
Precise Sparse Abstract Execution via Cross-Domain Interaction
Xiao Cheng

University of New South Wales
Sydney, NSW, Australia

Jiawei Wang
University of New South Wales

Sydney, NSW, Australia

Yulei Sui
University of New South Wales

Sydney, NSW, Australia

ABSTRACT

Sparse static analysis offers a more scalable solution compared to
its non-sparse counterpart. The basic idea is to first conduct a fast
pointer analysis that over-approximates the value-flows and prop-
agates the data-flow facts sparsely along only the pre-computed
value-flows instead of all control flow points. Current sparse tech-
niques focus on improving the scalability of the main analysis
while maintaining its precision. However, their pointer analyses
in both the offline and main phases are inherently imprecise be-
cause they rely solely on a single memory address domain without
considering values from other domains like the interval domain.
Consequently, this leads to conservative alias results, like array-
insensitivity, which leaves substantial room for precision improve-
ment of the main data-flow analysis.

This paper presents CSA, a new Cross-domain Sparse Abstract
execution that interweaves correlations between values across mul-
tiple abstract domains (e.g., memory address and interval domains).
Unlike traditional sparse analysis without cross-domain interaction,
CSA performs correlation tracking by establishing implications of
values from one domain to another. This correlation tracking en-
ables online bidirectional refinement: CSA refines spurious alias
relations using interval domain information and also enhances the
precision of interval analysis with refined alias results. This con-
tributes to increasingly improved precision and scalability as the
main analysis progresses. To improve the efficiency of correlation
tracking, we propose an equivalent correlation tracking approach
that groups (virtual) memory addresses with equivalent implication
results to minimize redundant value joins and storage associated.

We apply CSA on two common assertion-based checking clients,
buffer overflow and null dereference detection. Experimental re-
sults show that CSA outperforms five open-source tools (Infer,
Cppcheck, IKOS, Sparrow and KLEE) on ten large-scale projects.
CSA finds 111 real bugs with 68.51% precision, detecting 46.05%
more bugs than Infer and exhibiting 12.11% more precision rate
than KLEE. CSA records 96.63% less false positives on real-world
projects than the version without cross-domain interaction. CSA
also exhibits an average speedup of 2.47× and an average memory
reduction of 6.14× with equivalent correlation tracking.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04. . . $15.00
https://doi.org/10.1145/3597503.3639220

CCS CONCEPTS

• Software and its engineering → Automated static analysis;
• Theory of computation → Abstraction.

KEYWORDS

Abstract execution, sparse analysis, cross-domain interaction

ACM Reference Format:

Xiao Cheng, JiaweiWang, and Yulei Sui. 2024. Precise Sparse Abstract Execu-
tion via Cross-Domain Interaction. In 2024 IEEE/ACM 46th International Con-
ference on Software Engineering (ICSE ’24), April 14–20, 2024, Lisbon, Portugal.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3597503.3639220

1 INTRODUCTION

Sparse static analysis is a more scalable version of its traditional
non-sparse counterpart because it prevents expensive data flow
propagation along unnecessary control flows [14, 37, 42, 48, 53, 55,
56, 61, 65]. Typical sparse analysis approaches are facilitated by
static single assignment (SSA) form, such as LLVM’s partial SSA
form [39], which explicitly captures the def-use chains for top-level
variables, while the def-use relations of address-taken variables
(which are only accessible through loads and stores) are established
via pre-computed pointer alias information [37, 60]. This results in a
sparse representation that allows the propagation of data-flow facts
only to the required program points along an over-approximated
value-flow graph rather than a control-flow graph, reducing the
time and space to compute and maintain the data-flow facts.

Existing efforts and limitations. The current sparse tech-
niques rely solely on conservative pointer analysis performed on a
single memory address domain to facilitate the main phase anal-
ysis. For example, SFS [37] and SVF [60] conduct flow-sensitive
pointer analysis on an over-approximated value-flow graph built
with fast Andersen’s points-to analysis [10]. Sparrow [49] em-
ploys an external flow-insensitive pointer analysis to support the
abstract interpretation of scalar variables with pre-computed data
dependencies. Fusion [57] utilizes the pointer alias information
produced by Pinpoint [56] to resolve path constraints associated
with address-taken variables. All these existing sparse approaches
leverage auxiliary dependence analysis or pointer analysis, which
is conducted on a memory address domain to bootstrap the sub-
sequent main analysis phase. The offline pointer analysis in the
pre-analysis phase may lead to redundant data flow propagation
along conservative data dependencies that do not exist during run-
time, thus impacting the sparsity. Additionally, the pointer analysis
in the main phase (e.g., sparse flow-sensitive pointer analysis in SFS
and Sparrow), which is unaware of the needs of the main data-flow
analysis such as interval analysis, does not leverage the informa-
tion from other domains, leaving substantial room for precision
improvement. Unfortunately, pre-computing a precise dependence
(e.g., array-sensitive analysis) can become prohibitively expensive,

https://doi.org/10.1145/3597503.3639220
https://doi.org/10.1145/3597503.3639220
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597503.3639220&domain=pdf&date_stamp=2024-04-12

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Xiao Cheng

(a) Source code

pts(loc2) = {&ids[4]}

(b) Sparse analysis without cross-domain refinement (c) Sparse analysis with cross-domain refinement

pts(loc1) = {&ids[0], &ids[1]...&ids[4]} pts(loc1) = {&ids[0], &ids[1],...&ids[3]}

1 int ids[5] = {0};
2 char *tab = malloc(5);
 ...

3 int slot = randn() % 4;
4 int *loc1 = &ids[slot];
5 *loc1 = 5;
 ...

6 int *loc2 = &ids[4];

7 print(tab[*loc2]);

Memory Address Domain Memory Address Domain

pts(loc2) = {&ids[4]}

Interval Domain

 itv(slot) = [0, 3]
itv(*loc1) = [0, 5]
itv(*loc2) = [0, 5]

Interval Domain

 itv(slot) = [0, 3]

itv(*loc1) = [0, 5]
itv(*loc2) = [0, 0]

Refine
pts(loc1)
using
itv(slot)

Refine
itv(*loc2)
using
pts(loc1)

Cross-domain
refinement

No refinements across multiple domains

// loc1 and loc2 are not aliases

// safe array access of tab Spurious
aliases

Must-not-
aliases

False
overflow
alarm!tab[*loc2]

Safe
buffer
access!tab[*loc2]

// itv(slot) = [0, 3]

pts(p): the points-to set of pointer p itv(v): the interval value of variable v

Figure 1: Sparse analysis without cross-domain refinement vs sparse analysis with cross-domain refinement.

outweighing the time spent in the main phase and thus defeating
the purpose of bootstrap-based sparse analysis [56].

An example. We use an example in Figure 1 to illustrate the
imprecision and its introduced redundancy by traditional sparse
analysis, which handles two domains without cross-domain re-
finement. The code fragment in Figure 1(a) represents a typical
table/array access scenario. Given an allocated table called tab at
ℓ2, it aims to print an item tab[*loc2] at ℓ7 through a location index
*loc2 retrieved from an index array ids. Despite the table access at
ℓ7 being safe, both Sparrow [49] and Infer [38] report a false over-
flow alarm. This is due to imprecisely treating loc1 and loc2 as
aliases. As a result, the index value 5 stored in *loc1 at ℓ5 gets prop-
agated to *loc2 at ℓ7 and used for the table access, where tab[5]
exceeds the size of tab. In reality, loc1 and loc2 used for table
accesses are must-not-aliases. Specifically, loc1 at ℓ4 only points
to ids’s first four elements (&ids[0]. . .&ids[3]) given constraint
randn()%4 at ℓ3, while loc2 at ℓ6 only points to the last element
&ids[4]. Hence any changes to *loc1 will not affect *loc2, which
always has a safe index value of 0 initialized at ℓ1.

A comparison between traditional sparse analysis and the ideal
cross-domain analysis is depicted in Figure 1(b) and (c). For tradi-
tional analysis [37, 48], both the pre-analysis and main pointer anal-
ysis do not consider the information from the numerical domain,
making loc1 conservatively point to all objects in ids because the
analyses do not consider the interval value [0, 3] for scalar slot.
For example, Sparrow [49] aggregates all memory addresses of ids
into a single abstract location when performing pointer analysis.
Without the interval result itv(slot) = [0, 3] at ℓ4, the points-to
set pts(loc1) imprecisely includes &ids[4]. Consequently, both
*loc1 and *loc2 refer to the same object. In turn, this imprecise
pointer aliasing causes imprecise interval results, making *loc2
yield a conservative interval value [0, 5] by imprecisely includ-
ing the value 5 from *loc1. The imprecise interval value of ∗loc2
when accessing tab at ℓ7 triggers a false overflow alarm. In contrast,
Figure 1(c) shows a precise result across two domains. The points-
to set pts(loc1) becomes more accurate by excluding &ids[4]
when considering the interval value of itv(slot) from the inter-
val domain. As a result, loc1 and loc2 are precisely identified as
must-not-aliases, eliminating the spurious def-use chain between
ℓ5 and ℓ7. Meanwhile, the pointer analysis on the memory address
domain refines the interval value itv(∗loc2) at ℓ7. Thus, at ℓ7,
∗loc2 (ids[4]) has a precise interval value of [0, 0] rather than

[0, 5] derived based on the isolated pointer analysis. Hence no false
alarms are reported.

Challenges. To address the imprecision of existing sparse tech-
niques, any pointer alias analysis needs to work simultaneously
with the data-flow analysis phase on a combined abstract domain
to provide improved precision. There are two major challenges: (1)
The analysis across multiple domains is more precise but more costly
because the lattice of a combined pointer and numerical domain
can become extremely large and difficult to compute a fixed point
without an efficient online refinement. Moreover, the soundness of
sparse analysis must not be compromised during the cross-domain
interaction. (2) Excessive memory objects are another challenge since
the number of memory objects can grow substantially when dealing
with field- and array-sensitive analysis, like handling each element
in ids as shown in Figure 1, particularly in large programs. It be-
comes necessary, albeit difficult, to minimize the computational and
memory expenses involved in performing points-to and interval
analysis in the presence of excessive memory objects.

Our solution. We introduce CSA, a precise and efficient sparse
abstract execution over multiple abstract domains. To tackle Chal-
lenge (1), we present cross-domain refinement, which effectively cap-
tures the correlation between pointer and interval analyses. Rather
than simply combining the results from each analysis domain, we
develop a novel use of reduced cardinal power [22] to enable an on-
line bidirectional refinement for both analyses. The def-use depen-
dence is initially established using a fast over-approximated pointer
analysis [10, 37]. As the main analysis progresses, the pointer alias
information is gradually refined on the fly, reducing data flow prop-
agation along spurious data dependencies generated by the of-
fline analysis. Simultaneously, the precise pointer alias information
boosts the precision of the interval analysis in the main phase. To
address Challenge (2), we propose equivalent correlation tracking,
which efficiently handles excessive memory objects. This approach
identifies and collapses memory address sets with equivalent impli-
cation results, aiming to minimize computational overheads and
memory costs when dealing with memory objects.

Framework overview. Figure 2 provides an overview of CSA:
(a) Input. The input of our framework is LLVM’s intermediate

representation (IR) [39], as formally defined in Section 2.2. This IR
is then passed to SVF [60], a static analysis tool that produces the
interprocedural control flow graph (ICFG) and sparse value flow
graph (SVFG) using Andersen’s pointer analysis [10].

Precise Sparse Abstract Execution via Cross-Domain Interaction ICSE ’24, April 14–20, 2024, Lisbon, Portugal

itv(...)

pts(...)Memory
Address
Domain

Interval
Domain

Cross-domain refinement

(b) Sparse analysis

Equivalent
correlation tracking

���

Buffer overflow

���

Assertion-based
checking

Null dereference

(a) Input

Program

LLVM IR
LLVM

ICFG SVFG

SVF

(c) Clients

Figure 2: An overview of our framework.

(b) Sparse analysis. CSA works on a combination of two abstract
domains, including the memory address domain for pointer infor-
mation and the interval domain for integer values. The inclusion of
interval value itv(...) enhances pointer analysis precision, while
the precise points-to set pts(...), in turn, improves data dependence
and makes the interval analysis more precise. This is accomplished
by establishing the implication relations between the two domains
through reduced cardinal power. Redundant value joins implied by
memory addresses with equivalent correlations are eliminated.

(c) Clients. CSA supports assertion-based checking clients like
buffer overflow and null dereference detection. In summary, this
paper makes the following major contributions:

• We introduce CSA, a precise cross-domain sparse abstract
execution over a combined domain through correlation track-
ing. Cross-domain refinement enhances the precision of both
pointer and interval analysis.

• We propose an implication-equivalent (virtual) memory ad-
dress grouping approach that efficiently captures correla-
tions between domains by eliminating redundant value join
operations and memory costs.

• We conduct a comprehensive evaluation of CSA’s perfor-
mance using 7774 programs from the NIST dataset and ten
real-world open-source projects. Experimental results show
that CSA detects 46.05% more bugs than Infer and achieves
12.11% more precision rate than KLEE in the ten real-world
projects. CSA reduces false positives by 96.63% on real-world
projects compared to the version without cross-domain in-
teraction. CSA also demonstrates an average speedup of
2.47× and an average memory reduction of 6.14× when us-
ing equivalent correlation tracking.

2 BACKGROUND

We first introduce the basic concepts of combined abstract domains
and then describe the target language and sparse abstract execution.

2.1 Combined Abstract Domains

Concrete and abstract domains. The elements of the abstract
domain A are abstract values that approximate a set of concrete
values, i.e., the values that a variable can take in the concrete domain
C during program execution (e.g., integers, floats and strings). The
abstract domain A is an over-approximated abstraction of C with a
concretization function 𝛾 ∈ A→ C based on a partial order ⊑ over
A such that ∀𝑎, 𝑎′ ∈ A, 𝑎 ⊑ 𝑎′ ⇔ 𝛾 (𝑎) ⊆ 𝛾 (𝑎′). The partial order
relations of an abstract domain A form a lattice 𝔄 = ⟨A, ⊑,⊓,⊔,⊥
,⊤⟩, where ⊓ and ⊔ are the meet and join operations, and ⊥ and ⊤
are unique least and greatest elements of A.

Table 1: LLVM-like Language

ℓ ::= Stmt
p = c ConsStmt
p = alloco AddrStmt
p = &(q→fld) GepStmt (Field)
p = &q[c] | p = &q[v] GepStmt (Array)
p = ∗q LoadStmt
∗p = q StoreStmt
p = q CopyStmt
p = phi(p1, p2, ...pn) PhiStmt
p = ¬q UnaryStmt
r = p ⊙ q BinaryStmt

⊙ ∈ {+, -, ∗, /, %, <<, >>, <, >, &, &&, <=,>=, ≡, ∼, | , ∧ }

Cartesian product. Using a single abstract domain may not be
able to precisely cover all program semantics. For instance, one
single abstract domain cannot be precisely applied to both interval
and pointer analysis. Traditional sparse analysis like the example
in Figure 1(b) working over individual domains can be seen as
using the Cartesian product × (direct product), which encapsulates
the abstract values from each domain [9, 43] with concretization
in Definition 1. In this paper, the semantic of Cartesian product
simply unifies the value representation where each element of the
combined domain (A = A1 × ... × A𝑛) becomes an 𝑛-tuple with
independently computed values from individual analyses (such as
pointer analysis and interval analysis) [21, 24, 54]. In the following
sections, the Cartesian product is one of our baselines (referred to
as CSA-CP), which is simply a conjunction of the analysis results
from different domains with capturing correlations across domains.

Definition 1 (Concretization for Cartesian Product [21, 24, 54]).
Let ⟨𝑎1, . . . , 𝑎𝑛⟩ be an abstract value in A1 × ... × A𝑛 , and 𝐶1 =

𝛾1 (𝑎1), ...,𝐶𝑛 = 𝛾𝑛 (𝑎𝑛) be their corresponding concrete values. The
concretized value of ⟨𝑎1, . . . , 𝑎𝑛⟩ is the intersection of𝐶1 to𝐶𝑛 , i.e.,
𝛾 (⟨𝑎1, . . . , 𝑎𝑛⟩) = 𝐶1 ∩ · · · ∩𝐶𝑛 .

2.2 Language

We perform our sparse analysis on LLVM-like language [37, 39]
with each type of program statement listed in Table 1. The set of
all variables V are separated into two subsets, O that contains all
possible abstract objects, i.e., address-taken variables of a pointer
and P that contains all top-level variables. In LLVM’s language, a
top-level variable p, q, r ∈ P, including stack virtual registers and
global variables, can only be defined once. An address-taken object
o ∈ O can be read/modified only through dereferencing top-level
pointers at LoadStmt/StoreStmt. A constant value c is always
first assigned to a top-level variable at ConsStmt. For AddrStmt
p = alloco, o is a stack or global variable or a dynamically created
abstract heap object. GepStmt models the field accesses of a struct
object with its field offset fld as a constant value. CSA uses a field-
index-based approach to field-sensitivity similar to [12, 52]. The
fields of a struct object are distinguished by their unique indices.
The variable index when accessing an array (e.g., p = &q[v]) is
resolved during abstract execution. PhiStmt is a standard SSA
instruction introduced at a confluence point on the control flow
graph to select the value of a variable from different branches.
Passing parameters to and returning results from a callee invoked
at a callsite are modeled as CopyStmts.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Xiao Cheng

(a) Sparse analysis over combined domains using Cartesian product (b) Sparse analysis over combined domains using correlation tracking
7| print(tab[*loc2]);

5| *loc1 = 5;1| int ids[5] = {0};

Safe
buffer
access!7| print(tab[*loc2]);

5| *loc1 = 5;1| int ids[5] = {0};

Spurious
value-flow

False
overflow
alarm!

Must-
not-

aliases

Figure 3: Sparse analysis on the memory address and interval domains by revisiting the example in Figure 1.

2.3 Abstract State and Abstract Execution

Abstract execution (or abstract interpretation) is the process of col-
lecting program semantics by deriving the abstract state of program
variables (Definition 2) at each program control point to form an
abstract trace 𝜎 (Definition 3). At a high level, abstract execution
follows the control flow graph and updates 𝜎 by analyzing each
statement until a fixed point is reached.

Definition 2 (Abstract State AS : V→A). We define the abstract
state for a given program as a map AS = V → A from program
variables V to the abstract domain A.

Definition 3 (Abstract Trace 𝜎 : L × V → A). Abstract trace
is a set of abstract states with each qualified by a program point.
𝜎𝐿 (x) returns x’s value at a particular program point 𝐿 ∈ L from
A, where 𝐿 can be a program point immediately before (ℓ) or after
(ℓ) program statement ℓ .

2.4 Sparse Abstract Execution

Sparse abstract execution propagates abstract states based on sound
yet over-approximated data dependence chains. It only maintains
the abstract values of variables where necessary (the use sites of
these variables) during the analysis, reducing the size of states at
each program point and saving memory costs. The data depen-
dencies are the def-use chains on the value flow graph, which is
initially built upon the partial SSA form by considering program
control flows and pre-computed points-to results [10, 37]. Top-level
variables are in LLVM’s SSA form and their def-use chains are di-
rectly obtained. Address-taken variables are obtained by building
the interprocedural memory SSA form using Andersen’s points-
to results [10]. We use ℓ

o
↩→ ℓ′ to represent the value-flow of an

address-taken object o ∈ O which is defined at ℓ and used at ℓ′.

3 MOTIVATING EXAMPLE

Figure 3 illustrates the key ideas of CSA by revisiting the example
in Figure 1. We aim to compare and contrast the traditional sparse
analysis using the Cartesian product in Figure 3(a), with a precise
analysis by tracking the correlation between the memory address
and interval domains in Figure 3(b). Definition 4 gives notations
for the interval and memory address domains.

Definition 4 (Interval and Memory Address Domains). The in-
terval domain [22] represents a set of integers that fall between
two given endpoints, which is equipped with a lattice Interval ⟨I, ⊑
,⊓,⊔,⊥, [−∞, +∞]⟩, where I = {[𝑎, 𝑏] |𝑎, 𝑏 ∈ Z∪ [−∞, +∞]}∪ {⊥}
(Z denotes all integers) is the set of all intervals. The abstraction
for memory addresses is a set of discrete values. The lattice for

MemAddress domain is ⟨O, ⊆,∩,∪,∅,⊤⟩, where O = 𝒫(O) is the
powerset of the set O representing all allocated memory addresses.

Analysis over combined domains using Cartesian product.

In this case, the results of pointer analysis and interval analy-
sis are simply combined with the Cartesian product (𝜎 ∈ L ×
V → Interval × MemAddress) without cross-domain refinement.
As shown in Figure 3(a), the abstract value of the pointer variable
loc1 at program point ℓ5 is represented by a pair 𝜎

ℓ5
(loc1) =

⟨⊤, {&ids[0],&ids[1], ...,&ids[4]}⟩ (some approaches [38, 49]
aggregate&ids[0],&ids[1], . . . ,&ids[4] to one object) where the
first element ⊤ is a conservative value of this pointer by interval
analysis. The second element is a set of memory addresses pointed
by loc1 computed by an external pointer analysis over the memory
address domain. Because the pointer analysis does not have interval
information, loc1 conservatively points to all the elements of ids
including a spurious target &ids[4], which establishes a false data

dependence ℓ5
&ids[4]
↩−−−→ ℓ7. This false dependence propagates value

𝜎ℓ5 (&ids[4])= ⟨[5, 5],⊤⟩ to ∗loc2 at ℓ7 (⊤ here represents a con-
servative points-to result as a constant integer can be interpreted
as a memory address value in LLVM). Consequently, ∗loc2 used
as an index to access tab has an imprecise value [0, 5] which may
exceed tab’s boundary, causing a false alarm.

Analysis over combined domains using correlation tracking.

Unlike the Cartesian product, the cross-domain analysis uses 𝜎 only
tomaintain abstract trace for top-level variablesP (Section 2.2). The
trace is then reduced to 𝜎 ∈ P→ Interval×MemAddress. To keep
track of the values of memory objects O, the analysis needs to cap-
ture the correlations across abstract domains betweenMemAddress
and Intervals when analyzing pointer-related statements including
GepStmt, LoadStmt and StoreStmt. The correlation is captured
by establishing an implication that maps each memory object to
its implied memory address or interval value. For example, at ℓ1 in
Figure 3(b), we create an implication from each memory object in
ids to the initial value, that is &ids[0] ↦→ ⟨[0, 0],⊤⟩. . .&ids[4] ↦→
⟨[0, 0],⊤⟩. Each of these implications represents that an object if
accessed at ℓ1 has a value [0, 0], i.e., the implication result for the
object is [0, 0]. The implication &ids[4] ↦→ ⟨[0, 0],⊤⟩ is then prop-

agated to ℓ7 via the data dependence ℓ1
&ids[4]
↩−−−→ ℓ7. At ℓ5, unlike the

analysis performed on a single memory address domain, the cross-
domain analysis considers the interval value 𝜎 (slot) = ⟨[0, 3],⊤⟩,
and derives a precise memory address value of loc1, pts(loc1) =
{&ids[0],&ids[1], ...,&ids[3]}. This precise points-to result in

turn helps remove the spurious dependence ℓ5
&ids[4]
↩−−−→ ℓ7. Conse-

quently, it contributes to a more precise interval value ⟨[0, 0],⊤⟩

Precise Sparse Abstract Execution via Cross-Domain Interaction ICSE ’24, April 14–20, 2024, Lisbon, Portugal

[ValueFlow]
ℓ ′

𝑜
↩→ ℓ

𝛿ℓ (𝑜) ⊒ 𝛿ℓ ′ (𝑜)
[ConsStmt]

ℓ : p = c

𝜎 (p) := ⟨𝛼 ({c}),⊤⟩ [CopyStmt]
ℓ : p = q

𝜎 (p) := 𝜎 (q)

[PhiStmt]
ℓ : r = phi(p1, p2, ..., pn)
𝜎 (r) := ⊔n

i=1 𝜎 (pi)
[UnaryStmt]

ℓ : p = ¬q
𝜎 (p) := ¬#𝜎 (q) [BinaryStmt]

ℓ : r = p ⊙ q

𝜎 (r) := 𝜎 (p) ⊙# 𝜎 (q)

[AddrStmt]
ℓ : p = allocoi

𝜎 (p) := ⟨⊤, {𝑜𝑖 }⟩
[GepStmt]

ℓ : p = &(q→i) 𝑜𝑟 ℓ : p = &(q[i])
𝜎 (p) := ⊔

o∈𝛾 (𝜎 (q))
⊔

𝑗 ∈𝛾 (𝜎 (i)) ⟨⊤, {o.fld𝑗 }⟩

[LoadStmt]
ℓ : p = ∗q

𝜎 (p) := ⊔
𝑜∈{𝑜 | (𝑜 ↦→_) ∈𝛿

ℓ
} 𝛿ℓ (𝑜)

[StoreStmt]
ℓ : ∗p = q

𝛿ℓ ⊒ ({𝑜 ↦→ 𝜎 (q) |𝑜 ∈ 𝛾 (𝜎 (p)) } ⊔ 𝛿ℓ \ kill(ℓ))

kill(ℓ : ∗p = q) :=

{o ↦→ _ | o ∈ 𝛾 (𝜎 (p)) } if 𝜎 (p) ≡ ⟨⊤, {o}⟩ ∧ o is singleton
{o ↦→ _ | o ∈ O} if 𝜎 (p) ≡ ⟨⊤,∅⟩
∅ otherwise

Figure 4: Analysis rules for sparse abstract execution by tracking correlations across domains. 𝑎 ⊒ 𝑏 represents 𝑎 := 𝑎 ⊔ 𝑏. f# is
the abstract operator concerning the concrete operator f. 𝛾 (𝜎 (p)) concretes the abstract value 𝜎 (p) based on Definition 1 and

returns the memory address set pointed by p or the integers residing inside the interval value of variable p. o.fldj represents

the 𝑗 th field of the base object o.

of ∗loc2 at ℓ7. As a result, ∗loc2 can only have the value [0, 0]

copied from &ids[4] at ℓ1 via value-flow ℓ1
&ids[4]
↩−−−→ ℓ7. Hence the

table access tab[∗loc2] is safe, no false alarm is reported.

4 APPROACH

Section 4.1 introduces the details of correlation tracking across
domains (with analysis rules in Figure 4). Section 4.2 discusses our
implication-equivalent approach (with analysis rules in Figure 5).

4.1 Correlation Tracking Across Domains

We present precise correlation tracking through domain interaction
by using reduced cardinal power [22] that efficiently maps the
abstract value from one domain to the other.

Definition 5 (Implication and implication result). An implication
𝑎1 ↦→𝑎2 in reduced cardinal power maps 𝑎1 ∈A1 to 𝑎2 ∈A2, where
A1 isMemAddress andA2 is Interval×MemAddress. The implication
signifies that if memory address 𝑎1 is accessed at a pointer deref-
erence, then 𝑎2 is the value held at that address. The implication
result of 𝑎1 is 𝑎2.

In our analysis, A1 represents only the MemAddress domain
(Definition 4) because the implication is only used for tracing val-
ues of memory objects, while for top-level variables (Section 2.2),
we still use abstract trace (Definition 3). Domain A2 represents
Interval×MemAddress given that each implication result can be
either an interval or a memory address. This is because a memory
address stores either a numerical value or other memory addresses.

Definition 6 (Abstract power trace 𝛿 : L→ (A1 → A2)). We
define an abstract power trace 𝛿 to track the implications at each
program point. We use 𝛿𝐿 = {𝑎1 ↦→ 𝑎2 | 𝑎1 ∈ A1 ∧ 𝑎2 ∈ A2} to
represent a set of implications at program point 𝐿. 𝛿𝐿 (𝑎1) returns
the implication result of 𝑎1 at program point 𝐿.

Note that implications (or correlations) are derived online via
cross-domain interaction while existing sparse techniques [37, 49,
60] use pre-computed points-to results without online refinement.
Unlike existing analyzers [37, 49, 60] that aggregate the memory
objects within arrays, the implications in 𝛿𝐿 support fine-grained
array-sensitive correlation tracking. This representation also sup-
ports tracking a group of objects (Section 4.2).

Analysis rules. Figure 4 presents the abstract execution rules
using reduced cardinal power. For sparse analysis, the abstract
power states are propagated through value flows via theValueFlow
rule, which depends on the pointer information derived on the fly.
For the pointer-free statements (ConsStmt, CopyStmt, PhiStmt,
UnaryStmt, BinaryStmt), we update the value of the left-hand-
side variable based on the right-hand-side value and relevant oper-
ators. For instance, given a BinaryStmt ℓ : r = p + q and 𝜎 (p) :=
⟨[1, 5],⊤⟩, 𝜎 (q) := ⟨[4, 5],⊤⟩, we derive 𝜎 (r) := ⟨[5, 10],⊤⟩.

We show pointer-related analysis rules, in particular, GepStmt,
LoadStmt and StoreStmt, to conduct online value-flow refine-
ment by capturing correlation between domains.

The GepStmt rule updates the value in the memory address
domain with the information from the interval domain. For Gep-
Stmt where the offset is a variable, a more precise field- and array-
sensitive analysis can capture the correlation between the two
domains by considering the numerical value of the offset to refine
the resulting memory addresses of an object’s fields. Meanwhile,
the refined pointer result remains conservative because the interval
value of the offset variable is over-approximated. In contrast, with-
out knowing the numeric value of the offset variable, the standalone
pointer analysis returns all possible fields or aggregates all fields to
one object to ensure soundness, which can be too conservative and
compromise precision.

When processing a LoadStmt ℓ : p = ∗q, we refine the derived
value of p based on the precise memory addresses of q and the
correlation from the abstract power trace 𝛿

ℓ
. We first obtain the

memory addresses of q via 𝜎 (q) from the memory address domain.
For each memory address o that q refers to, we retrieve the interval
value or memory addresses related to o based on the implications
stored in 𝛿

ℓ
. The final result for 𝜎 (p) is the join of all implied values

of the memory addresses.
For a StoreStmt ℓ : ∗p = q, we construct the implication based

on 𝜎 (p) and 𝜎 (q). We first obtain p’s points-to targets via 𝜎 (p)
from the memory address domain. For each memory address o that
p refers to, we map o to the abstract value of q in the power state,
i.e., o ↦→ 𝜎 (q). We also employ strong updates [41] for singletons,
which contain all address-taken objects except the local variables
in recursion, arrays or heap objects, to enhance precision. The
singleton information is determined by the pre-analysis [60].

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Xiao Cheng

[ValueFlow]
ℓ ′

rf
↩→ ℓ

𝛿ℓ := 𝛿ℓ
⋃• {rf ↦→ 𝛿ℓ ′ (rf) }

[AddrStmt]
ℓ : p = allocoi

𝜎 (p) := ⟨⊤, rf {oi} ⟩

[GepStmt]
ℓ : p = &(q→i) 𝑜𝑟 ℓ : p = &(q[i])

𝜎 (p) := ⊔
o∈dr (𝛾 (𝜎 (q)))

⊔
𝑗 ∈𝛾 (𝜎 (i)) ⟨⊤, rf {o.fld𝑗 } ⟩

[LoadStmt]
ℓ : p = ∗q

𝜎 (p) := ⊔
rf ∈{rf | (rf ↦→_) ∈𝛿

ℓ
∧ rf ∩𝜎 (𝑞)≠∅} 𝛿ℓ (rf)

[StoreStmt]
ℓ : ∗p = q

𝛿ℓ := 𝛿ℓ
⋃• {𝛾 (𝜎 (p)) ↦→ 𝜎 (q) }⋃•𝛿ℓ \ kill(ℓ)

kill(ℓ : ∗p = q) :=

{rf {o} ↦→ _ | o ∈ 𝛾 (𝜎 (p)) } if 𝜎 (p) ≡ ⟨⊤, {rf {o} }⟩ ∧ o is singleton
{rf {o} ↦→ _ | o ∈ O} if 𝜎 (p) ≡ ⟨⊤,∅⟩
∅ otherwise

Figure 5: Analysis rules for sparse abstract execution with equivalent correlation tracking across domains. The rules for

pointer-free statements (ConsStmt, CopyStmt, PhiStmt, UnaryStmt, BinaryStmt) are the same as those in Figure 4.

Join of two power states. The join of two power states, 𝛿𝐿1 ⊔ 𝛿𝐿2 ,
is utilized in Rule StoreStmt in Figure 4. The join is defined as
follows: for each memory address o where the two states intersect,
a join operation is performed to combine their implied values, i.e.,
𝛿𝐿1 (o) ⊔ 𝛿𝐿2 (o). The remaining elements in these states are left
unchanged and are merged into the resulting abstract power state.

4.2 Equivalent Correlation Tracking

The correlation tracking in Section 4.1 builds implications for indi-
vidual objects. This single-object correlation tracking approach may
introduce redundant join operations for memory addresses holding
equivalent implication results, which may be very costly. Further-
more, the single-object approach can consume much more mem-
ory for redundantly storing abstract values. To avoid redundant
computation and storage, we introduce an implication-equivalent
tracking approach, which merges the memory objects which have
the same implication results, so that we could analyze and store
these implication-equivalent objects only once without sacrificing
precision or soundness.

Figure 6 gives an example to compare and contrast the single-
object approach and implication-equivalent correlation tracking
approach. There are three pointers loc1 (pointing to o1 and o2),
loc2 (pointing to o3 and o4) and loc3 (pointing to o1, o2, o3 and
o4) at ℓ1, ℓ2 and ℓ3 respectively. At ℓ1, the constant 1 is stored at
the addresses that loc1 points to. At ℓ2, 5 is stored at the addresses
that loc2 points to. Finally, at ℓ3, the states from ℓ1 and ℓ2 are
merged, and r is assigned the value stored at the memory address
pointed to by loc3. The derived abstract states and power states
are shown in Figure 6. In the following paragraphs, we introduce
implication-equivalent memory addresses and compare and con-
trast the difference between single-object (introduced in Section 4.1)
and implication-equivalent tracking approaches.

Identifying implication-equivalent memory addresses. The
abstract power trace, as defined in Definition 6, may include multi-
ple memory objects that yield equivalent implication results. An
example of this scenario can be observed in Figure 6, where 𝑜1
and 𝑜2 are considered implication-equivalent because 𝑜1 and 𝑜2 are
both pointed by loc1 implying the same value ⟨[1, 1],⊤⟩ at the
StoreStmt ℓ1. Consequently, analyzing 𝑜1 and 𝑜2 requires only a
single implication statement: {𝑜1, 𝑜2} ↦→ ⟨[1, 1],⊤⟩. This approach
can reduce redundancy when building implications.

In Figure 6, we compare the abstract states derived from the
single-object and the implication-equivalent correlation tracking.

1| *loc1 = 1; 2| *loc2 = 5;

3| r = *loc3;

Figure 6: Abstract traces by single-object and implication-

equivalent correlation tracking. The implication-equivalent

power is highlighted in grey .

For the single-object version at ℓ1, we build an implication from a
group of memory addresses (o1 and o2) referred by p to the value
⟨[1, 1],⊤⟩ independently. For the implication-equivalent version,
we combine o1 and o2 by building an implication from the set
{o1, o2} to its value:

• Single-object: 𝛿ℓ1 = {o1 ↦→ ⟨[1, 1],⊤⟩, o2 ↦→ ⟨[1, 1],⊤⟩}
• Implication-equivalent: 𝛿ℓ1 = {{o1, o2} ↦→ ⟨[1, 1],⊤⟩}

The size of the implication-equivalent abstract power state is only
half the number of the single-object states because ⟨[1, 1],⊤⟩ is
stored only once. The propagation of the state is also saved when
performing abstract execution.

At the value flow joint point ℓ3, 𝛿ℓ1 and 𝛿ℓ2 are merged, yielding
the following states:

• Single-object:𝛿
ℓ3
= {o1 ↦→ ⟨[1, 1],⊤⟩, o2 ↦→ ⟨[1, 1],⊤⟩, o3 ↦→

⟨[5, 5],⊤⟩, o4 ↦→ ⟨[5, 5],⊤⟩}
• Implication-equivalent: 𝛿

ℓ3
= {{o1, o2} ↦→ ⟨[1, 1],⊤⟩,

{o3, o4} ↦→ ⟨[5, 5],⊤⟩}

Like the states at ℓ1 and ℓ2, the implication-equivalent power state
𝛿
ℓ3
costs only half memory space.
For the LoadStmt at ℓ3, the single-object method joins all the

values implied by these four memory addresses (o1, o2, o3 and o4)
pointed by p, while the implication-equivalent version joins all the
values implied by the two grouped memory address sets {o1, o2}
and {o3, o4}:

• Single-object: 𝛿
𝑙3
(o1) ⊔ 𝛿

𝑙3
(o2) ⊔ 𝛿

𝑙3
(o3) ⊔ 𝛿

𝑙3
(o4)

• Implication-equivalent: 𝛿
𝑙3
({o1, o2}) ⊔ 𝛿

𝑙3
({o3, o4})

Only one join operation is needed for the implication-equivalent
power, while it takes three join operations by the single-object one.

Precise Sparse Abstract Execution via Cross-Domain Interaction ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Algorithm 1: Implication-equivalent join operator of two
abstract power states.
1 Function

⋃• (𝛿1, 𝛿2):
2 Initialize 𝛿 with an empty map;
3 for (rf 1 ↦→ 𝑎1) ∈ 𝛿1 do
4 for (rf 2 ↦→ 𝑎2) ∈ 𝛿2 do
5 𝛿 (rf 1 ∩ rf 2) := 𝑎1 ⊔ 𝑎2

6 for (rf 1 ↦→ 𝑎1) ∈ 𝛿1 do
7 𝛿 (rf 1 \

⋃
{rf 2 | (rf 2 ↦→_) ∈𝛿2}) := 𝑎1

8 for (rf 2 ↦→ 𝑎2) ∈ 𝛿2 do
9 𝛿 (rf 2 \

⋃
{rf 1 | (rf 1 ↦→_) ∈𝛿1}) := 𝑎2

10 return 𝛿

Representing memory address sets. Computing and maintaining
memory address sets (mem-sets) at different program points (flow-
sensitivity) can introduce many duplicates. The example in Figure 6
shows that the mem-set {o1, o2} can appear at different program
points multiple times (e.g., ℓ1, ℓ3). We further adopt the idea of hash
consing [13, 34, 36] from the functional programming community
to represent the mem-set. Each mem-set is stored in a global pool
with a unique reference. Whenever a mem-set is generated during
the analysis, a reference to the equivalent mem-set in the pool is
returned if the mem-set already exists, otherwise, a new mem-set
is added to the pool, and a reference to this newly added one is re-
turned.We use rf mems to denote the reference to themem-setmems.
For example, the reference of the mem-set {o1, o2} is rf {o1,o2 } .
Dereferencing a mem-set reference dr (rf mems) obtains the orig-
inal mems. For the same mem-set references rf mems ≡ rf mems′ ,
their dereferenced mem-sets are also the same, i.e., dr (rf mems) ≡
dr (rf mems′). For equivalent mem-sets, only one of them is stored
in the global pool. Let us revisit the example in Figure 6. After hash
consing, we have 𝛿

ℓ3
= {rf {o1,o2 } ↦→ [1, 1], rf {o3,o4 } ↦→ [5, 5]}.

Implication-equivalent join operator. Before describing the
rules for equivalent correlation tracking, we first outline how to
merge two abstract power states (join of states) in Algorithm 1. The
mem-sets in the newly produced 𝛿 are disjointed. As such, we join
the abstract values 𝑎1⊔𝑎2 implied by the shared memory addresses
rf 1∩rf 2 between 𝛿1 and 𝛿2 (Lines 3-5). For the relative complement
parts (Lines 6-9), we build an implication from the complement
mem-set to the original abstract values. The implementation of the
implication-equivalent join operator is described in Section 5.1.

Implication-equivalent analysis rules. Figure 5 gives the analy-
sis rules for implication-equivalent correlation tracking. The equiv-
alent memory objects are grouped and propagated together for
the implication-equivalent ValueFlow rule. The pointer-free rules
(ConsStmt, CopyStmt, PhiStmt, UnaryStmt, BinaryStmt) re-
main unchanged from Figure 4. For the pointer-related rules, in-
stead of analyzing each memory object individually, implication-
equivalent objects are grouped and analyzed collectively. By group-
ing implication-equivalent memory objects, the analysis becomes
more efficient without compromising precision.

Table 2: The statistics of the open-source projects. #LOI de-

notes the number of lines of LLVM instructions. #Method,

#Call and #Obj are the numbers of functions, method calls

and memory objects, respectively. |V| and |E| are the numbers

of ICFG nodes and ICFG edges.

Project #LOI #Method #Call #Obj |V| |E|
paste 8,416 53 758 510 9,395 9,922

md5sum 11,483 63 881 606 12,494 13,064
YAJL 20,592 151 561 208 9,253 9,922
MP4v2 39,178 601 610 1,991 15,595 16,733
RIOT 54,597 579 1,614 951 20,176 20,843

darknet 159,205 985 9,776 2,550 136,094 147,852
tmux 446,626 1,967 22,369 3,879 162,879 178,924

Teeworlds 529,737 2,306 28,267 5,754 251,356 246,029
NanoMQ 788,967 3,235 47,646 30,838 358,312 443,670
redis 1,363,507 6,314 68,664 13,958 589,019 704,356
Total 3,422,308 16,254 181,146 61,245 1,564,573 1,791,315

5 EVALUATION

In this section, we aim to show the effectiveness of CSA for analyz-
ing real-world programs and its practicality for bug detection, i.e.,
detecting buffer overflows and null dereferences. We evaluate the
performance of CSA by comparing with five state-of-the-art open-
source tools, Infer [38], Cppcheck [27], IKOS [16], Sparrow [49]
and KLEE [17]. Moreover, we conduct an ablation analysis to gain
a deeper understanding of how the cross-domain refinement and
implication-equivalent approach influence the overall performance.

5.1 Datasets and Implementation

Datasets. We evaluate CSA using (1) a benchmark comprising
7774 programs from NIST [46], which includes its null dereferences
and buffer overflow vulnerabilities, and (2) 10 popular open-source
C/C++ projects (with their statistics in Table 2) across various ap-
plication domains: paste [17] (file merger), md5sum [17] (file veri-
fier), YAJL [8] (JSON parsing library), MP4v2 [2] (MP4 file library),
RIOT [5] (IoT operating system), darknet[1] (neural network frame-
work), tmux [7] (terminal multiplexer), Teeworlds [6] (online mul-
tiplayer game), NanoMQ [3] (MQTT broker for IoT edge platform)
and redis [4] (in-memory database).

Implementation. The experiments are conducted on an Ubuntu
18.04 server with an eight-core 2.60GHz Intel Xeon CPU and 128
GB memory. The interprocedural control and value flow graphs
are built upon LLVM-IR (with LLVM version 14.0.0). The LLVM-IR
represents program functions as global variables, further modeled
as address-taken variables. The callgraph is built on-the-fly by us-
ing the cross-domain pointer information to resolve indirect calls,
which precisely capture the value-flows across program procedures.
Program loops/recursive calls are identified through weak topolog-
ical ordering (WTO) [15], and they are handled conservatively by
applying widening on the heads of the WTO. The abstract value
representation is implemented using Z3 expressions [45]. For the
implication-equivalent join operator, we leverage the fast set refer-
ence union/meet technique [13] when performing set union/meet.
For the baselines Infer, Cppcheck, IKOS, Sparrow and KLEE, we
directly use their open-source implementations and their default
settings for detecting buffer overflows and null dereferences.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Xiao Cheng

Table 3: Comparing with five tools and CSA-CP (a variant of

CSA without cross-domain interaction, Section 5.5.1) using

the NIST benchmark, with true positive rate (#TPR) and pre-

cision rate (#PCR) in percentage (%).

Tool Buffer overflow Null dereference Total
#TPR (%) #PCR (%) #TPR (%) #PCR (%) #TPR (%) #PCR (%)

Infer 19.23 70.57 53.17 50.19 20.20 68.48
Cppcheck 2.72 100.00 42.86 85.71 3.87 95.00
KLEE 67.78 98.81 91.27 93.12 68.45 98.58
IKOS 49.76 45.83 92.86 92.86 50.99 47.07
Sparrow 44.64 32.49 90.48 52.78 45.95 33.21
CSA-CP 73.84 42.62 100.00 42.64 74.58 42.65
CSA 73.84 84.11 100.00 100.00 74.58 84.63

BugNum 8589 252 8841

1 int buf[5] = {0};
2 ...
3 buf[idx] = 5; // idx: [0, 2]
4 ...
5 int dest[5] = {0};
6 int c = dest[buf[4]];

(a) Handling arrays.

1 char buf[10];
2 *pa = 5; // pa -> o1
3 ...
4 *pb = 10; // pb -> o2
5 ...
6 send(buf[*pc]); // pc -> o1

(b) Handling pointers.

1 int idx;
2 fscanf(stdin, "%d", &idx);
3 int buf[10] = { 0 };
4 if (idx >= 0) {
5 buf[idx] = 1;
6 }

(c) Handling library functions.

1 int data;
2 char buf[len] = "";
3 if (fgets(buf, len, stdin))
4 {
5 data = atoi(buf);
6 }

(d) Handling library functions.

Figure 7: Examples extracted from NIST dataset.

5.2 Research Questions

Our evaluation aims to answer the following research questions:

RQ1 Is CSA effective in detecting existing bugs?We aim to
investigate whether CSA can achieve a better performance
than the state-of-the-art on detecting existing bugs.

RQ2 CanCSA find bugs with a low false positive rate in real-

world projects?We would like to examine the effectiveness
and efficiency of CSA using real-world popular applications.

RQ3 What is the influence of different components in our

framework? We aim to understand RQ3.1: the precision
improvement of cross-domain refinement; and RQ3.2: effi-
ciency improvement in terms of time and memory using
equivalent correlation tracking.

5.3 NIST Benchmark (RQ1)

Table 3 shows the results of the true and false positives of CSA and
our five baseline detectors on detecting buffer overflows [28–30]
and null dereferences [31] from the pre-labeled NIST benchmark.
The last row of the table displays the number of labeled bug ground
truth for each category.

Comparison results. Overall, CSA outperforms the static tools
Infer, IKOS and Sparrow with an average 35.04% higher precision
and a 35.53% higher true positive rate. Cppcheck has a higher
precision than CSA but detects only 3.87% of bugs, while CSA finds
over 19 times more bugs (74.58%). KLEE, a dynamic tool, generates
few false alarms, but CSA detects more bugs than KLEE.

1 char data[100];
2 memset(data, 'A', 50-1);
3 data[50-1] = '\0';
4 len = strlen(data);
5 char dest[50] = "";
6 for (i = 0; i < len; i++)
7 dest[i] = data[i];

(a) Memory operation functions.

1 int arr[8];
2 ...
3 int s = input();
4 int idx = 0
5 if(s == 5) idx = idx + 5;
6 if(s == 3) idx = idx + 3;
7 arr[idx] = 1;

(b) Branch correlations.

Figure 8: False positives reported by CSA.

Result analysis. We demonstrate several code scenarios in Fig-
ure 7 to explain the better performance of CSA. The primary reason
is that CSA conducts pointer and interval analyses collaboratively.
Figure 7(a) shows an example, similar to the one in Figure 1. The
array access at ℓ6 is safe because the offset buf[4] does not exceed
the size of the array dest. CSA can precisely determine the interval
value of buf[4] as the initial value [0, 0] stored at ℓ1, not affected
by the value [5, 5] stored at ℓ3. This is because CSA removes the

spurious data dependence ℓ3
&buf[4]
↩−−−→ ℓ6, preventing [5, 5] at ℓ3 from

propagating to ℓ6. Our baselines report a false alarm here, indi-
cating that buf[4] is of value [0, 5] because of the inaccuracy of
the pre-pointer analysis of the array. Figure 7(b) presents another
example where the constant 5 is stored in the location pointed by
pa at ℓ2, and the constant 10 is stored in pb at ℓ4. At ℓ6, the array
buf of size 10 is accessed using the dereferenced value of pc. CSA
can precisely distinguish that only pc and pa are aliased (both point
to 𝑜1). Therefore, the dereferenced value of pc is [5, 5]. However,
the offline pointer analysis used in our baselines considers pc to be
aliased with both pa and pb. As a result, the dereferenced value of
pc is [5, 10], leading to a false positive at ℓ6.

Moreover, CSA can handle the side effects of standard library
functions (e.g., fscanf, fgets, snprintf) precisely. For example, in
Figure 7(c), the variable idx is used as an offset to write to the fixed-
length array buf at ℓ5. However, the value of idx is specified by the
external I/O function fscanf at ℓ2, causing a potential buffer over-
flow vulnerability. To address this issue, CSA stores an unbounded
value in idx, indicating that idx can represent any integers. This
helps CSA report the buffer overflow warning at ℓ5 because the
value of idx can be larger than that of buf. In comparison, all our
baselines except KLEE overlook this vulnerability. Another exam-
ple is shown in Figure 7(d), where the size of the array buf at ℓ2
is determined by the variable len. At ℓ3, the program calls fgets
to fill buf with user inputs, and the second parameter of fgets
specifies the maximum input size. CSA can prove the safe usage of
the fgets function because the size of the inputs is bounded by the
array size len. However, all our baseline detectors report a false
alarm here in fgets function calls.

False positives of CSA. We further inspect the false positives re-
ported by CSA and identified two reasons behind them, as shown
in examples in Figure 8. Firstly, CSA trades precision for efficiency
when handling some string-related built-in functions, such as string
length calculation function strlen in Figure 8(a). Instead of iter-
ating through each field to locate the ‘\0’ stored in data[50 − 1]
at ℓ3, CSA returns the allocated memory size of data, which is
100. As a result, the value of len is over-approximated, causing a
false positive at ℓ7. This limitation can be overcome by developing
efficient string analysis with better approximations. False positives

Precise Sparse Abstract Execution via Cross-Domain Interaction ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 4: Comparing CSA with five open-source tools and CSA-CP using ten popular applications. #TP and #FP are true positive

and false positive, respectively. Time (secs), Mem (MB) are running time andmemory costs. The − in the Time columns indicates

a running time of more than 4h. The − in the Mem columns indicates a cost of more than 100 Gigabytes.

Project
Infer Cppcheck IKOS KLEE Sparrow CSA-CP CSA

Report Time Mem Report Time Mem Report Time Mem Report Time Mem Report Time Mem Report Time Mem Report Time Mem
#TP #FP (secs) (MB) #TP #FP (secs) (MB) #TP #FP (secs) (MB) #TP #FP (secs) (MB) #TP #FP (secs) (MB) #TP #FP (secs) (MB) #TP #FP (secs) (MB)

paste 1 15 7 61 0 17 1 9 3 21 512 1126 4 0 2911 1711 4 35 3 51 3 19 5 92 3 0 9 106
md5sum 2 21 8 80 0 18 1 11 2 35 986 1684 3 0 2824 1642 2 22 2 48 4 26 15 121 4 1 8 110
YAJL 0 17 9 110 0 14 1 12 1 1625 2895 4822 4 16 14400 17333 3 86 6 59 3 35 7 172 3 0 5 102
MP4v2 1 28 313 335 1 26 38 38 1 956 3684 6215 2 3 14400 21358 1 236 214 231 1 25 58 269 1 0 13 384
RIOT 3 29 111 155 2 19 2 22 2 1325 5216 8622 5 2 14400 23654 2 651 315 421 8 38 102 366 8 6 27 346
darknet 25 134 837 282 16 214 10 55 14 1265 9531 23954 25 8 14400 40015 10 842 826 984 21 199 3483 1982 21 10 3507 1875
tmux 5 142 522 909 3 156 30 39 4 1632 11325 38366 2 1 14400 70826 3 1256 1036 1894 12 360 1182 6343 12 10 824 5052
Teeworlds 10 169 684 934 4 187 2 54 2 529 13569 40368 2 1 14400 71865 10 1512 1593 2984 15 244 2754 3485 15 8 2886 2598
NanoMQ 23 154 654 305 10 147 94 38 − − − − 5 2 14400 91465 6 1241 1642 3125 30 292 1801 7063 30 8 1143 6551
redis 6 137 1292 10484 8 136 516 123 − − − − 3 2 14400 101475 5 1152 2654 9211 14 275 8629 4421 14 8 6553 3870
Total 76 846 4437 13655 44 934 695 401 29 7388 47718 125157 55 35 120935 441344 46 7033 8291 19008 111 1513 18036 24314 111 51 14975 20994

1 void process_msg() {
2 PNode *hd = get_node_arr();
3 PNode *n1 = hd + inc1;
4 recv(n1->len, ...);
5 ...
6 PNode *n2 = n1 + step;
7 enquiry_msg_queue(n2);
8 }
9 void enquiry_msg_queue(PNode *n) {
10 memcpy(sh->buf, ptr, n->len);
11 ...
12 }

(a) A safe buffer access in NanoMQ.

1 void CSound::RateConvert(int SampleID) {
2 CSample *pSample = &m_aSamples[SampleID];
3 ...
4 int NumFrames = ...;
5 short *pNewData = (short *) mem_alloc(...);
6 ...
7 for(int i = 0; i < NumFrames; i++)
8 ...
9 if(pSample->m_Channels == 1)
10 pNewData[i] = pSample->m_pData[f];
11 ...
12 }

(b) A null dereference bug in Teeworlds.

1 void valid_captcha(..., char *f) {
2 char **labels = get_labels(f);
3 network *net = load_network(...);
4 list *plist = get_paths(...);
5 ...
6 for(int i = 0; I< plist->size; ++i)
7 ...
8 for(int j = 0; j < 13; ++j)
9 ...
10 if(strstr(...,labels[j]))
11 ...
12 }

(c) A buffer overflow bug in darknet.

Figure 9: A false positive scenario eliminated by CSA and two bugs found by CSA in real-world projects.

also occur due to untracked branch correlations as CSA’s analysis
is path-insensitive over a non-relational domain. In Figure 8(b),
the branch conditions at ℓ5 and ℓ6 contradict each other. However,
CSA’s interval analysis fails to distinguish between the conflicting
conditions. As a result, the additions at ℓ5 and ℓ6 are executed, caus-
ing idx to accumulate to 8, surpassing the array’s size. Introducing
relational domains in the abstract states can eliminate this type of
false positive.

5.4 Bugs in Real-World Projects (RQ2)

Table 4 presents the experimental results for true positives, false
positives, running time, and memory costs of CSA compared to the
five existing tools (Infer, Cppcheck, IKOS, KLEE and Sparrow)
on real-world popular applications. Overall, CSA and the other five
tools have reported 3673 bugs. We successfully identified 281 real
bugs after a rigorous manual examination of its bug report. Out of
these bugs, 62 have been fixed by the developers.

Comparison results and analysis. CSA achieved the best result
by correctly identifying 111 real bugs with the highest precision
of 68.51%. In comparison, the baseline detectors missed more than
82.21% of the real bugs. For example, CSA detects 46.05% more bugs
than Infer. Additionally, on average, the baseline detectors (Infer,
Cppcheck, IKOS and Sparrow) exhibit a precision rate of only
14.98%, less than one-fourth of the precision rate of CSA. CSA even
achieves 12.11% more precision rate than KLEE.

CSA detects more bugs because it effectively handles hard code
features, such as interprocedural analysis, loop handling, and accu-
rate external API modeling. This gives it an edge over other tools

in uncovering more bugs. The key factor behind CSA’s lower false
positive rate lies in the precision improvement achieved through
cross-domain refinement (Section 5.5.1). In terms of efficiency, IKOS
demands high computational resources and fails to finish the analy-
sis within a four-hour limit when analyzing NanoMQ and redis. The
reason lies in its non-sparse solution, as it maintains and accumu-
lates abstract states throughout the control flow graph. Although
KLEE records fewer false alarms, it discovers fewer bugs and incurs
much higher computational overhead as it analyzes all possible
paths through a program symbolically with constraint solving. In
contrast, CSA statically approximates all possible runtime states, re-
sulting in a much better analysis coverage. CSA may require more
time for code analysis than Infer, Sparrow and Cppcheck but
discovers numerous real bugs with a significantly higher precision.
As a result, we believe CSA lies at the sweet spot between scala-
bility and precision, considering the benefits of its bug detection
outweigh the time overhead it incurs during analysis compared to
Infer, Sparrow and Cppcheck.

Case study. Figure 9 presents three real-world code snippets to
illustrate the effectiveness of CSA in finding bugs in diverse soft-
ware projects. We only show the essential parts relevant to the
vulnerability for illustration purposes. In Figure 9(a), we examine
a code segment extracted from the NanoMQ project, wherein CSA
successfully eliminates a false buffer overflow alarm. At ℓ10, the
function enquiry_msg_queue invokes the library function memcpy
to copy n->len bytes of data from ptr to sh->buf. The variable
n->len does not exceed the length of sh->buf and ptr; therefore,
no buffer overflows occur at ℓ10. However, Infer, Cppcheck and

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Xiao Cheng

Table 5: Comparison between CSA and CSA-NI (a version of

CSA without implication-equivalent memory addresses).

Project CSA-NI CSA

Time (secs) Mem (MB) Time (secs) Mem (MB)

tmux 1540 (1.87×) 21016 (4.16×) 824 5052
Teeworlds 6176 (2.14×) 14237 (5.48×) 2886 2598
NanoMQ 3292 (2.88×) 48805 (7.45×) 1143 6551
redis 21232 (3.24×) 32314 (8.35×) 6553 3870
Geo. Mean (2.47×) (6.14×)

Sparrow report a false alarm here because they treat n2 aliased
with n1, wherein n1->len holds an unbounded value at label ℓ4.
The imprecise alias relation between n1 and n2 is due to the ex-
ternal pointer analysis’s inability to determine the values of the
offset variable inc1 at ℓ3 and step at ℓ6, making n1 and n2 both
conservatively point to all possible objects. Figure 9(b) shows a
null dereference found by CSA in Teeworlds, which is missed by
Cppcheck. The pointer pNewData at ℓ5 could be null and is derefer-
enced at ℓ10. There are no null pointer checkings for ℓ10. Figure 9(c)
presents a buffer overflow bug found by CSA in darknet while
KLEE fails to find this bug. The buffer label is initialized at ℓ2
using a file reading function get_labels. The buffer size is an
unbounded value depending on the input file f. At ℓ10, the buffer
label is accessed using the variable j, whose value ranges from [0,
12] indicated by the loop guard at ℓ8. However, the buffer size can
be less than 12, which may cause a buffer overflow.

5.5 Ablation Analysis (RQ3)

5.5.1 Precision Improvement of Cross-Domain Refinement (RQ3.1).
For the baseline sparse analysis that performs pointer analysis
and interval analysis without cross-domain refinement, we employ
sparse value-flow representation in SVF [60] and implement the
analysis over combined memory address and interval domains
using the Cartesian product (Section 2.1). In our evaluation, we use
CSA-CP to refer to this baseline sparse analysis. When comparing
with CSA-CP on the NIST dataset, as shown in Table 3, both tools
have the same true positive rate (74.58%). However, CSA-CP records
82.32% more false positives due to its less precise external pointer
analysis and lack of domain refinement. For the real-world projects,
as shown in Table 4, although CSA-CP also found 111 real bugs
given the over-approximation of its pointer analysis, it reported
a much higher number of false positives (1513) when compared
to CSA (51) due to the overly conservative points-to results of
CSA-CP’s isolated pointer analysis.

5.5.2 Efficiency Improvement of Equivalent Correlation Tracking
(RQ3.2). Table 5 shows the comparison results between CSA and
CSA without implication-equivalent memory address (CSA-NI) on
four open-source projects (tmux, Teeworlds, NanoMQ, and redis).
The true and false positives of CSA and CSA-NI are identical,
suggesting that the implication-equivalent approach is precision-
preserving for detecting bugs. On average, equivalent correlation
tracking results in a speedup of approximately 2.47×, with up to
3.24× on the redis project. CSA-NI also uses an average of around
6.14× more memory than CSA, with a maximum of 8.35× on the
redis project. These results demonstrate the improvement brought

N
um

be
r

N
um

be
r

Mem-set size Mem-set size

tmux Teeworlds

NanoMQ redis

500

500

0

0

0

0

1000

1000 1500 500 1000250 750

2000 4000

101

101 101

103

103

103

105

102

Figure 10: Distribution of mem-set sizes.

by our implication-equivalent memory address sets regarding anal-
ysis time and memory usage.

We aim to investigate further the grouping of memory address
sets to better understand the benefits of implication-equivalent
memory address sets. Therefore, we explore the distribution of
mem-set (memory address set) sizes collected in the abstract states.
Figure 10 illustrates the distribution statistics, revealing that numer-
ous pointers can point to a large number of objects. Consider the
example of redis, where the average size of its memory address
sets is 799.22, with the largest set containing 4955 elements. This
indicates that a considerable number of objects can be grouped
and analyzed together. The implication-equivalent approach elimi-
nates the redundant value join and copy of the memory addresses
in the same group. Furthermore, the analysis reveals an interest-
ing observation that the speedup and memory savings brought
by implication-equivalent memory address sets are positively cor-
related with the size of the memory address sets. To illustrate,
redis shows the most significant performance improvement, with
a speedup of 3.24×, compared to merely 1.87× for tmux. Addition-
ally, redis demonstrates a memory saving of 8.35×, compared to
only 4.16× for tmux. These results align with the mem-set size sta-
tistics: redis has an average mem-set size of 799.22, while tmux
has only 163.71 on average.

6 RELATEDWORK

Our discussion focuses on the aspects of the work that are closely
related to CSA, specifically, the utilization of abstract execution,
combined abstract domain and sparse static analysis.

Abstract Execution. Abstract execution or interpretation [22, 25]
statically reasons about program runtime states. A wide range of
static analysis approaches is built upon abstract interpretation, e.g.,
constant propagation [16, 33], booleans [61, 62], intervals [16, 23, 50,
51], dual numbers [40] and relational domains [16, 56, 57, 64, 67, 69],
to ensure over-approximation and analysis termination. These ap-
proaches conduct pointer analysis and abstract execution indepen-
dently and assume that all elements of an array were regarded as
the alias of each other (array-insensitive) [56, 57, 61]. Loops and
recursive data structures/calls are unrolled a fixed number of times,
which may under-approximate the runtime behavior of the pro-
gram, while we use WTO [15] and widening to over-approximate
the abstract states within program loops. Weiss et al. [66] propose
a database-backed analysis based on graph algorithms, which is
orthogonal to our approach.

Precise Sparse Abstract Execution via Cross-Domain Interaction ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Combined Abstract Domain. A variety of abstract domains have
been developed over these years, e.g., Powerset domains [11], Inter-
val [22], Polyhedral [26], Octagon [44, 58], which can be combined
to fit specific analyses. For example, ASTRÉE [23] uses combined
domains to improve analysis precision while guaranteeing sound-
ness. A straightforward combination is a Cartesian product [9, 43],
where the combined concretization may not be injective. A generic
refinement method is a lower closure operator [35] on the lattices of
multiple abstract domains to refine the abstract values, e.g., reduced
product [21, 24], which aims to obtain a more precise abstraction
concerning the Cartesian product’s abstract values without sacri-
ficing the abstraction’s soundness. Another refinement method is
the reduced cardinal power [22] which takes into account relations
between different domains. Like the reduced product, its primary
objective is to refine the value in the lattice of the Cartesian product
domain [21], while CSA is the first to introduce reduced cardinal
power in sparse abstract execution for efficient correlation tracking
between the memory address and interval domains.

Sparse Static Analysis. Sparse program analysis prevents the
expensive data-flow propagation across the control flow graph.
It greatly relies on the construction of data dependencies. Static
single assignment [32] explicitly captures the def-use chains and
provides an effective representation for the data dependence analy-
sis, thereby facilitating sparse program analysis. Sparse program
analysis can provide speedup for a wide range of applications, such
as constant propagation [53, 65], pointer analysis [14, 37, 63, 68],
bug detection [20, 57, 61, 62] and code embedding [18, 19, 59]. Mad-
sen andMøller [42] proposed a special sparse analysis for JavaScript
programs. Oh et al. [47, 48] are the first to propose sparse abstract
interpretation. However, the above sparse analyses are all based on
a pre-pointer analysis over individual domains, while our analysis
is more precise with cross-domain interactions.

7 CONCLUSION

This paper introduces CSA a new sparse abstract execution ap-
proach that works on multiple abstract domains through corre-
lation tracking. CSA performs online refinement during sparse
analysis and achieves more precise analysis results than the tradi-
tional sparse analysis that handles each domain separately. CSA
outperforms five open-source tools on the NIST benchmark set and
ten open-source projects in two assertion-based checking client
applications, buffer overflow and null dereference detection. In the
real-world projects, CSA identified 111 bugs with a precision rate of
68.51%, surpassing Infer by detecting 46.05% more bugs and outper-
forming KLEE with a 12.11% higher precision rate. When compared
to the version lacking cross-domain interaction,CSA decreases false
positives by 82.32% on NIST dataset and by 96.63% on real-world
projects. Additionally, CSA exhibited an average speedup of 2.47×
and reduced memory usage by 6.14× when utilizing equivalent
correlation tracking.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their reviews and sugges-
tions. This research is supported by Australian Research Grants
DP210101348 and FT220100391, and by a generous Aspire Gift Grant
from Google.

REFERENCES

[1] 2023. Darknet - Open Source Neural Networks in C. https://github.com/pjreddie/
darknet

[2] 2023. MP4v2 - A C/C++ library to create, modify and read MP4 files. https:
//github.com/enzo1982/mp4v2/

[3] 2023. NanoMQ - An ultra-lightweight and blazing-fast MQTT broker for IoT
edge. https://github.com/emqx/nanomq

[4] 2023. Redis - The open source, in-memory data store used by millions of de-
velopers as a database, cache, streaming engine, and message broker. https:
//github.com/redis/redis/

[5] 2023. RIOT - The friendly OS for IoT. https://github.com/RIOT-OS/RIOT
[6] 2023. Teeworlds - A retro multiplayer shooter. https://teeworlds.com/
[7] 2023. Tmux - tmux source code. https://github.com/tmux/tmux
[8] 2023. YAJL - A fast streaming JSON parsing library in C. https://github.com/

lloyd/yajl
[9] Roberto Amadini, GraemeGange, Peter Schachte, Harald Søndergaard, and Peter J

Stuckey. 2020. Abstract interpretation, symbolic execution and constraints. In
Recent Developments in the Design and Implementation of Programming Languages.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[10] Lars Ole Andersen. 1994. Program analysis and specialization for the C program-
ming language. PhD Thesis, DIKU, University of Copenhagen (1994).

[11] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. 2006. Widening operators
for powerset domains. International Journal on Software Tools for Technology
Transfer 8, 4 (01 Aug 2006), 449–466.

[12] George Balatsouras and Yannis Smaragdakis. 2016. Structure-Sensitive Points-To
Analysis for C and C++. In SAS ’16.

[13] Mohamad Barbar and Yulei Sui. 2021. Hash Consed Points-To Sets. In Static
Analysis: 28th International Symposium, SAS 2021, Chicago, IL, USA, October 17–19,
2021, Proceedings (Chicago, IL, USA). Springer-Verlag, Berlin, Heidelberg, 25–48.

[14] Mohamad Barbar, Yulei Sui, and Shiping Chen. 2021. Object Versioning for Flow-
Sensitive Pointer Analysis. In 2021 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO ’21). IEEE Computer Society, USA, 222–235.

[15] François Bourdoncle. 1993. Efficient chaotic iteration strategies with widenings.
In Formal Methods in Programming and Their Applications, Dines Bjørner, Manfred
Broy, and Igor V. Pottosin (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
128–141.

[16] Guillaume Brat, Jorge A. Navas, Nija Shi, and Arnaud Venet. 2014. IKOS: A
Framework for Static Analysis Based on Abstract Interpretation. In Software
Engineering and Formal Methods, Dimitra Giannakopoulou and Gwen Salaün
(Eds.). Springer International Publishing, Cham, 271–277.

[17] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI’08). USENIX Association, 209–224.

[18] Xiao Cheng, HaoyuWang, Jiayi Hua, Guoai Xu, and Yulei Sui. 2021. DeepWukong:
Statically Detecting Software Vulnerabilities Using Deep Graph Neural Network.
ACM Trans. Softw. Eng. Methodol. 30, 3, Article 38 (2021), 33 pages.

[19] Xiao Cheng, Guanqin Zhang, Haoyu Wang, and Yulei Sui. 2022. Path-Sensitive
Code Embedding via Contrastive Learning for Software Vulnerability Detection.
In Proceedings of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA ’22). ACM.

[20] Sigmund Cherem, Lonnie Princehouse, and Radu Rugina. 2007. Practical Memory
Leak Detection Using Guarded Value-Flow Analysis. In Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’07). Association for Computing Machinery.

[21] Agostino Cortesi, Giulia Costantini, and Pietro Ferrara. 2013. A survey on product
operators in abstract interpretation. arXiv preprint arXiv:1309.5146 (2013).

[22] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints (POPL ’77). Association for Computing Machinery, New York, NY,
USA, 238–252.

[23] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux, and Xavier Rival. 2007. Combination of Abstractions in the
ASTRÉE Static Analyzer. In Advances in Computer Science - ASIAN 2006. Secure
Software and Related Issues, Mitsu Okada and Ichiro Satoh (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 272–300.

[24] Patrick Cousot, Radhia Cousot, and Laurent Mauborgne. 2011. The Reduced
Product of Abstract Domains and the Combination of Decision Procedures. In
Foundations of Software Science and Computational Structures, Martin Hofmann
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 456–472.

[25] Patrick Cousot, Roberto Giacobazzi, and Francesco Ranzato. 2019. A2I: Abstract2
Interpretation. Proc. ACM Program. Lang. 3, POPL, Article 42 (jan 2019), 31 pages.

[26] Patrick Cousot and Nicolas Halbwachs. 1978. Automatic Discovery of Linear
Restraints among Variables of a Program. In Proceedings of the 5th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (Tucson, Arizona)
(POPL ’78). Association for Computing Machinery, New York, NY, USA, 84–96.

https://github.com/pjreddie/darknet
https://github.com/pjreddie/darknet
https://github.com/enzo1982/mp4v2/
https://github.com/enzo1982/mp4v2/
https://github.com/emqx/nanomq
https://github.com/redis/redis/
https://github.com/redis/redis/
https://github.com/RIOT-OS/RIOT
https://teeworlds.com/
https://github.com/tmux/tmux
https://github.com/lloyd/yajl
https://github.com/lloyd/yajl

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Xiao Cheng

[27] Cppcheck. 2021. Cppcheck: A tool for static C/C++ code analysis. http:
//cppcheck.sourceforge.net/.

[28] CWE-121 2023. CWE-121: Stack-based Buffer Overflow. https://cwe.mitre.org/
data/definitions/121.html.

[29] CWE-122 2023. CWE-122: Heap-based Buffer Overflow. https://cwe.mitre.org/
data/definitions/122.html.

[30] CWE-126 2023. CWE-126: Buffer Over-read. https://cwe.mitre.org/data/
definitions/126.html.

[31] CWE-476 2023. CWE-476: NULL Pointer Dereference. https://cwe.mitre.org/
data/definitions/476.html.

[32] R. Cytron, J. Ferrante, B.K. Rosen,M.N.Wegman, and F.K. Zadeck. 1991. Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems 13, 4 (1991), 451–490.

[33] Manuvir Das, Sorin Lerner, and Mark Seigle. 2002. ESP: Path-Sensitive Program
Verification in Polynomial Time (PLDI ’02). Association for ComputingMachinery,
New York, NY, USA, 57–68.

[34] Jean-Christophe Filliâtre and Sylvain Conchon. 2006. Type-Safe Modular Hash-
Consing. In Proceedings of the 2006 Workshop on ML (Portland, Oregon, USA) (ML
’06). Association for Computing Machinery, New York, NY, USA, 12–19.

[35] Roberto Giacobazzi and Francesco Ranzato. 1997. Refining and compressing
abstract domains. In Automata, Languages and Programming, Pierpaolo Degano,
Roberto Gorrieri, and Alberto Marchetti-Spaccamela (Eds.). Springer Berlin Hei-
delberg, Berlin, Heidelberg, 771–781.

[36] Jean Goubault. 1994. Implementing functional languages with fast equality, sets
and maps: an exercise in hash consing. Journées Francophones des Langages
Applicatifs (JFLA’93) (1994), 222–238.

[37] B. Hardekopf and C. Lin. 2011. Flow-sensitive pointer analysis for millions of
lines of code. CGO ’11 (2011), 289–298.

[38] Infer. 2021. Facebook Infer: a tool to detect bugs in Java and C/C++/Objective-C
code. https://fbinfer.com/.

[39] C. Lattner and V. Adve. 2004. LLVM: a compilation framework for lifelong pro-
gram analysis & transformation. In International Symposium on Code Generation
and Optimization, 2004. CGO 2004. 75–86.

[40] Jacob Laurel, Rem Yang, Gagandeep Singh, and Sasa Misailovic. 2022. A Dual
Number Abstraction for Static Analysis of Clarke Jacobians. Proc. ACM Program.
Lang. 6, POPL, Article 56 (jan 2022), 30 pages.

[41] Ondrej Lhoták and Kwok-Chiang Andrew Chung. 2011. Points-to Analysis with
Efficient Strong Updates. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL
’11). Association for Computing Machinery, New York, NY, USA, 3–16.

[42] MagnusMadsen and AndersMøller. 2014. Sparse DataflowAnalysis with Pointers
and Reachability. In Static Analysis, Markus Müller-Olm and Helmut Seidl (Eds.).
Springer International Publishing, Cham, 201–218.

[43] Laurent Mauborgne and Xavier Rival. 2005. Trace Partitioning in Abstract
Interpretation Based Static Analyzers. In Programming Languages and Systems,
Mooly Sagiv (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 5–20.

[44] Antoine Miné. 2006. The octagon abstract domain. Higher-Order and Symbolic
Computation 19, 1 (01 Mar 2006), 31–100.

[45] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[46] NIST 2023. NIST datasets. https://samate.nist.gov/SARD/test-suites/116.
[47] Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, Daejun Park, Jeehoon

Kang, and Kwangkeun Yi. 2014. Global Sparse Analysis Framework. ACM Trans.
Program. Lang. Syst. 36, 3, Article 8 (sep 2014), 44 pages.

[48] Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, and Kwangkeun Yi. 2012.
Design and Implementation of Sparse Global Analyses for C-like Languages.
In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation (Beijing, China) (PLDI ’12). Association for Computing
Machinery, New York, NY, USA, 229–238.

[49] Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, and Kwangkeun Yi. 2012.
The Sparrow static analyzer. https://opam.ocaml.org/packages/sparrow/.

[50] Komal Pathade and Uday P. Khedker. 2018. Computing Partially Path-Sensitive
MFP Solutions in Data Flow Analyses. In Proceedings of the 27th International
Conference on Compiler Construction (Vienna, Austria) (CC 2018). Association for
Computing Machinery, New York, NY, USA, 37–47.

[51] Komal Pathade and Uday P. Khedker. 2019. Path Sensitive MFP Solutions in
Presence of Intersecting Infeasible Control Flow Path Segments. In Proceedings
of the 28th International Conference on Compiler Construction (Washington, DC,
USA) (CC 2019). Association for Computing Machinery, New York, NY, USA,
159–169.

[52] D.J. Pearce, P.H.J. Kelly, and C. Hankin. 2007. Efficient field-sensitive pointer
analysis of C. ACM TOPLAS 30, 1 (2007), 4–es.

[53] John H. Reif and Harry R. Lewis. 1977. Symbolic Evaluation and the Global Value
Graph. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages (Los Angeles, California) (POPL ’77). Association for
Computing Machinery, New York, NY, USA, 104–118.

[54] P. Cousot. 2005. Abstract interpretation. (Feb.–May 2005). MIT course 16.399,
http://web.mit.edu/16.399/www/.

[55] Philipp Dominik Schubert, Ben Hermann, and Eric Bodden. 2019. PhASAR: An
Inter-procedural Static Analysis Framework for C/C++. In Tools and Algorithms
for the Construction and Analysis of Systems, Tomáš Vojnar and Lijun Zhang (Eds.).
Springer International Publishing, Cham, 393–410.

[56] Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and Charles Zhang.
2018. Pinpoint: Fast and Precise Sparse Value Flow Analysis for Million Lines of
Code. SIGPLAN Not. 53, 4 (jun 2018), 693–706.

[57] Qingkai Shi, Peisen Yao, Rongxin Wu, and Charles Zhang. 2021. Path-Sensitive
Sparse Analysis without Path Conditions. In Proceedings of the 42nd ACM SIG-
PLAN International Conference on Programming Language Design and Implemen-
tation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New
York, NY, USA, 930–943.

[58] Gagandeep Singh, Markus Püschel, and Martin Vechev. 2015. Making Numerical
Program Analysis Fast. SIGPLAN Not. 50, 6 (jun 2015), 303–313.

[59] Yulei Sui, Xiao Cheng, Guanqin Zhang, and Haoyu Wang. 2020. Flow2Vec: Value-
Flow-Based Precise Code Embedding. Proc. ACM Program. Lang. 4, OOPSLA,
Article 233 (Nov. 2020), 27 pages.

[60] Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural Static Value-Flow Anal-
ysis in LLVM. In Proceedings of the 25th International Conference on Compiler
Construction (Barcelona, Spain) (CC). ACM, New York, NY, USA, 265–266.

[61] Yulei Sui, Ding Ye, and Jingling Xue. 2012. Static memory leak detection using
full-sparse value-flow analysis. In Proceedings of the 2012 International Symposium
on Software Testing and Analysis (ISSTA ’12). ACM, 254–264.

[62] Yulei Sui, Ding Ye, and Jingling Xue. 2014. Detecting Memory Leaks Statically
with Full-Sparse Value-Flow Analysis. IEEE Trans. Software Eng (TSE ’14). 40, 2
(2014), 107–122.

[63] Yulei Sui, Sen Ye, Jingling Xue, and Pen-Chung Yew. 2011. SPAS: Scalable Path-
Sensitive Pointer Analysis on Full-Sparse SSA. Programming Languages and
Systems (APLAS ’11) (2011), 155–171.

[64] Oskar Haarklou Veileborg, Georgian-Vlad Saioc, and Anders Møller. 2023. De-
tecting Blocking Errors in Go Programs Using Localized Abstract Interpretation.
In Proceedings of the 37th IEEE/ACM International Conference on Automated Soft-
ware Engineering (Rochester, MI, USA) (ASE ’22). Association for Computing
Machinery, New York, NY, USA, Article 32, 12 pages.

[65] Mark N. Wegman and F. Kenneth Zadeck. 1991. Constant Propagation with
Conditional Branches. ACM Trans. Program. Lang. Syst. 13, 2 (apr 1991), 181–210.

[66] Cathrin Weiss, Cindy Rubio-González, and Ben Liblit. 2015. Database-Backed
Program Analysis for Scalable Error Propagation. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, Vol. 1. 586–597.

[67] Peisen Yao, Qingkai Shi, Heqing Huang, and Charles Zhang. 2021. Program
Analysis via Efficient Symbolic Abstraction. Proc. ACMProgram. Lang. 5, OOPSLA,
Article 118 (oct 2021), 32 pages.

[68] Hongtao Yu, Jingling Xue, Wei Huo, Xiaobing Feng, and Zhaoqing Zhang. 2010.
Level by Level: Making Flow- and Context-Sensitive Pointer Analysis Scalable for
Millions of Lines of Code. In Proceedings of the 8th Annual IEEE/ACM International
Symposium on Code Generation and Optimization (Toronto, Ontario, Canada)
(CGO ’10). Association for Computing Machinery, New York, NY, USA, 218–229.

[69] Zhiqiang Zuo, John Thorpe, Yifei Wang, Qiuhong Pan, Shenming Lu, Kai Wang,
Guoqing Harry Xu, Linzhang Wang, and Xuandong Li. 2019. Grapple: A Graph
System for Static Finite-State Property Checking of Large-Scale Systems Code.
In Proceedings of the Fourteenth EuroSys Conference 2019 (Dresden, Germany)
(EuroSys ’19). Association for Computing Machinery, New York, NY, USA, Article
38, 17 pages.

http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/476.html
https://fbinfer.com/
https://samate.nist.gov/SARD/test-suites/116
https://opam.ocaml.org/packages/sparrow/
http://web.mit.edu/16.399/www/

	Abstract
	1 Introduction
	2 Background
	2.1 Combined Abstract Domains
	2.2 Language
	2.3 Abstract State and Abstract Execution
	2.4 Sparse Abstract Execution

	3 Motivating Example
	4 Approach
	4.1 Correlation Tracking Across Domains
	4.2 Equivalent Correlation Tracking

	5 Evaluation
	5.1 Datasets and Implementation
	5.2 Research Questions
	5.3 NIST Benchmark (RQ1)
	5.4 Bugs in Real-World Projects (RQ2)
	5.5 Ablation Analysis (RQ3)

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

