits et al. 2015], and gradually add precision as we discover new ways to
scale the resulting more expensive analyses.

In recent years there has been a strong focus on improving scalability of precise whole-program
points-to analyses from an algorithmic perspective by, for example, solving constraints more
efficiently [Hardekopf and Lin 2007a; Lei and Sui 2019; Pereira and Berlin 2009], merging pointers
with equivalent points-to sets [Barbar et al. 2021; Hardekopf and Lin 2007b, 2011; Smaragdakis
et al. 2013], selectively choosing precision [Lhoták and Chung 2011; Smaragdakis et al. 2011],
parallelisation [Liu et al. 2019; Méndez-Lojo et al. 2010], and applying machine learning [Jeon
et al. 2018, 2020], amongst other techniques. On the other hand, there has been less research
into improving the data structures behind points-to analysis [Berndl et al. 2003; Bravenboer and
Smaragdakis 2009; Hardekopf and Lin 2009; Lhoták and Hendren 2003] which is what we focus on
in this work.

Points-to analysis operates on points-to sets and makes heavy use of set operations, most notably
the union operation. The set operations performed become more expensive and grow in number
as analyses become more precise and as input programs become larger (adding large numbers of
memory objects and pointers). This is in addition to the space requirements to store these sets
increasing. In terms of computing and representing these sets, a few data structures have been
used, including (sparse) bit-vectors or bit-sets [Hardekopf and Lin 2009, 2011; Lhoták and Hendren
2003], binary decision diagrams (BDDs) [Berndl et al. 2003; Whaley 2007], and various explicit
representations like B-trees [Bravenboer and Smaragdakis 2009] and hash-based sets [Lhoták and
Hendren 2003].

Bit-vectors, as one of the more popular data structures for points-to analysis, have been widely
used for solving constraints for high-level points-to analysis algorithms in several frameworks
such as Soot [Lhoták and Hendren 2003], WALA [WALA 2021], and LLVM-based static analysis
tools [Hardekopf and Lin 2011; Schubert et al. 2019; Sui and Xue 2016b]. As studied by previous
literature, bit-vectors have been shown to be more efficient than hash-based sets and sorted
arrays [Lhoták and Hendren 2003], and BDDs [Hardekopf and Lin 2009]. BDD-based points-to
analysis often requires variable reordering to be efficient but this is not necessarily easy to exploit
and creating efficient BDDs can be extremely time consuming. Thus the benefits may not outweigh
using explicit representations such as B-trees [Bravenboer and Smaragdakis 2009]. Furthermore,
non-trivial algorithmic changes are required [Berndl et al. 2003; Zhu and Calman 2004]. By contrast,
bit-vectors are much more easily integrated into points-to analyses since bit-vectors act like
standard (integral) sets. Without any algorithmic change, only a bijective mapping of abstract
memory objects to integral identifiers is required and points-to sets would be made up of the
identifiers which map to the pointed-to objects.

Bit-vectors are contiguous arrays of words (the native size which the instruction set architecture
(ISA) operates on). Each bit in a word represents an integral identifier and a set bit means that
identifier is in the data structure. Concretely, the first bit of the first word represents 0, the second
bit of the first word represents 1, and so on. For example, given a word size of 4 bits (⟨××××⟩
where each × represents a bit of the word), as a bit-vector, the set {0, 3, 8, 9} can be represented
with an array of three words:

[ ⟨1001⟩, ⟨0000⟩, ⟨1100⟩ ] .

{ 0 3 89 }

In this instance, the bits representing 0, 3, 8, and 9, are set to 1, and the remaining bits are 0. This
efficiency in representing identifiers using bits, rather than entire words differentiates bit-vectors
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from explicitly represented sets. Bit-vectors are more efficient than their explicit counterparts in
space in cases where redundant (zero-)words are few. Here, we use 3 words, rather than 4 as in an
explicitly represented data structure like an array or hash-based set, to represent the 4 identifiers.
Operations on bit-vectors are also efficient; the union operator, for example, becomes a linear
bitwise-or between every pair of words in the same position in two bit-vectors. Furthermore,
bit-vectors can very trivially take advantage of spatial locality and vectorisation.
Unfortunately, in points-to analysis, zero-words can often occur. Even, in our example above,

the second (zero-)word is completely redundant. Worse still, consider the amount of redundant
zero-words required for a very plausible points-to set like {2, 5000} which would make such a
representation less practical. Sparse bit-vectors can solve this problem by omitting non-zero words
and linking words through a linked list. Each non-zero word is paired with an offset representing
the integral identifier which the first bit of that word refers to. Our example above would become

{ 0 ⟨1001⟩ } → { 8 ⟨1100⟩ } → nil,

thus avoiding maintaining the zero-word. Despite removing redundant zero-words, sparse bit-
vectors introduce other problems like the loss of spatial locality and vectorisation opportunity, and
the need for extra metadata in the way of links and offsets. We observe that the downsides of using
either type of bit-vector for points-to analysis can be substantially minimised if the objects in the
same points-to sets (or co-pointees) have numerically close identifiers in the object-to-identifier
mapping. That is, we want to make full use of each word, i.e., reduce the number of zero-bits, to
improve both types of bit-vectors. For example, the objects being mapped to 0, 3, 8, and 9, would be
ideally mapped as 0, 1, 2, 3, requiring only a single word in a sparse or contiguous bit-vector.
Developing such an ideal mapping is worthwhile since it can produce more compact points-to

sets, improving both sparse and contiguous bit-vectors, and boosting the performance of any points-
to analysis built upon them. However, points-to relations are unpredictable making it extremely
challenging to predict an ideal object-to-identifier mapping that accommodates every pointer’s
points-to set whereby objects within the same points-to set have numerically close identifiers.
We require some indication of the points-to relations which will be discovered by the analysis.

Inspired by recent advances in staged analysis (where an expensive main analysis is staged by a
cheap auxiliary analysis), this paper clusters pointees such that co-pointees are given numerically
close identifiers by leveraging the freely available points-to sets produced by the already-run
auxiliary analysis. We evaluate our approach on a staged flow-sensitive analysis [Hardekopf and
Lin 2011], and despite the auxiliary analysis being an over-approximation of the main analysis, we
find that a mapping that works well for the auxiliary analysis also works well for the main analysis.
The result is that bit-vectors (and sparse bit-vectors) are smaller, using far fewer words, making
representation more compact and operations faster, improving the main analysis in space and time.
First, we formulate our approach as an integer programming problem, optimising for compact

points-to sets, by generating constraints from the auxiliary analysis’s results in order to produce
our mapping. However, integer programming is expensive, so we explore agglomerative clustering,
or bottom-up hierarchical clustering, a more approximate and highly efficient solution. Popular
for data mining [Maimon and Rokach 2005], agglomerative clustering, helps us produce a good
mapping with negligible overhead. Additionally, we also develop the core bit-vector, an improved
version of the contiguous bit-vector, to fully take advantage of the mappings produced by our
clustering approach. We evaluate our object clustering on a precise flow-sensitive points-to analysis
using 8 open-source programs. Our results show that our approach can successfully reduce the
number of words required for sparse and contiguous bit-vectors by up to 6.75× (4.94× on average)
and up to 13.03× (5.66× on average), respectively. Analysis time improves by up to 1.83× (1.62× on
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average) and up to 1.74× (1.35× on average), and memory usage is reduced by up to 3.04× (2.43×
on average) and up to 4.05× (2.35× on average) for sparse and contiguous bit-vectors respectively.
In summary, our contributions are:

• The clustering of pointees using hierarchical clustering upon the data produced by an auxiliary
analysis to reduce the time and space overhead of storing and operating on points-to sets.
• A formulation of points-to set compaction as an optimisation problem solved by integer
programming.
• The core bit-vector, an improved contiguous bit-vector.
• An evaluation of our approach using a staged flow-sensitive analysis on 8 programs which
shows that our approach significantly reduces required words and finds up to 1.83× improve-
ment in time and up to 4.05× improvement in space.

2 BACKGROUND ANDMOTIVATION

Wefirst introduce some brief background on inclusion-based points-to analysis, both flow-insensitive
and -sensitive, and how staging works in Section 2.1. We then motivate the importance of our work
in Section 2.2 by presenting our observations on the prevalence of union operations for precise
flow-sensitive analysis, which is also the main target analysis for evaluating our approach.

2.1 Inclusion-Based Points-To Analysis

Inclusion-based set constraint solving is the most commonly used technique for whole-program
points-to analysis. An analysis is typically formalised as a set of inference rules which generate
constraints between points-to sets based on various program statements. The constraints are
resolved by performing set unions until a fixed-point is reached.

In this work, we use points-to analysis for C/C++ to evaluate our approach. Based on partial-SSA
form [Lattner and Adve 2004], following previous C/C++ points-to analyses [Balatsouras and
Smaragdakis 2016; Hardekopf and Lin 2009, 2011; Kuderski et al. 2019; Lhoták and Chung 2011;
Sui and Xue 2016a], we perform the analysis on an LLVM-like instruction set, where the set of all
variablesV = O ∪ P is made up of two sets, O, which represents all possible abstract objects and
their fields (address-taken variables), and P, which represents all stack and global pointers (top-level
pointers). Top-level pointers are explicit in contrast to address-taken variables which are implicit
and accessed indirectly at Store and Load instructions through top-level pointers.
Given 𝑝, 𝑞 ∈ P and 𝑜 ∈ O, there are five basic instructions: Alloc 𝑝 = 𝑎𝑙𝑙𝑜𝑐𝑜 which represents

allocation of memory (abstracted into a memory object 𝑜), Copy 𝑝 = 𝑞 which represents assignment
between two top-level pointers, Field 𝑝 = &𝑞→ 𝑓𝑖 which denotes access of the 𝑖-th field (𝑓𝑖 ) of the
object which 𝑞 points to, Load 𝑝 = ∗𝑞 which represent assignment from a dereferenced pointer, and
Store ∗𝑝 = 𝑞 which represents assignment to a dereferenced pointer. Given this set of instructions,
Figure 1 presents the inference rules of a field-sensitive and flow-insensitive points-to analysis,
commonly referred to as Andersen’s analysis [Andersen 1994]. Each instruction (aside from the
simpler Alloc and Field instructions) is analysed by solving a set constraint between two points-to
sets, e.g., 𝑝𝑡 (𝑞) ⊆ 𝑝𝑡 (𝑝), which represents the inclusion of points-to set 𝑝𝑡 (𝑞) in 𝑝𝑡 (𝑝). The size
of a points-to set will increase monotonically until a fixed-point is reached. A Load or Store
instruction can derive many more set unions based on the newly discovered points-to targets of
the dereferenced pointer during iterative constraint solving.

A more precise analysis implies more set union operations. Figure 2 gives the rules of a typical
inclusion-based flow-sensitive analysis. Unlike flow-insensitive analysis which computes a single
points-to set solution for each variable across the whole program, flow-sensitive analysis promises
more precise points-to results by computing and maintaining the points-to sets of each object
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[ALLOC]
𝑝 = 𝑎𝑙𝑙𝑜𝑐𝑜

𝑜 ∈ 𝑝𝑡 (𝑝)
[COPY]

𝑝 = 𝑞

𝑝𝑡 (𝑞) ⊆ 𝑝𝑡 (𝑝)
[FIELD]

𝑝 = &𝑞→ 𝑓𝑖 𝑜 ∈ 𝑝𝑡 (𝑞)

𝑜.𝑓𝑖 ∈ 𝑝𝑡 (𝑝)

[LOAD]
𝑝 = ∗𝑞 𝑜 ∈ 𝑝𝑡 (𝑞)

𝑝𝑡 (𝑜) ⊆ 𝑝𝑡 (𝑝)
[STORE]

∗𝑝 = 𝑞 𝑜 ∈ 𝑝𝑡 (𝑝)

𝑝𝑡 (𝑞) ⊆ 𝑝𝑡 (𝑜)

Fig. 1. Inference rules for a field-sensitive and flow-insensitive inclusion-based points-to analysis.

𝑜 before (𝑝𝑡 [ℓ] (𝑜)) and after (𝑝𝑡 [ℓ] (𝑜)) each instruction ℓ . This greatly increases the number of
points-to sets and the number of constraints generated. Note that we do not need to associate a
program-point with top-level pointers since they are defined only once in LLVM’s partial-SSA
form [Lattner and Adve 2004]. Another source of precision is the [SU/WU] rule, which along with
the kill function, gives us standard strong updates for singleton objects [Lhoták and Chung 2011].
Finally, through the [CONTROL-FLOW] rule, the points-to sets of memory objects are propagated
along control-flow edges (ℓ → ℓ ′) in the control-flow graph (CFG), thus introducing many new
union operations that a flow-insensitive analysis does not perform.

[ALLOC]
ℓ : 𝑝 = 𝑎𝑙𝑙𝑜𝑐𝑜

{𝑜} ⊆ 𝑝𝑡 (𝑝)
[COPY]

ℓ : 𝑝 = 𝑞

𝑝𝑡 (𝑞) ⊆ 𝑝𝑡 (𝑝)
[FIELD]

𝑝 = &𝑞→ 𝑓𝑖 𝑜 ∈ 𝑝𝑡 (𝑞)

𝑜.𝑓𝑖 ∈ 𝑝𝑡 (𝑝)

[LOAD]
ℓ : 𝑝 = ∗𝑞 𝑜 ∈ 𝑝𝑡 (𝑞)

𝑝𝑡 [ℓ] (𝑜) ⊆ 𝑝𝑡 (𝑝)
[STORE]

ℓ : ∗𝑝 = 𝑞 𝑜 ∈ 𝑝𝑡 (𝑝)

𝑝𝑡 (𝑞) ⊆ 𝑝𝑡 [ℓ] (𝑜)

[SU/WU]
ℓ : ∗𝑝 = _ 𝑜 ∈ O \ kill(ℓ)

𝑝𝑡 [ℓ] (𝑜) ⊆ 𝑝𝑡 [ℓ] (𝑜)
[CONTROL-FLOW]

ℓ → ℓ ′

∀𝑜 ∈ O . 𝑝𝑡 [ℓ] (𝑜) ⊆ 𝑝𝑡 [ℓ ′] (𝑜)

kill(ℓ : ∗𝑝 = _)
Δ
=





{𝑜} if 𝑝𝑡 (𝑝) ≡ {𝑜} ∧ 𝑜 is singleton

O if 𝑝𝑡 (𝑝) ≡ ∅

∅ otherwise

Fig. 2. Inference rules for an inclusion-based field- and flow-sensitive points-to analysis.

State-of-the-art flow-sensitive analysis is performed as a staged analysis [Barbar et al. 2021;
Hardekopf and Lin 2011], which builds a def-use graph, a sparse representation of data-flow built
upon the control-flow graph. Points-to sets are then propagated on pre-computed def-use edges
rather than control-flow edges to reduce the number of points-to set propagations along control-
flow. This technique uses a less precise but cheap auxiliary analysis (e.g., Andersen’s analysis)
which over-approximates the more precise main flow-sensitive analysis to bootstrap that analysis.
The main insight is that since the points-to results of the auxiliary analysis will always be more
conservative (𝑝𝑡 (𝑝) in the auxiliary analysis is a superset of 𝑝𝑡 (𝑝) in the main analysis), these
results can be used to determine properties of the main analysis like a sound def-use graph. Despite
staging, increasingly precise analyses still remain very costly for their increase in union operations
and stored points-to sets. In the case of flow-sensitive points-to analyses, the main analysis can be
orders of magnitude slower than the flow-insensitive analysis used to stage it (standard Andersen’s
analysis), though it is still much faster than an ordinary unstaged flow-sensitive analysis.
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Table 1. Statistics for program points, variables and set union operations for flow-sensitive analysis.

Program
Program

Points

Top-Level

Variables

Memory

Objects
Average PTS Largest PTS

SFS

Unions

dhcpcd 57 168 63 196 3701 223.55 265 90 785 902
gawk 279 931 141 136 4784 434.81 811 2 275 388 148
bash 254 314 149 070 4339 244.57 324 531 039 266
mutt 360 535 178 147 7169 379.47 1238 1 347 064 278
lynx 579 285 237 252 7917 198.02 1129 4 829 162 478
xpdf 440 418 388 859 19 101 87.78 1590 12 423 325 697
ruby 795 643 670 649 20 235 2.68 1726 13 502 095 022
keepassxc 572 001 604 363 37 671 171.70 365 879 430 055

2.2 Prevalence of Union Operations

The union operation is central to whole-program points-to analysis. The time spent performing
union operations to analyse a program depends on the size of the program and the precision of
the points-to analysis. A larger program usually contains more objects and thus has larger and
more points-to sets, incurring more overhead per union and increasing the number of unions. A
more precise analysis can have many more union operations than an imprecise one, for example
flow-sensitive analysis computes points-to sets at each program point while its flow-insensitive
counterpart only computes a single solution for each variable.
To illustrate these concerns, we ran a flow-sensitive inclusion-based analysis staged by a flow-

insensitive Andersen’s analysis (SFS [Hardekopf and Lin 2011] implemented in SVF [Sui and Xue
2016b]) on 8 open source programs and recorded the number of unions required in the main stage.
We include programs across a wide range of domains, including email, programming languages,
and password management. The exact details of the algorithm, setup, and programs are listed
in Section 5. We show the number of program points, top-level pointers, and abstract memory
objects each program contains as well as the the average and maximum points-to set sizes, and the
number of unions each analysis performs in practice in Table 1. From Table 1, it can be gleaned that
operating on points-to sets is not trivial considering how large they can be and how many times
the union operation is invoked. Analysing xpdf and ruby, for example, require around 13 billion
unions each, and so any improvement to the union operation can have a considerable impact.

3 REPRESENTING POINTS-TO SETS AS BIT-VECTORS

In this section, we describe the internal workings of contiguous and sparse bit-vectors, and their
performance issues when performing a union operation between two points-to sets whose element
identifiers are not numerically close as well excess memory costs they may incur. These problems
are amplified by the presence of a large number of memory objects as in Table 1.

3.1 Contiguous and Sparse Bit-Vectors

Contiguous bit-vectors are implemented as arrays of words. In the best-case where words are used
to the fullest, a bit-vector can represent a set a of 𝑖 integers within the range 0 to 𝑛 in

⌈
𝑖
𝑊

⌉
words,

where𝑊 is the word size, in bits, of the ISA. In the worst case, that same set would be represented in⌈
𝑛
𝑊

⌉
words. Bitwise operations upon the entire bit-vector, like or and not, could be implemented by

performing the operation on individual words (and the corresponding word of the other bit-vector
operand in the case of binary operations). Fortunately, many bitwise operations map directly to
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set operations, like bitwise-or being an analogue to the union operation on a set of integers. Such
operations are amenable to vectorisation and can take advantage of the spatial-locality afforded by
the contiguous nature of the words. Concretely, the union, as the most important such operation
in points-to analysis, for example, of two bit-vectors of size 𝑛 made up of words 𝑤1, ...,𝑤𝑛 and
𝑤 ′1, ...,𝑤

′
𝑛 , respectively, would be given by,

[ 𝑤1, 𝑤2, . . . , 𝑤𝑛 ]

| [ 𝑤 ′1, 𝑤 ′2, . . . , 𝑤 ′𝑛 ]

[ 𝑤1 | 𝑤 ′1, 𝑤2 | 𝑤 ′2, . . . , 𝑤𝑛 | 𝑤 ′𝑛 ].

If one bit-vector is longer than the other such that the longer bit-vector contains𝑚 more words,
the shorter bit-vector can be thought of as being padded with𝑚 zero-words since in the result-
ing bit-vector, the last𝑚 words would be verbatim the last𝑚 words of the longer bit-vector. It
should be noted that some implementations require bit-vectors to be sized the same (like in C++’s
std::bitset [ISO/IEC 2017]) whilst others like that implemented by LLVM [LLVM-BV 2021] strip
trailing zero-words by maintaining the length of the bit-vector as extra metadata. When we use
the term bit-vector or standard bit-vector, we refer to the latter and only implicitly represent the
length.

To use bit-vectors as points-to sets, we need to assign abstract memory objects, our pointees, to
integral identifiers. For example, consider we have 10000 memory objects (𝑜0 to 𝑜9999), a quantity
not foreign when analysing typical programs, and that the points-to sets of some pointers 𝑝 and 𝑞,
at some point during the analysis, are

𝑝𝑡 (𝑝) = {𝑜1, 𝑜4500, 𝑜9999}, and

𝑝𝑡 (𝑞) = {𝑜1, 𝑜4, 𝑜8}.

And let us consider a naive mapping of each object to its subscript such that we have 𝑜𝑛 ↦→ 𝑛. As
bit-vectors, our two points-to sets would be represented as

𝑝𝑡 (𝑝) = [ ⟨01100⟩, ⟨0000⟩, . . . , ⟨0000⟩, ⟨14500000⟩, ⟨0000⟩, . . . , ⟨0000⟩, ⟨00019999⟩ ], and

𝑝𝑡 (𝑞) = [ ⟨01100⟩, ⟨14000⟩, ⟨18000⟩ ],

where the word size𝑊 equals 4 and we subscript set bits with the identifier they correspond to
for readability. We see that 𝑝𝑡 (𝑝) is impractically large, requiring 2500 words, or 10000 bits, for
just 3 pointees. This is precisely the worst case of

⌈
𝑛
𝑊

⌉
=

⌈
10000
4

⌉
where the best case would be

⌈
3
4

⌉
.

𝑝𝑡 (𝑞) is more reasonable despite still being imperfect, requiring 3 words, or 12 bits, for 3 pointees,
despite the 3 pointees being able to fit into 1 word (

⌈
3
4

⌉
= 1). Furthermore, if we were to include

𝑝𝑡 (𝑝) in 𝑝𝑡 (𝑞) (𝑝𝑡 (𝑝) ⊆ 𝑝𝑡 (𝑞)), 𝑝𝑡 (𝑞) would grow to be the same size as 𝑝𝑡 (𝑝), making us then
represent both 𝑝𝑡 (𝑝) and 𝑝𝑡 (𝑞) with 20000 bits in total for 5 pointees (whose corresponding set
bits are spread amongst just 5 words). This becomes wasteful and impractical for representing a
points-to set in which identifiers are not numerically close.
Sparse bit-vectors aim to overcome the abundance of zero-words by only storing words which

have at least one set bit. Since there are now łholesž in the data structure, we can no longer use
contiguous memory and need to mark each word with an offset indicating the integral value which
the first bit in that word represents. Such offset/word pairs are often linked together in a linked list
to aid arbitrary insertion which is also necessary for inplace union operations.
With the redundant zero-words which can appear in contiguous bit-vectors removed, sparse

bit-vectors can represent 𝑝𝑡 (𝑝) and 𝑝𝑡 (𝑞) as

𝑝𝑡 (𝑝) = { 0 ⟨01100⟩ } → { 4500 ⟨14500000⟩ } → { 9996 ⟨00019999⟩ } → nil, and

𝑝𝑡 (𝑞) = { 0 ⟨01100⟩ } → { 4 ⟨14000⟩ } → { 8 ⟨18000⟩ } → nil,
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thus requiring 3 words per bit-vector (and some extra metadata in the form of links and offsets).
Representation of 𝑝𝑡 (𝑝) has improved drastically, but that of 𝑝𝑡 (𝑞) has become worse when we
account for the extra metadata in the way of offsets and links. However, if we were to fulfil our
𝑝𝑡 (𝑝) ⊆ 𝑝𝑡 (𝑞) constraint, then the resulting 𝑝𝑡 (𝑞)’s representation has improved as it would
only require 5 words (and some metadata) to represent, not 2500 words. Of the disadvantages of
representing reasonably sized bit-vectors as sparse bit-vectors is the loss of vectorisation, spatial
locality, the extra logic required to perform operations, and the extra metadata required. The union
operation, presented in Algorithm 1, is more complicated and is now riddled with conditionals
(e.g., lines 3 and 6), indirect references (e.g., lines 5 and 8), and heap allocations for nodes (e.g., line
4). Thus, in practice, sparse bit-vectors can be less efficient than their contiguous counterpart in
addition to the extra memory metadata can take up in cases where there would not have been
many zero-words.

Algorithm 1: Union of two sparse bit-vectors.

Input : 𝑠1, 𝑠2 ś sparse bit-vectors (linked lists of
{offset, word, next} structures).

Output : 𝑢 ś union of 𝑠1 and 𝑠2.
1 𝑐1 ← 𝑠1; 𝑐2 ← 𝑠2;

2 while 𝑐1 ≠ 𝑛𝑖𝑙 ∧ 𝑐2 ≠ 𝑛𝑖𝑙 do

3 if 𝑐1.offset = 𝑐2 .offset then

4 𝑢.append(new { 𝑐1 .offset ⟨𝑐1 .word | 𝑐2 .word⟩ });

5 𝑐1 ← 𝑐1.next; 𝑐2 ← 𝑐2 .next;

6 else if 𝑐1.offset < 𝑐2 .offset then

7 𝑢.append(new { 𝑐1 .offset ⟨𝑐1 .word⟩ });

8 𝑐1 ← 𝑐1.next;

9 else

10 𝑢.append(new { 𝑐2 .offset ⟨𝑐2 .word⟩ });

11 𝑐2 ← 𝑐2.next;

12 end

13 end

// 𝑐1 or 𝑐2 may not yet be 𝑛𝑖𝑙 ; append remainder.

14 while 𝑐1 ≠ 𝑛𝑖𝑙 do

15 𝑢.append(new { 𝑐1.offset ⟨𝑐1.word⟩ });

16 𝑐1 ← 𝑐1 .next;

17 end

18 while 𝑐2 ≠ 𝑛𝑖𝑙 do

19 𝑢.append(new { 𝑐2.offset ⟨𝑐2.word⟩ });

20 𝑐2 ← 𝑐2 .next;

21 end

The disadvantages of using both contiguous and sparse bit-vectors are amplified by a poor object-
to-identifier mapping. Due to the unpredictability of points-to relations, an object-to-identifier
mapping better than ensuring that the 𝑛 memory objects of a program are given identifiers 0 to 𝑛
is difficult. If we assume that the objects present in 𝑝𝑡 (𝑝) and 𝑝𝑡 (𝑞) are not present in any other
points-to set it would be ideal to remap these objects to identifiers which are close to each other.
For example, consider the mapping

𝑜1 ↦→ 0 𝑜4500 ↦→ 1 𝑜9999 ↦→ 2 𝑜4 ↦→ 3 𝑜8 ↦→ 4,
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and the subsequent representation as bit-vectors rather than sparse bit-vectors:

𝑝𝑡 (𝑝) = [ ⟨1011120⟩ ], and

𝑝𝑡 (𝑞) = [ ⟨100013⟩, ⟨14000⟩ ] .

Now, we have represented 𝑝𝑡 (𝑝) with a single word, as a bit-vector, and 𝑝𝑡 (𝑞) with 2 words, also
as a bit-vector. After fulfilling the 𝑝𝑡 (𝑝) ⊆ 𝑝𝑡 (𝑞) constraint, the result would remain compact
(𝑝𝑡 (𝑞) = [ ⟨10111213⟩, ⟨14000⟩ ]), and in fact would be a best-case representation, yielding much
better performance.

However, in reality, these objects may occur in multiple points-to sets and have requirements of
closeness to many other objects such that achieving an ideal mapping is far more complicated. To
address the above challenges, we explore techniques like integer programming and hierarchical
clustering which can find a superior mapping by leveraging the over-approximate points-to data
produced by the auxiliary analysis. But first, we briefly describe an improved contiguous bit-vector
that can better take advantage of a better object-to-identifier mapping.

3.2 Core Bit-Vector

Let us take a look at the core bit-vector, our improved version of standard bit-vector. It has the
compact representation like a contiguous bit-vector (little metadata) while reducing many zero-
words by stripping leading zero-words. Together with sparse bit-vectors, core bit-vectors will be
used for evaluating our object-to-identifier mappings for points-to analysis in Section 5.

Consider𝑊 = 4 and a points-to set with 5 objects whose identifers map to 9995, 9996, 9997, 9998,
and 9999. These identifiers would ideally fit within two words. As a sparse bit-vector, this points-to
set is

{ 9992 ⟨00019995⟩ } → { 9996 ⟨19996199971999819999⟩ } → 𝑛𝑖𝑙,

using just two words and associated metadata. However, as a bit-vector, this points-to set would
look like

[ ⟨0000⟩, . . . , ⟨0000⟩, ⟨00019995⟩, ⟨19996199971999819999⟩ ],

which contains 2500 words with only two meaningful words. The problem is that bit-vectors have
an explicit representation (of zero) for the integers 0 to the first non-zero bit, no matter how far
that may be.
To remedy this we use core bit-vectors which use an offset similar to sparse bit-vectors to state

the bit of the first word and strips leading and trailing zero words (to maintain only the łcorež).
However, unlike a sparse bit-vector, zero words may occur between the first and last (non-zero by
definition) words. For example, the points-to set above would be represented as

{ 9992 [ ⟨00019995⟩, ⟨19996199971999819999⟩ ] }

saving us 2498 words. If we were to insert identifier 9988, it would become

{ 9988 [ ⟨19988000⟩, ⟨00019995⟩, ⟨19996199971999819999⟩ ] }

which uses the same number of words as an equivalent sparse bit-vector but has the benefit of
storing words contiguously and with less metadata ś the offset and the (implicit) length ś therefore
potentially saving both space and time. Algorithm 2 details the union operation of two core bit-
vectors. In contrast to Algorithm 1, operations are all performed on contiguous arrays, rather
than across indirect links, and loops do not contain conditionals, making the process amenable to
vectorisation. When the offset is set to 0, the data structure acts as a standard contiguous bit-vector.
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Algorithm 2: Union of two core bit-vectors.

Input : 𝑐1, 𝑐2 ś core bit-vectors ({offset, [words]}).
Output : 𝑢 ś union of 𝑐1 and 𝑐2.
// Determine which input starts łearlierž and which łlaterž.

1 if 𝑐1 .offset < 𝑐2.offset then

2 𝑒 ← 𝑐1; 𝑙 ← 𝑐2;

3 else

4 𝑒 ← 𝑐2; 𝑙 ← 𝑐1;

5 end

6 𝑢.offset← 𝑒.offset;

7 𝑒𝑖 ← 0; // Index into earlier input.

8 while 𝑒𝑖 <
⌊
𝑙 .offset
W

⌋
−
⌊
𝑒.offset
W

⌋
do

9 if 𝑒𝑖 < 𝑒.words.length then

// Append words in e which are not in l.

10 𝑢.append(𝑒.𝑤𝑜𝑟𝑑𝑠 [𝑒𝑖]);

11 else

// Nothing left in e; add zero-words till start of l.

12 𝑢.append(0);

13 end

14 𝑒𝑖 ← 𝑒𝑖 + 1;

15 end

16 𝑙𝑖 ← 0; // Index into later input.

// Append union of words common to both inputs.

17 while 𝑒𝑖 < 𝑒.words.length ∧ 𝑙𝑖 < 𝑙 .words.length do

18 𝑢.append(𝑒.𝑤𝑜𝑟𝑑𝑠 [𝑒𝑖] | 𝑙 .𝑤𝑜𝑟𝑑𝑠 [𝑙𝑖]);

19 𝑒𝑖 ← 𝑒𝑖 + 1; 𝑙𝑖 ← 𝑙𝑖 + 1;

20 end

// 𝑒𝑖 or 𝑙𝑖 may not have reached end; append remainder.

21 while 𝑒𝑖 < 𝑒.words.length do

22 𝑢.append(𝑒.words[𝑒𝑖]);

23 𝑒𝑖 ← 𝑒𝑖 + 1;

24 end

25 while 𝑙𝑖 < 𝑙 .words.length do

26 𝑢.append(𝑙 .words[𝑙𝑖]);

27 𝑙𝑖 ← 𝑙𝑖 + 1;

28 end

4 COMPACTING POINTS-TO SETS

Assigning memory objects to identifiers based on points-to relations can be framed as an optimisa-
tion problem, making integer programming (IP) well suited. Unfortunately, the resulting integer
programs are computationally expensive to solve, but the formulation helps clarify the problem
and its optimal solution. We first formulate compacting points-to sets as an optimisation problem
solved by IP in Section 4.1. Then, we present a more approximate and much more efficient approach
in Section 4.2 where we provide a brief introduction to hierarchical clustering with an example
which clusters items located at 2D coordinates, then detail how we can apply this technique to
objects in points-to sets, and conclude with two simple techniques to improve efficiency and the
resulting mapping.
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4.1 Integer Programming Formulation

It is hard to determine a good identifier mapping before any points-to analysis is performed as it
is unknown which objects are pointed to by the same pointers and should thus be assigned close
identifiers. Inspired by staged analysis [Hardekopf and Lin 2011], we use an auxiliary analysis as a
good indication of which objects may occur in the same points-to sets, given the insight that the
points-to sets of auxiliary analysis always represent supersets of those in the main phase. Therefore,
creating a mapping for the auxiliary analysis should create a good mapping for the main analysis,
at the very least, better than a random mapping. All of our variables below are integers.
We let the constantW be the word size of the ISA (in bits), and for each points-to set 𝑃 =

{𝑜𝑥1 , 𝑜𝑥2 , . . . , 𝑜𝑥𝑛 } produced by the auxiliary analysis, we have the following known variables:

(1) 𝑛 is the number of objects in 𝑃 .
(2) 𝑤 =

⌈
𝑛
W

⌉
is the minimum number of words required for a bit-vector representation of 𝑃 in

the, potentially impossible overall, best case scenario.

And the following unknown variables:

(1) 𝑚𝑥𝑖 , where 1 ≤ 𝑖 ≤ 𝑛, is the identifier object 𝑜𝑥𝑖 will be assigned to in our new mapping.
(2) 𝑓 is some offset multiplier for where the identifiers,𝑚𝑥𝑖 , start.

Our goal is to produce mappings from 𝑜𝑥𝑖 to𝑚𝑥𝑖 such that the least possible number of words
can represent all points-to sets (as close as possible to each 𝑤 ), thus reducing both space and
time overhead with a more compact bit-vector representation and a more efficient bit-wise union
operation. Ideally, we will be using core bit-vectors. In the best case scenario, each pair of objects

in each points-to set are assigned identifiers within 𝑤 of each other, that is,

���𝑚𝑥𝑖
−𝑚𝑥𝑗

���
W

< 𝑤 for
1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑛, with the minimum𝑚𝑥𝑖 assigned to a multiple ofW, i.e., 𝑓 · W. That is,
the minimum𝑚𝑥𝑖 is aligned on a word boundary. Aligning toW is important to avoid co-pointees
being mapped to identifiers within𝑤 of each other, but needlessly crossing word boundaries. For
example, givenW = 4 and 𝑝𝑡 = {𝑜1, 𝑜2}, it would be unoptimal to assign 𝑜1 to 7 and 𝑜2 to 8 despite

that |𝑚1−𝑚2 |
W

=
|7−8 |
4

< 1 since we would require 2 words in a bit-vector instead of 1 (which can be
achieved with various assignments like that of 𝑜1 to 2 and 𝑜2 to 3, for example). This produces the
best possible allocation because it ensures points-to sets, as bit-vectors, are as small as they can
possibly be (of size𝑤 ), if the problem allows.
We need to determine the best possible values for 𝑚 and 𝑓 to achieve this. As an integer

program, we can encode these requirements as the following constraints, for each points-to set
𝑃 = {𝑜𝑥1 , 𝑜𝑥2 , . . . , 𝑜𝑥𝑛 }:

𝑚𝑥𝑖 ≥ 𝑓𝑃 · W

𝑚𝑥𝑖 < 𝑓𝑃 · W +𝑤𝑃 · W

𝑓𝑃 ≥ 0, (C1)

which ensures that all objects in a points-to set are mapped to identifiers between some starting
offset and within the minimum number of words required to represent that points-to set. We also
require that objects are uniquely mapped to identifers, so for all pair of identifiers𝑚𝑖 ,𝑚 𝑗 , where
𝑖 ≠ 𝑗 ,

��𝑚𝑖 −𝑚 𝑗

��
> 0, (C2)
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which can be expressed as the constraints

𝑚𝑖 −𝑚 𝑗 < 𝐿 · 𝑏𝑖 𝑗 ,

𝑚𝑖 −𝑚 𝑗 > −𝐿 + 𝐿 · 𝑏𝑖 𝑗

𝑏𝑖 𝑗 ≥ 0

𝑏𝑖 𝑗 ≤ 1, (C3)

where 𝐿 is set to be larger than any possible identifier, and 𝑏𝑖 𝑗 are boolean variables (as forced by
the constraints upon them). This construct asserts that𝑚𝑖 −𝑚 𝑗 must never be zero, i.e., that they
are not equal. When 𝑏𝑖 𝑗 is 0, the first two constraints ensure the difference is in the open range
(−𝐿, 0), and when set to 1, they ensure the difference is in the open range (0, 𝐿).
Unfortunately, such an integer program may be impossible to solve due to the pigeonhole

principle. Consider that an object 𝑜 (which we will map to𝑚) occurs inW points-to sets, none of
which contain common elements aside from 𝑜 , each of which with𝑤 = 1 and 𝑛 > 1. It would not be
possible for the𝑚 corresponding to 𝑜 to be assigned withinW of all of the identifiers assigned to
𝑜’s co-pointees in the same word. Rather, it can only be in the same word asW−1 of its co-pointees.
TheWth co-pointee must be, at best, in a word before or after that which𝑚 falls into. To remedy
this, we provide a łtolerancež for each points-to set to extend the range of identifiers the objects of
a points-to set can fall in. Thus we introduce another unknown for each points-to set:

(3) 𝑡 is a tolerance multiplier for where the identifiers assigned to objects of a points-to set can
end.

Thus, for each pointee 𝑜𝑥𝑖 in points-to set 𝑃 = {𝑜𝑥1 , 𝑜𝑥2 , . . . , 𝑜𝑥𝑛 }, we reframe our constraints as
(changes underlined):

𝑚𝑥𝑖 ≥ 𝑓𝑃 · W

𝑚𝑥𝑖 < 𝑓𝑃 · W +𝑤𝑃 · W + 𝑡𝑃 · W

𝑓𝑃 ≥ 0

𝑡 ≥ 0. (C4)

Again, the first constraint ensures that𝑚𝑥𝑖 begins aligned at some offset into the identifier space
(𝑓𝑃 ·W). The second ensures that it does not extend𝑤 words away from the offset (𝑓𝑃 ·W+𝑤𝑃 ·W)
as before, but now we allow for some tolerance (𝑡𝑃 · W). As before we must also ensure that the
identifiers are unique (Constraints (C2)/(C3)). This set of constraints becomes trivial to solve with
absurdly large tolerances and circumvents our goal of small points-to sets. Thus, our objective is to
minimise the tolerances as they introduce extra words than the (potentially impossible) ideal. That
is, we minimise 𝑡𝑃1 + · · · + 𝑡𝑃𝑛 , where 𝑛 is the number of points-to sets we take into consideration,
which gives us the least required number of words in a core bit-vector1.

Proof. For each points-to set 𝑃 , representing 𝑃 as a core bit-vector uses at best𝑤𝑃 words. The
constraints encode an identifier mapping which makes each points-to set 𝑃 fit into 𝑤𝑃 words,
except that a tolerance for the number of words is allowed. Optimising for minimum tolerance
multipliers (i.e. the sum of 𝑡𝑃 for all points-to sets 𝑃 , where each tolerance 𝑡𝑃 would then be used in
𝑡𝑃 ·𝑊 ) ensures that each points-to set is represented with as few words as possible, thus producing
an ideal mapping. □

Finally, as mentioned previously, this is too computationally expensive to solve. There are a
few ways to make the integer programs produced cheaper to solve, of them is the regioning we

1It is important to note that this minimal representation is for the points-to sets produced by the auxiliary analysis which

may differ from that produced by the main stage.
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introduce to improve clustering in Section 4.4 which allows groups of objects to be considered
separately, but regardless, IP as a solution to this problem simply does not scale with current
techniques for large programs. The remainder of this paper is dedicated to solutions which are
more approximate but far more scalable.

4.2 Hierarchical Clustering

Our aim is to assign pointees which appear in points-to sets together to identifiers which are
numerically close together. We find clustering to be a more practical way to achieve this goal.
Clustering is the process of grouping close or similar items together given a set of items with some
measure of similarity or distance between them like the Jaccard Index for sets [Jaccard 1912] or the
Euclidean distance for coordinates.
There is no notion of a łperfect clusteringž, rather success is determined depending on the

problem for which clustering is employed to solve. Hierarchical clustering can be agglomerative
(bottom-up) or divisive (top-down) [Maimon and Rokach 2005]. An agglomerative approach starts
with clusters of a single item and successively merges clusters until there remains only one cluster,
and a divisive approach starts with a single cluster, divides it, and then successively divides clusters
until only single-item clusters remain. We focus on the former due to the availability of an extremely
performant C++ implementation [Müllner 2013]. Both approaches are hierarchical in that the result-
ing clusters are made up of smaller clusters. The resulting hierarchy is represented by a dendrogram,
a tree where child nodes are the clusters which form parent nodes, also clusters [Maimon and
Rokach 2005]. Leaf nodes are the individual objects themselves.
To show how agglomerative clustering works, we walk through a simple example. Consider

some items located at coordinates: 𝑣 at (2, 0),𝑤 at (1, 2), 𝑥 at (3, 0), 𝑦 at (0, 3), and 𝑧 at (2, 2), as in
Figure 3a, and that we want to cluster these items according to their closeness using the Euclidean
distance as a measure for that. The process is shown on the same plane in Figure 3b. For our
example, we set the linkage criterion as the single linkage criterion [Murtagh 1983] such that the
distance between two clusters is the minimum distance between any two items in each of those
clusters.
To begin, each item is considered to be part of its own cluster, and we search for the closest

two clusters (according to the linkage criterion) and merge them. The pairs 𝑣 and 𝑥 , and𝑤 and 𝑧
both have the shortest Euclidean distance between them (1.0), so we randomly pick a pair, say 𝑣
and 𝑥 , and merge them as cluster 1○. Then we merge the other pair,𝑤 and 𝑧, as cluster 2○ since
they are now the two closest clusters. The next two closest clusters are now the cluster containing
𝑤 and 𝑧 (cluster 2○) and the single-item cluster containing 𝑦, since 𝑤 and 𝑦 have a distance of√︁
(0 − 1)2 + (3 − 2)2 = 1.41 between them. They are merged as cluster 3○. Now we have only two

clusters remaining, so we merge them as 4○ since they are obviously the closest two clusters,
and thus agglomerative clustering is complete. The dendrogram in Figure 3c shows the resulting
clusters for our example. The entire dendrogram represents one cluster, but if we cut it, we can form
multiple clusters. For example, if we cut the dendrogram one level down (i.e., one step backwards
from the end of the clustering process), we have two clusters, one with 𝑣 and 𝑥 , and one with𝑤 , 𝑦,
and 𝑧. From this, we can infer that according to our definition of łclosež (the linkage criterion and
closeness measure), 𝑣 and 𝑥 are close and𝑤 , 𝑦, and 𝑧 are close, relatively.

4.2.1 Linkage Criteria. In our example, determining the distance between two single-item clusters is
straightforward ś simply calculate the Euclidean distance ś but determining the distance between
two clusters where at least one contains more than one object was more complicated and we
required a linkage criterion. Being that clustering is an approximate process, multiple linkage
criteria exist to optimise for different data types. In this work, we focus on three, single-linkage,
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Fig. 3. Agglomerative clustering process (b) of coordinate data (a) and the resulting dendrogram (c).

complete-linkage, and average-linkage, partly because of the existence of extremely performant
implementations of them [Müllner 2013] and partly because of how common they are. Clustering
with any of these linkage criteria can be implemented in O(𝑛2) time in the worst-case given 𝑛

items to cluster [Maimon and Rokach 2005; Müllner 2013]. For our data, clustering is very fast and
so we perform clustering with each of these criteria and choose the one which produces the most
promising mapping on-the-fly.

Single-Linkage. The distance between two clusters under the single-linkage criterion is the
smallest distance between any member of one cluster to any member of the other [Murtagh 1983].
That is, assuming we have a distance function (for our problem, we use the distance defined in
Definition 4.1) for two objects, 𝑑 : O × O ↦→ R, the distance between clusters 𝐶1 and 𝐶2, is

min{𝑑 (𝑜1, 𝑜2) | 𝑜1 ∈ 𝐶1, 𝑜2 ∈ 𝐶2}.

Complete-Linkage. The distance between two clusters under the complete-linkage criterion is
the largest distance between any member of one cluster to any member of the other [Murtagh
1983]. This is similar to the single-linkage critera, except that it, very harshly, blocks clusters whose
members are not all close. Formally, with the same 𝑑 and clusters 𝐶1 and 𝐶2 as before, this is given
by

max{𝑑 (𝑜1, 𝑜2) | 𝑜1 ∈ 𝐶1, 𝑜2 ∈ 𝐶2}.

Average-Linkage. Unlike single- and complete-linkage, the distance calculated with average-
linkage considers all members of both clusters [Murtagh 1983]. The distance given is the average
distance from any member of one cluster to any member of the other cluster. For clusters 𝐶1 and
𝐶2 and our distance function 𝑑 , this is given by

1

|𝐶1 | |𝐶2 |

∑︁

𝑜1∈𝐶1

∑︁

𝑜2∈𝐶2

𝑑 (𝑜1, 𝑜2).

4.3 Clustering Objects

With hierarchical clustering, we can cluster objects in such a way that co-pointees of smaller
points-to sets are clustered together early, and hence are regarded as łcloserž and thus more suitable
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for close identifiers. A simple linear scan of points-to sets, and assigning identifiers during the scan,
is not sufficient because relationships between pointees are not transitive.

For example, consider the two points-to sets {𝑜𝑎, 𝑜𝑏, 𝑜𝑐 , 𝑜𝑑 , 𝑜𝑒 } and {𝑜𝑎, 𝑜 𝑓 }. If we were to perform
a linear scan assigning identifiers sequentially starting from the first points-to set, we would
produce the mapping

𝑜𝑎 ↦→ 0 𝑜𝑏 ↦→ 1 𝑜𝑐 ↦→ 2 𝑜𝑑 ↦→ 3 𝑜𝑒 ↦→ 4 𝑜 𝑓 ↦→ 5,

which forces the first points-to set into two words (which is ideal), but unfortunately, also forces
the second points-to set into two words (which is not ideal; it can be represented in one word).
Clustering better understands relationships between pointees allowing us to produce a better
mapping.
To cluster objects, we require a more suitable measure of distance between two objects as we

define below.

Definition 4.1. (Object distance). The distance between two objects is the minimum number of
words required to represent any points-to set in which both objects appear in as a bit-vector.

This definition encodes how far apart, word-wise, two objects would be in the theoretical best
case scenario (which may be impossible; recall our discussion on the pigeonhole principle and
tolerances in Section 4.1). We want the clustering process to approximate this theoretical limit as
closely as possible.
Revisiting our example, the object distance between 𝑜𝑎 and 𝑜 𝑓 , 𝑑 (𝑜𝑎, 𝑜 𝑓 ), is 1 since 𝑜𝑎 and 𝑜 𝑓

appear in two points-to sets, one of which can be represented in 2 words and the other in 1 word,
and𝑚𝑖𝑛(1, 2) = 1. 𝑑 (𝑜𝑏, 𝑜 𝑓 ) = 𝑑 (𝑜𝑐 , 𝑜 𝑓 ) = 𝑑 (𝑜𝑒 , 𝑜 𝑓 ) = ∞ since these objects never appear in the
same points-to set. The remaining object pairs have a distance of 2 because they appear together
only in the first points-to set which requires two words to represent in the ideal case.
With this definition, we can build a distance matrix by calculating the distance for each pair of

objects. This can be done by filling the distance matrix with ∞, scanning all points-to sets, and
updating the distance between each pair of objects in a points-to set if that points-to set requires
fewer words to represent as a bit-vector than is recorded in the distance matrix. For each points-to
set, this is a quadratic process in the number of objects in that points-to set. In practice, we find
this process extremely fast because we only need to consider unique points-to sets since duplicate
points-to obviously require the same number of words to represent. Our experience is that many
points-to sets are duplicates (recall that the auxiliary analysis is a fast yet imprecise analysis).

With a distancematrix, clustering can be performed to obtain a dendrogram.We are not interested
in cutting the dendrogram, rather, we are interested in the relative prioritisation of object pairs that
the clustering algorithm found, that is, which objects are closer to each other compared to other
objects. For example, in the previous scenario, the clustering algorithm would quickly determine
that 𝑜𝑎 and 𝑜 𝑓 must be close together, before determining the closeness between 𝑜𝑎 , 𝑜𝑏 , 𝑜𝑐 , 𝑜𝑑 , and
𝑜𝑒 . With a counter starting from 0, we can assign objects to identifiers by visiting objects depth-first
in the dendrogram. The depth-first search ensures that the clusters within a cluster are visited
before visiting adjacent, less related clusters. That is, within each cluster with more than one object
(including the large cluster of all objects), the identifiers for the objects in that cluster are sequential.
This is very fast being linear in the size of the dendrogram which has 2𝑛 − 1 nodes, where 𝑛 is the
number of objects.

4.4 More Efficient Region-Based Clustering

A distance matrix implemented as a literal matrix, rather than as a hash table for example, is more
efficient. Since the distance matrix is symmetrical (the distance of 𝑜 to 𝑜 ′ is the same as the distance
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Fig. 4. Memory used to represent various (condensed) distance matrices.

from 𝑜 ′ to 𝑜), a condensed distance matrix which is a linear array forming the upper triangle of

the matrix [Müllner 2013] is sufficient. The number of elements in such a matrix would be 𝑛 (𝑛−1)
2

where 𝑛 is the number of objects we are clustering. In other words, the number of elements, and
hence memory usage, grows quadratically and quickly becomes problematic. In fastcluster, the
hierarchical clustering implementation we use, this data structure is made up of doubles which
are 64 bits or 8 bytes.
To show why this is a problem, Figure 4 shows the memory required to represent the distance

matrix for various amounts of objects up to 200000. Importantly, the distance matrix is required
only for clustering and can be freed immediately afterwards. So if the main phase analysis uses
more memory than the distance matrix, saving memory is pointless. Otherwise, the distance matrix
drives up the maximum resident set size, which may be impractical.

To remedy this, we group objects into independent regions, and perform clustering on a per region
basis without sacrificing precision. The distance matrix is actually sparse, in that many objects
do not share a meaningful relationship, rather they can be allocated distant identifiers without
any effect because they never appear in a points-to set together. For example, in the points-to sets
{𝑜𝑎, 𝑜𝑏} and {𝑜𝑐 , 𝑜𝑑 }, the objects 𝑜𝑎 and 𝑜𝑐 do not share any meaningful relation, and no matter
how distant their mapped identifiers are, bit-vector representations will not be adversely affected.
To region objects, from the points-to sets of the auxiliary analysis, we create an undirected graph
where there exists a path between objects 𝑜 and 𝑜 ′ if they occur together in a points-to set, and
determine the connected components of the graph2. Objects in the same connected component
share a relationship, either directly, or transitively, and the difference in the identifiers allocated
can be meaningful and so they should be clustered together.
Since objects in distinct regions do not share a relationship, we can build individual distance

matrices for objects within the same region and cluster those objects separately from the objects in
other regions. Rather than starting our identifier counter from 0, we simply continue the counter
from where it left off when assigning identifiers for the objects in the previous clustered region.
With this, we can save memory with smaller distance matrices, and time by sequentially clustering
regions since clustering grows non-linearly. Furthermore, we can concurrently cluster separate
regions, but in our experience, clustering is fast enough for our problem that this is not worth

2We are careful to say łexists a pathž rather than łexists an edgež as it makes the graph smaller without losing meaning for

our purpose. Practically, for each points-to set, an edge can be added from the łfirstž object in a points-to set to every other

object in that points-to set, thus trying to add a linear number of edges, not a quadratic number, per points-to set.
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Table 2. Number of memory objects, regions, non-trivial regions, objects in non-trivial objects (with the

proportion of total objects they make up), and the number of objects in the largest region for our benchmark

programs.

Program
Memory

Objects
Regions

Non-Trivial

Regions

Non-Trivial

Region Objects

Largest

Region

dhcpcd 3699 2903 1 569 (15.38%) 569
gawk 4784 3061 1 1138 (23.79%) 1138
bash 4339 3247 2 644 (14.84%) 553
mutt 7186 4265 1 2434 (33.87%) 2434
lynx 7917 4177 3 1949 (24.61%) 1699
xpdf 19 101 14 328 1 3468 (18.16%) 3468
ruby 20 235 9073 25 9331 (46.11%) 5069
keepassxc 37 671 28 468 9 5224 (13.87%) 4026

the implementation complexity. If concurrent clustering is foregone, we can maintain a single
distance matrix at a time, further saving memory. For example, if 𝑛 objects are split into two equal

sized regions, we would require two distance matrices of
𝑛
2 (

𝑛
2 −1)

2 distances, and, if not clustered
concurrently, at separate times, so only one such distance matrix is required before being freed.
Another benefit of regioning is that certain regions can be assigned identifiers randomly, that

is, without any clustering. In regions with fewer thanW objects, all identifier allocations are
equivalent since any number of objectsW − 𝑛 where 𝑛 < W require a full word to represent
(modulo some concerns around the crossing of word boundaries as will be discussed in Section 4.5).
Clustering these objects in such small regions brings no benefit so they can be assigned any
identifiers withinW of each other immediately. We call these regions trivial regions.

For our benchmark programs, Table 2 shows the number of objects, the number of regions, the
number of non-trivial regions (those with more thanW = 64 objects), the number of objects in
non-trivial regions, and the size of the largest region. Without regioning, it would be as though we
had a single region with all the objects. We see that trivial regions dominate which greatly reduces
the clustering workload. In 4 benchmarks, there only exists a single non-trivial region, and in all
those instances, that region contained 15% to 35% of all objects. Only one benchmark, ruby, had
a significant number of non-trivial regions (25), and the objects in those regions made up about
half of all objects. The greatest proportion of objects in non-trivial regions compared to the total
number of objects was for ruby at almost a half followed by mutt at about a third, and the smallest
proportion was keepassxc at almost 14% closely followed by dhcpcd at a little over 15%.

4.5 Word-Aligned Identifier Mapping

We can produce better object-to-identifier mappings by considering the regions defined above and
ensuring that objects from different regions are never assigned to identifiers within the same word.
Consider two regions of objects, 𝑅1 which contains 𝑜𝑎 , 𝑜𝑏 , and 𝑜𝑐 , and 𝑅2 which contains 𝑜𝑑 , 𝑜𝑒 , and
𝑜 𝑓 , and that we assign identifiers as

𝑅1 : 𝑜𝑎 ↦→ 0 𝑜𝑏 ↦→ 1 𝑜𝑐 ↦→ 2, and

𝑅2 : 𝑜𝑑 ↦→ 3 𝑜𝑒 ↦→ 4 𝑜 𝑓 ↦→ 5.
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As a core-bit vector (though this problem applies equally to sparse bit-vectors), all points to sets
with objects from 𝑅1 (non-empty subsets of {𝑜𝑎, 𝑜𝑏, 𝑜𝑐 }) take the form

{ 0 [ ⟨×××0⟩ ] },

where each × can be 1 or 0. This is perfect in that we have achieved the theoretical limit of always
representing the points-to sets in 𝑅1 with a single word (modulo metadata like offsets or links).
On the other hand, under this object identifier mapping, points-to sets with objects from 𝑅2 ś
non-empty subsets of {𝑜𝑑 , 𝑜𝑒 , 𝑜 𝑓 } ś can take one of 3 forms:

{ 0 [ ⟨0001⟩ ] }, {𝑜𝑑 }

{ 4 [ ⟨××00⟩ ] }, or {𝑜𝑒 }, {𝑜 𝑓 }, {𝑜𝑒 , 𝑜 𝑓 }

{ 0 [ ⟨0001⟩, ⟨××00⟩ ] }. {𝑜𝑑 , 𝑜𝑒 }, {𝑜𝑑 , 𝑜 𝑓 }, {𝑜𝑑 , 𝑜𝑒 , 𝑜 𝑓 }

That is, to represent the non-empty subsets of {𝑜𝑑 , 𝑜𝑒 , 𝑜 𝑓 }, we would require either 1 or 2 words
rather than the theoretical 1 word which is in fact possible. The problem is that regions are sharing
words for their objects with other regions despite there never being a points-to set with objects
from both regions (by definition), resulting in not all of them making ideal use of the identifiers in
a word (𝑅2 in our case). Though 𝑅1 and 𝑅2 are trivial regions, this problem applies to non-trivial
regions too.
We can avoid this by aligning identifiers to words when we begin allocating identifiers to each

region. Aligning to words for each region would mean that the identifiers for the objects in a region
begin at an identifier divisible byW. Returning to our example above, performing word-aligned
identifier assignment would result in a mapping akin to

𝑅1 : 𝑜𝑎 ↦→ 0 𝑜𝑏 ↦→ 1 𝑜𝑐 ↦→ 2, and

𝑅2 : 𝑜𝑑 ↦→ 4 𝑜𝑒 ↦→ 5 𝑜 𝑓 ↦→ 6.

We have given the same mapping to the objects in 𝑅1 since it was word-aligned, starting at 0, a
multiple ofW = 4, but began the identifiers in 𝑅2 from 4, another multiple ofW = 4. Now we can
represent all points-to sets with objects from 𝑅1 as

{ 0 [ ⟨×××0⟩ ] },

as before, and all points-to sets with objects from 𝑅2 as

{ 4 [ ⟨×××0⟩ ] },

thus achieving our goal of representing all such points-to sets with the theoretically fewest possible
number of words (1).
Word-aligning identifier assignment leaves gaps. For example, in the mapping defined in the

previous paragraph, no object maps to identifier 3. This is inconsequential, since all points-to
sets only contain objects from the region they are a part of, and so these gaps are not łwastedž.
Concretely, in our example, there is no points-to set containing one or more objects from 𝑅1
(assigned from 0 to 2) that would contain 4 objects in total and thus benefit from that fourth
object being assigned the identifier 3. Furthermore, with core bit-vectors (and sparse bit-vectors),
any excess leading zero-words caused by word alignment would be inconsequential. Though the
clustering is performed on the results of the auxiliary analysis, this holds true for the main phase
analysis too since each points-to set produced by the main-phase analysis is a subset of a points-to
set produced by the auxiliary analysis. In other words, the main phase cannot produce larger
regions.
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5 EVALUATION

This section describes our implementation in SVF, the programs we use to evaluate our approach,
and then details the results obtained by applying our approach to staged flow-sensitive analysis
(SFS) [Hardekopf and Lin 2011] using sparse and core bit-vectors.

5.1 Implementation

We have implemented our approach in open source points-to analysis framework SVF [Sui and Xue
2016b] using fastcluster [Müllner 2013]. We have made the artifact publicly available [Barbar and
Sui 2021]3. For the sparse bit-vector we use the well-crafted implementation in LLVM [LLVM-SBV
2021]. LLVM’s sparse bit-vector is actually an unrolled doubly linked list, and we use the default
setting of using 128-bit łwordsž (two native words on our test machine). Thus, there may be wasted
words if only 64 bits of the 128 bits are used, and excess memory usage since a singly linked list
is sufficient for points-to analysis. We implement the core bit-vector using an STL vector as the
array part. As for the standard bit-vectors used, they are our core bit-vectors set with an offset of 0
to simulate a bit-vector which strips trailing zeroes but not leading zeroes.
In theory the remapping process would be to perform clustering and an object-to-identifier

mapping and then change the identifiers used for objects everywhere such that the old mapping
becomes non-existent to the analysis. This would be a fast linear scan over the data structures
used by SVF. However, drastic architectural changes to SVF would be required, so we decided to
give our points-to sets each a pointer to the map such that objects have an łinternalž identifier in
the points-to set and an łexternalž identifier. External identifiers correspond to the original naive
mapping and internal identifiers correspond to the mapping produced from clustering. Objects are
then stored in points-to sets as the internal identifier, and returned (e.g., during iteration) as the
external identifier. In short, only the points-to sets know about the new mapping. This introduces
some slight overhead that in an ideal situation would not be incurred, so we have applied this
overhead when not clustering too for a fair comparison. Otherwise, algorithms remain unchanged.

We use SVF’s implementation of SFS as described in Section V of the original paper [Hardekopf
and Lin 2011] staged by SVF’s Andersen’s analysis implementation boosted by the wave propa-
gation constraint solving technique [Pereira and Berlin 2009]. Since we simply produce a better
representation of points-to sets, points-to analysis results remain the same.

5.2 Benchmarks

We have chosen 8 real-world programs as benchmarks from amongst open source projects in a range
of domains like email, networking, and language implementations. Table 3 lists the benchmarks’
versions, bitcode sizes, and lines of LLVM instructions (>3.1 million) along with a short description.
We count the number of LLVM lines of instructions by disassembling the bitcode (which is stripped
of debug information) and running the result through wc -l. All programs are C programs, except
xpdf and keepassxc which are written in C++. These two programs are also graphical and utilise
the Qt framework. Through crux-bitcode [crux-bc 2021], programs were built with -O3 using
WLLVM [WLLVM 2021], a Clang wrapper which combines individual LLVM bitcode files into a
single bitcode file suitable for whole program analysis.

5.3 Experiments

Our experiments are conducted on a machine running 64-bit Ubuntu 18.04.2 LTS with an Intel
Xeon Gold 6132 processor at 2.60 GHz. Being that this processor is an x86_64 processor, we have a

3Our approach is a part of upstream SVF. More information is available at https://github.com/SVF-tools/SVF/wiki/Object-

Clustering.
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Table 3. Benchmark versions, bitcode sizes in MiB, lines of LLVM instructions, and descriptions.

Benchmark Version Size LOI Description

dhcpcd 9.3.4 1.2 MiB 82 939 Dynamic host configuration protocol client
gawk 5.1.0 2.4 MiB 179 805 GNU AWK; text filtering language interpreter
bash 5.0.18 2.6 MiB 196 168 Bourne Again Shell; Unix shell
mutt 2.0.3 3.2 MiB 224 500 Text-based email client
lynx 2.8.9 5.1 MiB 286 991 Text-based web browser
xpdf 4.03 7.6 MiB 494 764 PDF viewer
ruby 2.7.2 13 MiB 864 114 Ruby programming language interpreter
keepassxc 2.6.2 15 MiB 828 669 Password manager

native word size of 64 bits. We limited our experiments to 100 GB of memory and 24 hours of time.
To measure time we use C’s clock function on the main phase (including clustering time where
relevant), and to measure memory we take the maximum resident set size reported by GNU’s time
for the entire execution. In this section, we describe the reduction in words required for sparse and
core bit-vectors under various linkage criteria, and the time and memory usage of SFS when using
our new mappings. All analyses are run 3 times and all values in the tables in this section represent
median values.

5.3.1 Linkage Criteria. For sparse and core bit-vectors respectively, Tables 4 and 5 show the
number of words used to represent all points-to sets in SFS in the theoretical best case (potentially
impossible), the original naive mapping, and after producing a mapping through clustering with
single-, complete-, and average-linkage criteria. By best case we mean the theoretical limit of
representing each points-to set in

⌈
𝑛
W

⌉
words where 𝑛 is the size of the points-to set. For our

programs, the general trend is that single-linkage overwhelmingly produces the best points-to set
representations, occasionally average-linkage, and never complete-linkage. Rather than always
choosing single linkage, we have decided to perform the clustering three times with all the linkage
criteria and choose the one which produces the best result for the auxiliary analysis. In every case,
the linkage criterion which produced the representation with the fewest words for the auxiliary
analysis (Andersen’s) also did so for the main analysis (SFS). Despite creating three mappings, total
overhead remained negligible (relatively). At worst, xpdf took about 10 seconds to perform this
entire process of clustering and evaluation, followed by keepassxc which took 2.5 seconds. dhcpcd
took the least time at less than a fifth of a second. Thus, this approach of performing clustering and
mapping with each linkage criterion and choosing the best result is promising and adds marginal
overhead.

Clustering never achieves a theoretically ideal mapping in our benchmarks, but does get close at
times and always presents a drastic difference from the original mapping. Without the ability to
achieve a practically ideal mapping (described in Section 4.1), we do not know how much room for
improvement there is. In other words, it is possible the pigeonhole principle is playing a significant
role in preventing us from achieving a better mapping, rather than the approximate nature of
hierarchical mapping. On average, we see a reduction in word count by 4.94× for sparse bit-vectors
and 5.66× for core bit-vectors, with a maximum of 6.75× and 13.03×, respectively.
It should be noted that this not only improves the time and memory required to perform the

main analysis (as is shown in Sections 5.3.2 and 5.3.3), but points-to analysis clients benefit too
since they have more compact points-to sets to work with. For example, alias queries, implemented
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Table 4. Number of words required for sparse bit-vectors theoretically, in the original naive mapping, and

under mappings produced using various linkage criteria. The reduction compares the result predicted to be

best (in bold) against the original.

Benchmark Theoretical Original Single Complete Average Reduction

dhcpcd 3 317 195 24 726 044 4 991 412 6 635 746 6 635 082 4.95×

gawk 58 007 460 429 843 096 82 989 102 132 528 508 99 502 900 5.18×

bash 26 586 881 289 532 162 42 914 256 42 914 700 53 173 774 6.75×

mutt 51 298 142 490 533 016 102 662 924 145 767 682 160 026 830 4.78×

lynx 133 664 618 965 029 738 267 599 228 319 144 056 215 831 960 4.47×

xpdf 731 879 787 3 943 399 840 1 463 766 422 1 527 354 270 1 400 196 420 2.82×

ruby 320 059 196 3 920 937 120 888 289 648 889 035 364 764 713 778 5.13×

keepassxc 13 770 856 315 331 268 47 619 934 74 384 858 67 691 754 6.62×

Geo. Mean 4.94×

Table 5. Number of words required for core bit-vectors theoretically, in the original naive mapping, and under

mappings produced using various linkage criteria. The reduction compares the result predicted to be best (in

bold) against the original.

Benchmark Theoretical Original Single Complete Average Reduction

dhcpcd 3 317 195 23 911 465 4 961 417 6 605 816 5 784 023 4.82 ×

gawk 58 007 460 429 739 789 82 783 110 140 588 641 148 836 214 5.19 ×

bash 26 586 881 295 168 808 31 731 607 36 861 568 47 120 912 9.30 ×

mutt 51 298 142 548 971 273 87 213 543 260 457 927 259 746 461 6.29 ×

lynx 133 664 618 1 015 676 964 237 113 529 289 849 510 302 122 259 4.28 ×

xpdf 731 879 787 4 197 513 654 1 558 434 196 1 558 496 134 1 526 729 185 2.75 ×

ruby 320 059 196 6 600 730 356 1 405 659 097 2 514 836 137 2 186 425 117 4.70 ×

keepassxc 13 770 856 1 399 786 369 107 456 539 134 257 502 120 881 288 13.03×

Geo. Mean 5.66 ×

as an intersection test, would become cheaper, and iteration over points-to sets would also become
cheaper with the improved spatial locality.

5.3.2 Time. We compare the baseline using sparse bit-vectors with the analysis using the new
mapping using sparse bit-vectors, and similarly for standard bit-vectors against the new mapping
using core bit-vectors. For analysis time, we see an average speed up of 1.62× and 1.35×, respectively,
over the baseline as shown in Table 6. We believe this time improvement would become more
drastic as analyses grow either through larger benchmarks, more precision, or both. Generally using
sparse bit-vectors with a clustered mapping is faster than using core bit-vectors unclustered, except
in the case of xpdf. In Tables 4 and 5, xpdf saw the least improvement in word count reduction.
Finally, for all programs except keepassxc, the CBVs with a clustered mapping are faster than
their SBV counterparts. Notably, keepassxc is the program with the largest difference in word
count between sparse and core bit-vectors at over 2× more for core bit-vectors. Still, these two
times (and likewise for some other benchmarks) lie within a margin of error. We discuss difficulties
in clustering effectively more in the next section.

5.3.3 Memory. As for memory usage, we see a more noticeable impact as in Table 7. With our new
mappings, we use over 2.43× and 2.35× less memory than the baselines on average. The baseline
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Table 6. Time to run SFS using unclustered identifiers with sparse bit-vectors (SBV), bit-vectors (BV), and

core bit-vectors (CBV) and using clustered identifiers with SBVs and CBVs, in seconds. Using unclustered

identifiers with SBVs and BVs forms the baseline. The best result achieved by the baseline and by our approach

are compared. OOM and OOT mean the analysis exhausted available memory and time, respectively.

Benchmark
Unclustered Clustered Improvement

SBV BV CBV SBV CBV SBV/SBV BV/CBV

dhcpcd 66.50 59.09 58.40 52.93 52.87 1.25× 1.12×

gawk 1417.51 1002.50 971.71 773.34 655.85 1.83× 1.53×

bash 307.88 218.72 228.09 188.46 175.58 1.63× 1.25×

mutt 666.08 517.56 464.38 396.15 360.53 1.68× 1.44×

lynx 3058.57 2531.57 2383.98 1889.04 1880.56 1.62× 1.35×

xpdf OOM 10 836.70 10 518.00 10 904.40 9636.46 - 1.12×

ruby OOM OOM 7451.52 6159.25 5985.72 - -

keepassxc 1084.50 1093.42 1049.59 624.52 628.30 1.74× 1.74×

Geo. Mean 1.62× 1.35×

could not analyse ruby within the allocated 100 GB. At most we see an improvement of 4.05×
(keepassxc) and at worst an improvement of 1.35× (the smallest program, dhcpcd).

With the original unclustered mapping, we see that at times moving from standard bit-vectors to
core bit-vectors hardly improves memory usage, notably, xpdf, for example. Being that it is large
and contains many memory objects we would expect it to improve more. The most likely reason is
that the points-to sets in those benchmarks have large swathes of zero-words that are not at the
start. In other words, with few leading zero-words, core bit-vectors would not have much to strip
compared to the standard bit-vector which maintains leading zero-words. This is proven by the
significant improvement achieved for xpdf by using a better mapping (2.41×).
The general trend is that core bit-vectors require less memory than their sparse counterparts

due to the extra metadata required for sparse bit-vectors. However, this is only true when the
number of words required is negligibly (relatively) similar, and this is not the case for ruby and
keepassxc where we see a small regression moving from sparse bit-vectors to core bit-vectors.
Notably, in terms of absolute numbers, these programs have a largest region larger than each of
the other programs. Larger regions strongly suggest more complex relations due to more objects
being related, whether directly (Definition 4.1) or transitively. In a larger region, a single poor
choice during clustering in mapping of an object to an identifier is more costly in terms of adding
redundant zero-words than in smaller regions, especially for contiguous bit-vectors. This regression
is extremely slight despite the large difference in required words for core bit-vectors but there
is potential for the rift to grow as benchmarks become larger. In these cases, sparse bit-vectors
remain viable, and in either case, our benchmarks have always shown improvement over using
unclustered mappings.
It is possible that some programs are simply too difficult to cluster effectively for contiguous

bit-vectors like the core bit-vector. Especially, when more objects are directly related (𝑑 (𝑜1, 𝑜2) ≠ ∞)
or transitively related, the pigeonhole principle becomes more prominent. This large number
of relations can occur simply because of complex points-to relations or specifically because the
auxiliary analysis poorly handles the input program and introduces relations which do not exist
in the more precise main analysis. An auxiliary analysis compared to the main analysis may, for
example, poorly handle key indirect/virtual calls. Since the integer programming approach does
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Table 7. Memory required to run SFS using unclustered identifiers with sparse bit-vectors (SBV), bit-vectors

(BV), and core bit-vectors (CBV) and using clustered identifiers with SBVs and CBVs, in gigabytes. Using

unclustered identifiers with SBVs and BVs forms the baseline. The best result achieved by the baseline and

by our approach are compared. OOM and OOT mean the analysis exhausted available memory and time,

respectively.

Benchmark
Unclustered Clustered Improvement

SBV BV CBV SBV CBV SBV/SBV BV/CBV

dhcpcd 1.20 0.92 0.89 0.74 0.68 1.62× 1.35×
gawk 12.76 8.02 7.76 4.63 3.67 2.75× 2.19×
bash 9.00 4.94 5.06 3.23 2.67 2.79× 1.86×
mutt 14.56 11.68 11.42 5.47 4.56 2.66× 2.56×
lynx 29.07 21.83 19.23 11.51 9.38 2.53× 2.33×
xpdf OOM 72.08 68.62 42.47 29.91 ≥2.35× 2.41×
ruby OOM OOM 86.91 32.95 34.67 ≥3.04× ≥2.88×
keepassxc 12.41 25.19 24.31 6.15 6.22 2.02× 4.05×

Geo. Mean ≥2.43× ≥2.35×

not practically scale to produce an actual ideal mapping (for the auxiliary analysis’s points-to
sets, let alone those for the main analysis), we do not know how close the mapping produced by
clustering for core bit-vectors actually is to the best possible case (rather than what is theoretically,
but unlikely, possible), or how close the sparse bit-vector result is (despite its excess metadata). In
either case, our mapping provides significant memory reduction as it stands. Overall, on average
(geometric mean), as core bit-vectors and as sparse bit-vectors, our mappings use around 85% and
90% more words, respectively, than the potentially impossible theoretical best listed in Tables 4
and 5. However, as benchmarks grow, so does this difference.

6 RELATED WORK

Algorithmic-level improvement for points-to analysis. Whole program points-to analyses have been
studied extensively in the past few decades. Inclusion-based set-constraint solving [Andersen 1994]
has been widely used for Andersen’s flow-insensitive analysis and among many other precision
dimensions including field-sensitivity, flow-sensitivity and context-sensitivity [Barbar et al. 2020;
Hardekopf and Lin 2011; Lhoták and Chung 2011; Pearce et al. 2003, 2007; Smaragdakis et al. 2011].
Resolving points-to sets in inclusion-based analysis is formulated as a set-constraint or set-union
problem by computing a dynamic transitive closure on top of the constraint graph of a program. As
the analysis becomes more precise, the number of constraints increases and the cost of each union
does too. The majority of work on whole-program analysis focuses on improving the analysis
at the algorithmic level to reduce overhead of inclusion-based analysis [Fähndrich et al. 1998;
Hardekopf and Lin 2007a; Heintze and Tardieu 2001; Pearce et al. 2003; Pereira and Berlin 2009].
For example, Fähndrich et al. [1998] introduced a partial online cycle elimination while processing
complex constraints (e.g., Load/Store) and demonstrated that cycle detection is important for
scaling inclusion-based points-to analysis and Heintze and Tardieu [2001] proposed a new field-
based Andersen’s analysis that can analyse large-scale programs. Later, a series of techniques,
such as lazy cycle detection [Hardekopf and Lin 2007a], offline variable substitution [Rountev and
Chandra 2000], and optimisations on constraint propagation [Pereira and Berlin 2009] have also
been proposed to accelerate inclusion-based analysis at the algorithmic level.
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Points-To Set Data Structure. The points-to set is key to realising points-to analysis. Data structures
for implementing points-to sets include bit-vectors, BDDs, and explicit representations like B-
trees and hash-based sets. BDD-based points-to analysis often requires variable reordering to be
efficient [Bravenboer and Smaragdakis 2009] and/or algorithmic changes to the analysis [Berndl
et al. 2003; Zhu and Calman 2004]. Creating efficient BDDs can be extremely time consuming and
the benefits may not outweigh using explicit representations [Bravenboer and Smaragdakis 2009].

Bit-vectors have been commonly used for solving constraints in mainstream frameworks such as
Soot [Lhoták and Hendren 2003], WALA[WALA 2021], and LLVM-based static analysis tools [Hard-
ekopf and Lin 2011; Schubert et al. 2019; Sui and Xue 2016b]. Bit-vectors need an object-to-identifier
mapping without requiring algorithmic changes for points-to analysis, and despite mappings previ-
ously being basic, have been shown more efficient than hash-based sets and sorted arrays [Lhoták
and Hendren 2003], and BDDs Hardekopf and Lin [2009]. As a more sophisticated mapping for
Java-based analyses, Toussi and Khademzadeh [2013] have suggested assigning objects of the
same type (or with a subtyping relation) to consecutive identifiers. They also discuss a bit-vector
(the ranged bit-vector) similar to the core bit-vector but uses a static over-approximated offset
and length such that a pointer of type 𝑇 only needs to consider type 𝑇 objects (or subtype of 𝑇
objects) in its points-to set. While type filtering for strongly-typed languages like Java can improve
both performance and precision [Lhoták and Hendren 2003], this is not the case for weakly-typed
languages like C and C++. In points-to analysis for C and C++, objects do not have a set type, typing
objects may require heap cloning, and pointers may point to objects of any type [Balatsouras and
Smaragdakis 2016; Barbar et al. 2020]. This incurs (sometimes very significant) overhead and type
filtering may involve assumptions that are not suitable for all practitioners [Barbar et al. 2020]. In
this paper, we make one step forward by exploring object clustering to generally create a better
mapping in staged analyses and boost the performance of bit-vectors to save both time and space.

Staged Analysis. Recently, staged analysis [Fink et al. 2008; Hardekopf and Lin 2011; Oh et al.
2012; Tavares et al. 2014], which uses pre-computed points-to information to bootstrap a later more
precise analysis, has been leveraged to scale precise points-to. The insight is that the points-to results
of the auxiliary analysis will always be more conservative (e.g., 𝑝𝑡 (𝑝) in the auxiliary analysis is a
superset of 𝑝𝑡 (𝑝) in the main analysis) [Hardekopf and Lin 2011]. These results can then be used to
determine properties of the main analysis such as building a sound def-use graph to perform a sparse
analysis for both top-level and address-taken variables [Chow et al. 1996; Hardekopf and Lin 2011;
Sui et al. 2012]. Our work, inspired by staged analysis, also aims to leverage the already computed
auxiliary points-to information to perform efficient and effective object clustering, yielding more
compact points-to sets for precise points-to analyses like flow-sensitive points-to analysis.

7 CONCLUSION

This paper presents a new object clustering approach to compacting points-to sets for whole-
program points-to analysis. We first formulate compacting points-to sets as an optimisation problem
solved by integer programming, and then develop a more approximate yet much more efficient
hierarchical clustering approach to compact bit-vector-based points-to sets. These techniques
require no high-level algorithmic changes to the points-to analyses. We also develop an improved
bit-vector to better take advantage of our clustering approach. We have evaluated our approach
using a staged flow-sensitive analysis on 8 benchmarks. Our approach can successfully reduce the
number of words required for sparse and contiguous bit-vectors by up to 6.75× (4.94× on average)
and up to 13.03× (5.66× on average), respectively. Analysis time improves by up to 1.83× (1.62× on
average) and up to 1.74× (1.35× on average), and memory usage is reduced by up to 3.04× (2.43×
on average) and up to 4.05× (2.35× on average) for sparse and contiguous bit-vectors respectively.
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