
Mach-O Internals

William Woodru�

February 10, 2016

1 / 31

General Agenda

1. Who are you?

2. What is Mach-O?

3. An Extremely Brief History of Mach and Mach-O

4. Structure of a Mach-O File

5. Quirks Encountered

6. Concluding Notes

2 / 31

Who are you?

My name is William Woodru�.

I'm a Computer Science major and Philosophy minor at the
University of Maryland, College Park.

Outside of school, I'm a member of the Homebrew project and a
regular contributor to several open source groups. My work for
Homebrew is largely concerned with the underlying system
interface and reconciling OS X's intricacies/irregularities with
the package manager.

3 / 31

What is Mach-O?
Mach-O is the Mach Object binary format.

Mach-O is used primarily by Apple in OS X and iOS.

�Apps� on both platforms are really just directory trees
containing Mach-O binaries and resources (fonts, icons,
con�gurations). Metadata is stored in a number of places, but
mainly within bundled plists (XML) and the binaries
themselves.

Like its cousins on Linux (ELF) and Windows (PE), Mach-O
supports multiple object types:

▶ Executable
▶ Core dump
▶ Shared library/object
▶ Prelinked object �le
▶ etc. . .

4 / 31

. . . and multiple architectures:

▶ m68k/m88k (yes, it's still supported!*)
▶ x86
▶ AMD64
▶ POWER
▶ ARMv6/7/8

Unlike ELF or PE, Mach-O has been extended to allow
multi-architecture �fat� binaries. This has resulted in some
interesting properties not shared by the other two. More on that
later.

* libmacho will parse Mach-O �les from several old
architectures, including m68k, m88k, and PA-RISC. Don't
expect to be able to execute them, however. . .

5 / 31

An Extremely Brief History of Mach and Mach-O

To understand why Mach-O was chosen as the binary format for
OS X, it's �rst necessary to know and understand the parties
involved:

▶ The Mach Project at Carnegie Mellon (1985 - 1994)
▶ NeXT Computer and the NeXTSTEP system (1987 - 1996)
▶ Finally, Apple and the Rhapsody project (1997 - Present)

6 / 31

The Mach Project (1985 - 1994)

The Mach project began in 1985 at Carnegie Mellon as an
experiment in microkernel design.

Mach-O was created to ease representation of Mach's new
microkernel primitives in compiled binaries.

CMU Mach development continued until 1994 (Mach 3), but
was ultimately considered a failure due to severe performance
penalties during IPC. GNU Mach picked up the goals of the
CMU Mach project with the intention of becoming the kernel
for the GNU Hurd project, but is still in development after over
20 years.

So how did Mach-O end up in OS X?

7 / 31

NeXT Computer and NeXTSTEP (1987 - 1996)

In 1987, NeXTSTEP was developed by NeXT for their
workstations (which were designed to compete with both Apple
and traditional UNIX workstations).

Besides being a UNIX itself, NeXTSTEP's kernel (XNU) was an
amalgam of Mach 2.5 and 4.3BSD. This achieved a compromise
between the performance of the monolithic BSD kernel and the
IPC/message-passing abilities of Mach.

As a result of XNU's lineage, Mach-O became the binary format
for NeXTSTEP. As NeXT expanded NeXTSTEP's hardware
support beyond m68k, Mach-O was augmented to allow
multiple binaries to exist within the same �le.

NeXT was acquired by Apple in 1997.

8 / 31

Apple and the Rhapsody project (1997 - Present)

For several years, internal teams at Apple had been working on
completely replacing the aging �System� OS family (then on
System 9). After NeXT was acquired, NeXTSTEP became the
basis for the Rhapsody project (which became the primary
replacement team).

The NeXTStep userland became known as Darwin, while the
XNU kernel was updated with components from Mach 3,
FreeBSD, and NetBSD. The Mach-O format was tweaked
accordingly, and support for PowerPC was brought in.

Rhapsody eventually became OS X, and the rest is history.

9 / 31

Structure of a thin Mach-O �le
A single-architecture Mach-O can be broken into 3 main
components:

▶ Header
▶ Magic
▶ CPU type and subtype
▶ Filetype (executable, dump, etc)
▶ Execution �ags (e.g.: disable heap execution)
▶ Number of load commands and size of load commands

▶ Load commands
▶ Metadata (UUID, API level)
▶ Shared object linkage locations (similar to LD_PRELOAD)
▶ O�sets to segments

▶ Segments
▶ Sections (up to 255 per segment)

▶ Symbol lookup tables
▶ TEXT, BSS, DATA

10 / 31

Figure : Mach-O layout (Source: OS X ABI Mach-O Reference)
11 / 31

Mach-O Header Structure

There are four possible (single-architecture) magic numbers:

▶ MH_MAGIC = 0xfeedface - 32-bit, big-endian
▶ MH_CIGAM = 0xcefaedfe - 32-bit, little-endian
▶ MH_MAGIC_64 = 0xfeedfacf - 64-bit, big-endian
▶ MH_CIGAM_64 = 0xcffaedfe - 64-bit, little-endian

The header's CPU type �eld speci�es general architecture
compatibility:

▶ CPU_TYPE_POWERPC - 32-bit PPC
▶ CPU_TYPE_POWERPC64 - 64-bit PPC
▶ CPU_TYPE_I386 - 80386 and above
▶ CPU_TYPE_X86_64 - AMD64

The CPU subtype �eld provides more speci�c capability
information.

12 / 31

mach_header_64

struct mach_header_64 {

uint32_t magic; /* mach magic number identifier */

cpu_type_t cputype; /* cpu specifier */

cpu_subtype_t cpusubtype; /* machine specifier */

uint32_t filetype; /* type of file */

uint32_t ncmds; /* number of load commands */

uint32_t sizeofcmds; /* size of all the load commands */

uint32_t flags; /* flags */

uint32_t reserved; /* reserved */

};

(Source: mach-o/loader.h)

13 / 31

http://www.opensource.apple.com/source/cctools/cctools-795/include/mach-o/loader.h

Figure : 32-bit Mach header

Relative o�sets:

▶ 0 - 3 - �le magic (0xCFFAEDFE = MH_CIGAM)
▶ 4 - 7 - CPU type (0x10000070 = CPU_TYPE_X86_64)
▶ 8 - 11 - CPU subtype (0x80000003 =

CPU_SUBTYPE_X86_ALL | CPU_SUBTYPE_LIB64)
▶ 12 - 15 - �letype (0x02 = MH_EXECUTE)
▶ 16 - 19 - number of load commands (0x10)
▶ 20 - 23 - size of load commands (0x520 bytes)
▶ 24 - 27 - execution �ags (0x85002000 = MH_PIE |

MH_TWOLEVEL | MH_DYLDLINK | MH_NOUNDEFS)

14 / 31

Load Commands

Load commands are variable-width binary blobs. They provide
executable metadata, linker instructions, and references to the
usual instructions/pages/memory regions that need to be loaded
before execution can begin

They can either be self-contained or reference external
structures, like segments and strings.

Each load command has an identifying number, like LC_SEGMENT
(0x01, segment information) or LC_SYMTAB (0x02, symbol table
information). There may be more than one of each load
command type, and load commands of the same type are not
(usually) contiguous within the binary.

15 / 31

Top-level Load Command Structure

struct load_command {

uint32_t cmd; /* type of load command */

uint32_t cmdsize; /* total size of command in bytes */

};

(Source: mach-o/loader.h)

Fields:

▶ cmd - The load command ID (e.g., LC_ENCRYPTION_INFO).
▶ cmdsize - The size, in bytes, of this load command.

No load commands use this literal structure - they all cast from
it as a form of polymorphism.

16 / 31

http://www.opensource.apple.com/source/cctools/cctools-795/include/mach-o/loader.h

Speci�c Interesting Load Commands

▶ LC_LOAD_DYLIB and LC_ID_DYLIB

Both of these commands use the dylib_command structure.
The former speci�es dynamic libraries to be linked from the
Mach-O, while the latter speci�es the �install name� of a
dynamic library. These �elds are commonly rewritten by
programs like Homebrew to load dynamic libraries from
their new installation location.

▶ LC_SEGMENT and LC_SYMTAB

These commands use the segment_command[64] and
symtab_command structures respectively. The former
speci�es a �le region to be memory mapped into the
process's address space, while the latter speci�es the o�set
and dimensions of a BSD-style symbol table (recall OS X's
heritage).

17 / 31

struct dylib_command {

uint32_t cmd; /* LC_ID_DYLIB, LC_LOAD_DYLIB, etc */

uint32_t cmdsize; /* includes pathname string */

struct dylib dylib; /* the library identification */

};

struct dylib {

union lc_str name; /* library's path name */

uint32_t timestamp;

uint32_t current_version;

uint32_t compatibility_version;

};

union lc_str {

uint32_t offset; /* offset to the string */

#ifndef __LP64__

char *ptr; /* pointer to the string */

#endif

};

18 / 31

Figure : LC_LOAD_DYLIB command

Relative o�sets:

▶ 0 - 3 - command name (0x0c = LC_LOAD_DYLIB)
▶ 4 - 7 - command size (0x38 bytes)
▶ 8 - 11 - lc_str o�set

▶ /usr/lib/libSystem.B.dylib

▶ 12 - 15 - library build timestamp (usually not correct)
▶ 16 - 19 - library version number
▶ 20 - 23 - library compatibility number

19 / 31

Segments and Sections
Each segment command speci�es its name (e.g.: __TEXT) and its
section count.

Each section speci�es its name (e.g: __text), its type, and its
o�set among other �elds and �ags.

Sections are the �meat� of the Mach-O �le:

▶ __text - Executable instructions (read-only)
▶ __data - Initialized static data (read + write)
▶ __bss - Uninitialized static data (read + write)

Text sections can be made read + write with the
S_ATTR_SELF_MODIFYING_CODE �ag.

Executability for data and BSS sections is determined by the
presence of a NX (No eXecute) bit in the Mach-O header. This
can be disabled for the stack with MH_ALLOW_STACK_EXECUTION

and enabled for the heap with MH_NO_HEAP_EXECUTION.
20 / 31

struct segment_command_64 { /* for 64-bit architectures */

uint32_t cmd; /* LC_SEGMENT_64 */

uint32_t cmdsize; /* includes sizeof section_64s */

char segname[16]; /* segment name */

uint64_t vmaddr; /* memory address of this segment */

uint64_t vmsize; /* memory size of this segment */

uint64_t fileoff; /* file offset of this segment */

uint64_t filesize; /* amount to map from the file */

vm_prot_t maxprot; /* maximum VM protection */

vm_prot_t initprot; /* initial VM protection */

uint32_t nsects; /* number of sections in segment */

uint32_t flags; /* flags */

};

The maxprot, initprot, and flags �elds (as well as header
�ags) are all important in determining the permissions a�orded
to a given segment and its sections.

21 / 31

Where do fat binaries come in?

Fat binaries are an encapsulation of the Mach-O format. They
don't change the internal layout of each individual architecture's
binary.

A fat Mach-O contains N entire single-architecture �les
(including their headers) with a little bit of extra metadata on
the top.

Fat Mach-Os are identi�ed by two additional magic numbers:

▶ FAT_MAGIC = 0xcafebabe - big endian
▶ FAT_CIGAM = 0xbebafeca - little endian

This is why some �le managers mistake OS X binaries for Java
class�les. . .

22 / 31

Structure of a fat Mach-O �le

▶ Header

▶ Magic
▶ Number of fat_arch structures

▶ fat_arch structures

▶ CPU type, CPU subtype. . .
▶ O�set to Mach-O corresponding to this architecture
▶ Size of internal Mach-O blob and alignment

▶ Single-architecture Mach-Os

▶ Header
▶ Load commands
▶ Segments

▶ Sections

23 / 31

Figure : Source: US Pat. 5,432,937 (NeXT Computer)
24 / 31

So, how does OS X load the average Mach-O �le?

▶ Open the �le
▶ Check the magic

▶ If single-arch and compatible with the machine, load
normally

▶ If single-arch but incompatible, fail
▶ If multi-arch, parse the fat_arch list for a compatible
Mach-O

▶ If found, load normally beginning at that Mach-O's o�set
▶ If not found, fail

This is a lot more complex than single-architecture-only loading
would be, but that's the cost of convenience.

25 / 31

Figure : Source: US Pat. 5,432,937 (NeXT Computer)
26 / 31

Quirks!

Hidden Masks!

A large number of system binaries on OS X have a mask (0x80)
in their CPU subtype.

This isn't documented anywhere in libmacho or o�cial Apple
sources. . .

. . . but it is found as CPU_SUBTYPE_LIB64 in the clang sources.
No documentation besides that constant name is given.

My best guess: It was added to signify changes to a 64-bit ABI,
and was stirred in when OS X made the switch to clang from
gcc in userland.

27 / 31

Endian nightmares!

Mach-O does not have a uniform endianness like PE (Windows).
This makes sense from a historical perspective (both
NeXTSTEP and OS X originally ran on big-endian platforms),
but both eventually settled on little-endian.

The result: Parsing fat Mach-Os with both big and little-endian
data is messy (and not very well documented). Even when the
�le itself is little-endian, headers and �ags may intentionally be
big-endian for historical reasons.

This follows in the long Apple tradition of not updating the
behavior of their core systems across architectures - just look at
HFS(+).

28 / 31

Concluding Notes
Mach-O is fairly unique among object formats.

Despite being used solely on UNIX, Mach-O has no direct
relationship to historical a.out or COFF formats. In fact,
Windows' PE is more closely related to COFF than Mach-O is.

PE and ELF both have metadata in their headers, but neither
has the concept of variable-length load commands. ELF comes
close with its header table.

Neither has support for multi-architecture binaries:

▶ ELF has been extended by the FatELF project (now
inactive/abandoned), which uses a layout directly inspired
by the Mach-O fat format.

▶ Microsoft doesn't seem to have any interest in
multi-architecture PE binaries. Providing separate binaries
for each architecture remains standard practice.

29 / 31

References

▶ OS X ABI Mach-O File Format Reference
▶ US Pat. 5,432,937: Method and Apparatus for Architecture
Independent Executable Files

▶ Homebrew/ruby-macho - GitHub
▶ libmacho - Apple Open Source
▶ FatELF: Universal Binaries for Linux

30 / 31

https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachORuntime/index.html
https://www.google.com/patents/US5432937
https://www.google.com/patents/US5432937
https://github.com/Homebrew/ruby-macho
http://www.opensource.apple.com/source/cctools/cctools-795/libmacho/
https://icculus.org/fatelf/

Miscellanea

Want to read the slides? They're here as a PDF and as
Pandoc-style Markdown:

▶ http://woodruffw.us/publications#macho-internals

31 / 31

http://woodruffw.us/publications#macho-internals

