Bootstrapping Semantic Parsers from Conversations

Yoav Artzi and Luke Zettlemoyer University of Washington

EMNLP 2011

Task Oriented Dialog

SYSTEM how can i help you?

USER i'd like to go from richmond to atlantic city on june seventh

SYSTEM leaving richmond on thursday, june seventh arriving in atlantic city leaving at

what time?

USER eight a. m.

SYSTEM leaving in the morning what airline would you prefer?

USER u. s. air

SYSTEM i currently have you leaving richmond on thursday, june seventh in the

morning arriving in atlantic city flying on u. s. air . is this correct?

USER yes

SYSTEM o.k. then . where would you like to go next?

USER richmond

Task Oriented Dialog

how can i help you? SYSTEM:

i would like to fly from atlanta georgia to london england **USFR:**

on september twenty fourth in the early evening i would like to return on october first departing from london in the

late morning

leaving what city? System fails **SYSTEM:**

atlanta georgia **USER:**

leaving atlanta. going to which city? **SYSTEM:**

london **USFR:**

arriving in london england. what date would you like to **SYSTEM:**

depart atlanta?

september twenty fourth in the early evening **USER:**

Dialog and Semantics

Many dialog systems use semantic parsers.

Dialog and Semantics

- Many dialog systems use semantic parsers.
- Supervised learning of such parsers is expensive.

Dialog and Semantics

- Many dialog systems use semantic parsers.
- Supervised learning of such parsers is expensive.
- Can computers learn through raw conversations?

Learning from Conversations

• Human-machine dialogs aim to achieve a goal.

Learning from Conversations

- Human-machine dialogs aim to achieve a goal.
- A well-defined goal allows the system to recover from failures.

SYSTEM: how can i help you?

USER:

i would like to fly from atlanta georgia to london england on september twenty fourth in the early evening i would like to return on october first departing from london in the late morning

SYSTEM: how can i help you?

USER:

i would like to fly from atlanta georgia to london england on september twenty fourth in the early evening i would like to return on october first departing from london in the late morning

SYSTEM: how can i help you?

USER: i would like to fly from atlanta georgia to london england

on september twenty fourth in the early evening i would like to return on october first departing from london in the

System fails

late morning

SYSTEM: leaving what city?

SYSTEM: how can i help you?

USER: i would like to fly from atlanta georgia to london england

on september twenty fourth in the early evening i would like to return on october first departing from london in the

late morning

SYSTEM: leaving what city?

USER: atlanta georgia

SYSTEM: how can i help you?

USER: i would like to fly from atlanta georgia to london england

on september twenty fourth in the early evening i would like to return on october first departing from london in the

late morning

SYSTEM: leaving what city?

USER: atlanta georgia

SYSTEM: leaving atlanta. going to which city?

SYSTEM: how can i help you?

USER: i would like to fly from atlanta georgia to london england

on september twenty fourth in the early evening i would

like to return on october first departing from london in the

late morning

SYSTEM: leaving what city?

USER: atlanta georgia

SYSTEM: leaving atlanta. going to which city?

USER: london

how can i help you? SYSTEM:

i would like to fly from atlanta georgia to london england **USFR:**

on september twenty fourth in the early evening i would

like to return on october first departing from london in the

late morning

leaving what city? **SYSTEM:**

atlanta georgia **USER:**

leaving atlanta. going to which city? **SYSTEM:**

london **USFR:**

arriving in london england. what date would you like to **SYSTEM:**

depart atlanta?

SYSTEM: how can i help you?

USER: i would like to fly from atlanta georgia to london england

on september twenty fourth in the early evening i would like to return on october first departing from iondon in the

late morning

SYSTEM: leaving what city?

USER: atlanta georgia

SYSTEM: leaving atlanta, going to which city?

USER: Iondon

SYSTEM: arriving in london england. what date would you like to

depart atlanta?

USER: september twenty fourth in the early evening

Complex request

Complex request

1

System fails

Noisy signal: premature end, goals change, incomplete recovery etc.

The Problem

• Learn:

 $f: sentence \rightarrow \lambda\text{-}calculus\ expression$

The Problem

Learn:

 $f: sentence \rightarrow \lambda$ -calculus expression

I want to go to Seattle on Friday

$$\lambda x.to(x, SEA) \land date(x, FRI)$$

SYSTEM: how can i help you? (OPEN_TASK)

USER: i would like to fly from atlanta georgia to london england

on september twenty fourth in the early evening i would like to return on october first departing from london in the

late morning

SYSTEM: leaving what city? (ASK: $\lambda x.from(fl, x)$)

USER: atlanta georgia

SYSTEM: leaving atlanta. (CONFIRM: from(fl, ATL)) going to which

city? (ASK: $\lambda x.to(fl, x)$)

USER: london

SYSTEM: how can i help you? (OPEN_TASK)

USER: i would like to fly from atlanta georgia to london england

on september twenty fourth in the early evening i would like to return on october first departing from london in the

late morning

SYSTEM: leaving what city? (ASK: $\lambda x.from(fl, x)$)

USER: atlanta georgia

SYSTEM: leaving atlanta. (CONFIRM: from(fl, ATL)) going to which

city? (ASK: $\lambda x.to(fl, x)$)

USER: london

[conversation continues]

System utterance

SYSTEM: how can i help you? (OPEN_TASK)

USER: i would like to fly from atlanta georgia to london england

on september twenty fourth in the early evening i would like to return on october first departing from london in the

late morning

SYSTEM: [leaving what city?] (ASK: $\lambda x.from(fl, x)$)

USER: atlanta georgia

SYSTEM: leaving atlanta. (CONFIRM: from(fl, ATL)) going to which

city? (ASK: $\lambda x.to(fl, x)$)

USER: london

[conversation continues]

System utterance

Natural Language

SYSTEM: how can i help you? (OPEN_TASK)

USER: i would like to fly from atlanta georgia to london england

on september twenty fourth in the early evening i would like to return on october first departing from london in the

late morning

SYSTEM: leaving what city? (ASK: $\lambda x. from(fl, x)$)

USER: atlanta georgia

SYSTEM: leaving atlanta. (CONFIRM: from(fl, ATL)) going to which

city? $(ASK) \lambda x.to(fl, x)$

USER: london

[conversation continues]

System utterance

Natural Language

Speech Act

SYSTEM: how can i help you? (OPEN_TASK)

USER: i would like to fly from atlanta georgia to london england

on september twenty fourth in the early evening i would like to return on october first departing from london in the

late morning

SYSTEM: leaving what city? (ASK: $\lambda x.from(fl, x)$)

USER: atlanta georgia

SYSTEM: leaving atlanta_(CONFIRM from(fl, ATL)) going to which

city? (ASK: $\lambda x.to(fl, x)$)

USER: london

[conversation continues]

System utterance

Natural Language Speech Act Logical Meaning

SYSTEM: how can i help you? (OPEN_TASK)

USER: i would like to fly from atlanta georgia to london england

on september twenty fourth in the early evening i would like to return on october first departing from london in the

late morning

SYSTEM: leaving what city? (ASK: $\lambda x.from(fl, x)$)

USER: atlanta georgia

SYSTEM: leaving atlanta. (CONFIRM: from (fl ATL)) going to which

city? (ASK: $\lambda x.to(fl, x)$)

USER: london

SYSTEM: how can i help you? (OPEN_TASK)

USER: i would like to fly from atlanta georgia to london england

on september twenty fourth in the early evening i would like to return on october first departing from london in the

late morning

SYSTEM: leaving what city? (ASK: $\lambda x.from(fl, x)$)

USER: atlanta georgia

SYSTEM: leaving atlanta. (CONFIRM: from(fl, ATL)) going to which

city? (ASK: $\lambda x.to(fl, x)$)

USER: london

Training Set

SYSTEM: how can i help you? (OPEN_TASK)

USER: i would like to fly from atlanta georgia to london england

on september twenty fourth in the early evening i would like to return on october first departing from london in the

late morning

SYSTEM: leaving what city? (ASK: $\lambda x.from(fl, x)$)

USER: atlanta georgia

SYSTEM: leaving atlanta. (CONFIRM: from(fl, ATL)) going to which

city? (ASK: $\lambda x.to(fl, x)$)

USER: london

Training Set

SYSTEM: how can i help you? (OPEN_TASK)

USER: i would like to fly from atlanta georgia to london england

on september twenty fourth in the early evening i would like to return on october first departing from london in the

late morning

SYSTEM: leaving what city? (ASK: $\lambda x.from(fl, x)$)

USER: atlanta georgia

SYSTEM: leaving atlanta. (CONFIRM: from(fl, ATL)) going to which

city? (ASK: $\lambda x.to(fl, x)$)

USER: london

[conversation continues]

The Problem

• Learn:

 $f: sentence \rightarrow \lambda$ -calculus expression

- Given logs of conversations
 - Automatically annotated system utterances

Our Approach

Our Approach

No direct evidence about the logical forms paired with user utterances

Related Work

Supervised semantic parsing with:

Machine Translation [Papineni et al. 2007; Ramaswamy, Kleindienst 2000; Wong, Mooney 2006, 2007; Matuszek et al.

2010]

Inducting Logic Programming [Zelle, Money 1996; Tang, Mooney 2000;

Thompson, Mooney 2002]

Prob. CFG Parsing [Miller et al. 2006; Ge, Mooney 2006]

[He, Young 2005, 2006]

Support Vector Machines [Kate, Mooney 2006; Nguyen et al. 2006]

Perceptron-style Learning [Zettlemoyer, Collins 2005, 2007]

Less supervision for database query:

Question-Answers Semi- [Clarke et al. 2010, Liang et al. 2011]

supervision

Prob. PDA

Confidence-driven [Goldwasser et al. 2011]

Unsupervised

In This Work

- Develop an algorithm for bootstrapping semantic parsers from conversations
 - Loss-driven
 - Requires no labeling effort
- Demonstrate effective learning from conversations
- First step towards a long-term goal of autonomous self-learning dialog systems

Mapping Sentences to λ-Calculus

- Combinatory Categorial Grammar (CCG)
- Weighted Linear CCGs

Combinatory Categorial Grammar (CCG)

$$\begin{array}{c|c} I \text{ want to go} & to & Boston \\ \hline S/N & (N \backslash N)/NP & NP \\ \lambda f.f & \lambda y.\lambda f.\lambda x.f(x) \wedge to(x,y) & BOS \\ \hline & & (N \backslash N) \\ & \lambda f.\lambda x.f(x) \wedge to(x,BOS) \\ \hline & & N \\ \lambda x.to(x,BOS) \\ \hline & & S \\ \lambda x.to(x,BOS) \\ \hline \end{array} >$$

Combinatory Categorial Grammar (CCG)

Lexicon

Combinatory Categorial Grammar (CCG)

Lexicon

Combinators

Application, composition ...

Weighted Linear CCGs

- Given a log-linear model:
 - CCG lexicon Λ
 - Feature vector f
 - Weights w
- The best parse is:

$$y^* = \arg\max_y w \cdot f(x, y)$$

• We consider all possible parses y for sentence x given the lexicon Λ

So Far ...

General overview of the problem and approach

Next ...

- Indirectly-supervised lexical generation
- Computing loss
- Our learning algorithm
- Evaluation on the DARPA Communicator corpus

Supervised Lexical Induction

Input Training Example

Lexicon

Sentence: i'd like to go to los angeles

Logical form: $\lambda x. to(x, LA)$

$$i'd := S/N : \lambda x.x$$

i'd :=
$$(N\backslash N)/NP : \lambda f.\lambda x.\lambda y.f(x) \wedge to(x,y)$$

go to :=
$$(N \setminus N)/NP : \lambda f. \lambda x. \lambda y. f(x) \wedge to(x, y)$$

to go to :=
$$(N \setminus N)/NP : \lambda f. \lambda x. \lambda y. f(x) \wedge to(x, y)$$

to los :=
$$S/N : \lambda x.x$$

. . .

Supervised Lexical Induction

Input Training Example

Sentence: i'd like to go to los angeles

Logical form: $\lambda x.to(x,LA)$


```
i'd := S/N : \lambda x.x

i'd := (N \setminus N)/NP : \lambda f.\lambda x.\lambda y.f(x) \wedge to(x,y)

go to := (N \setminus N)/NP : \lambda f.\lambda x.\lambda y.f(x) \wedge to(x,y)

to go to := (N \setminus N)/NP : \lambda f.\lambda x.\lambda y.f(x) \wedge to(x,y)

to los := S/N : \lambda x.x
```

Indirectly-supervised Lexical Induction

Input Training Example

Sentence: i'd like to go to los angeles

Conversation: SYSTEM: how can i help you? (OPEN_TASK)

USER: i'd like to go to los angeles

SYSTEM: leaving what city? (ASK: λx.from

(fl, x)

USER: new york

SYSTEM: leaving new york. (CONFIRM:

from(fl, NYC)) going to which city?

(ASK: $\lambda x.to(fl, x)$)

USER: los angeles

SYSTEM: flying to los angeles. (CONFIRM:

to(fl, LA)

[conversation continues]

Indirectly-supervised Lexical Induction

Input Training Example

Sentence: i'd like to go to los angeles

Conversation: SYSTEM: how can i help you? (OPEN_TASK)

USER: i'd like to go to los angeles

SYSTEM: leaving what city? (ASK: λx.from

(fl, x)

[conversation continues]

Output Lexicon

$$i'd := S/N : \lambda x.x$$

i'd :=
$$(N\backslash N)/NP : \lambda f.\lambda x.\lambda y.f(x) \wedge to(x,y)$$

i'd :=
$$(N \setminus N)/NP : \lambda f. \lambda x. \lambda y. f(x) \wedge from(x, y)$$

. . .

Indirectly-supervised Lexical Induction

Input Training Example

Sentence: i'd like to go to los angeles

Conversation: system: how can i help you? (OPEN_TASK)

USER: i'd like to go to los angeles

SYSTEM: leaving what city? (ASK: λx.from

(fl, x)

[conversation continues]

Output Lexicon

- Overgeneralized
- Incomplete

Loss-guided Learning

Supervised Case

i want to fly from new york to los angeles

$$\lambda x.from(x, NYC) \wedge to(x, LA)$$

$$\mathcal{L}:\langle z,\mathcal{C}\rangle\to\mathbb{R}$$

i want to fly from new york to los angeles

$$\mathcal{L}:\langle z,\mathcal{C}\rangle\to\mathbb{R}$$

i want to fly from new york to los angeles

$$\lambda x.from(x, NYC) \wedge to(x, LA)$$

$$\lambda x.from(x, NYC) \wedge from(x, LA)$$

$$\lambda x.from(x,LA)$$

$$\lambda x[].to(x[0], NYC) \wedge from(x[1], LA)$$

• • •

$$\mathcal{L}:\langle z,\mathcal{C}\rangle\to\mathbb{R}$$

i want to fly from new york to los angeles

-1.8
$$\lambda x.from(x, NYC) \wedge to(x, LA)$$

2.0
$$\lambda x.from(x, NYC) \wedge from(x, LA)$$

-0.9
$$\lambda x.from(x, LA)$$

1.5
$$\lambda x[].to(x[0], NYC) \wedge from(x[1], LA)$$

. . .

$$\mathcal{L}:\langle z,\mathcal{C}\rangle\to\mathbb{R}$$

i want to fly from new york to los angeles

- 1-1.8 $\lambda x.from(x, NYC) \wedge to(x, LA)$
- 4 2.0 $\lambda x.from(x, NYC) \wedge from(x, LA)$
- 2 -0.9 $\lambda x.from(x,LA)$
- 3 1.5 $\lambda x[].to(x[0], NYC) \wedge from(x[1], LA)$

• • •

Loss Decomposition

Conversation Loss

- Provides rough indication of how well a logical expression represents a user utterance
- Based on system understanding

Computing Conversation Loss

- 1. Select the relevant subset of system utterances
- 2. Align the logical expression to content from selected system utterances
- 3. Score the alignment

Conversation Loss

SYSTEM: how can i help you (OPEN TASK)

USER: i want to fly from new york to los

angeles

SYSTEM: from new york. (CONFIRM: from(fl,

NYC)) to where? (ASK: $\lambda x.to(fl, x)$)

USER: los angeles

SYSTEM: flying to los angeles. (CONFIRM: to(fl,

LA)) where do you want to go from los angeles? ? (ASK: $\lambda x.to(fl2, x) \land from(fl2, x)$

LA))

USER: back to new york

SYSTEM: from los angeles to new york

(CONFIRM: $from(fl2, LA) \land to(fl2, NYC)$)

SYSTEM: i have a direct flight from new york to

los angeles for \$480. ok? (OFFER:

 $direct(fl) \land from(fl, NYC) \land to(fl, LA) \land cost$

(f1, 480)

[conversation continues]

Segmenting

SYSTEM: how can i help you (OPEN TASK)

USER: i want to fly from new york to los

angeles

SYSTEM: from new york. (CONFIRM: from(fl,

NYC)) to where? (ASK: $\lambda x.to(fl, x)$)

USER: los angeles

SYSTEM: flying to los angeles. (CONFIRM: to(fl,

LA)) where do you want to go from los angeles? ? (ASK: $\lambda x.to(fl2, x) \land from(fl2, x)$

LA))

USER: back to new york

SYSTEM: from los angeles to new york

(CONFIRM: $from(fl2, LA) \land to(fl2, NYC)$)

SYSTEM: i have a direct flight from new york to

los angeles for \$480. ok? (OFFER:

 $direct(fl) \land from(fl, NYC) \land to(fl, LA) \land cost$

(f1, 480))

[conversation continues]

Extract Properties

SYSTEM: how can i help you (OPEN_TASK)

USER: i want to fly from new york to los

angeles

SYSTEM: from new york. (CONFIRM: from(fl,

NYC) to where? (ASK: $\lambda x.to(fl, x)$)

USER: los angeles

SYSTEM: flying to los angeles. (CONFIRM: to(fl,

LA)) where do you want to go from los

angeles? ? (ASK: $\lambda x.to(fl2, x) \land from(fl2, x)$)

LA))

USER: back to new york

SYSTEM: from los angeles to new york

(CONFIRM: $from(fl2, LA) \land to(fl2, NYC)$)

SYSTEM: i have a direct flight from new york to

los angeles for \$480. ok? (OFFER:

 $direct(fl) \land from(fl, NYC) \land to(fl, LA) \land cost$

(f1, 480))

[conversation continues]

Property

(from, fl, NYC)

Extract Properties

SYSTEM: how can i help you (OPEN_TASK)

USER: i want to fly from new york to los

angeles

SYSTEM: from new york. (CONFIRM: from(fl,

NYC)) to where? (ASK: $\lambda x.to(fl, x)$)

USER: los angeles

SYSTEM: flying to los angeles. (CONFIRM: to(fl,

(A)) where do you want to go from los

angeles? ? (ASK: $\lambda x.to(fl2, x) \land from(fl2, x)$

LA))

USER: back to new york

SYSTEM: from los angeles to new york

(CONFIRM from(fl2, LA) to(fl2, NYC))

SYSTEM: i have a direct flight from new york to

los angeles for \$480. ok? (OFFER:

 $direct(fl) \land from(fl, NYC) \land to(fl, LA) \land cost$

(f1, 480))

[conversation continues]

Property

(from, fl, NYC)

(to, fl, LA)

(*from*, *fl*2, *LA*)

(to, fl2, NYC)

Extract Properties

SYSTEM: how can i help you (OPEN_TASK)

USER: i want to fly from new york to los

angeles

SYSTEM: from new york. (CONFIRM: from(fl,

NYC)) to where? (ASK: $\lambda x.to(fl, x)$)

USER: los angeles

SYSTEM: flying to los angeles. (CONFIRM: to(fl,

LA)) where do you want to go from los angeles? ? (ASK: $\lambda x.to(fl2, x) \land from(fl2, x)$

LA))

USER: back to new york

SYSTEM: from los angeles to new york

(CONFIRM: $from(fl2, LA) \land to(fl2, NYC)$)

SYSTEM: i have a direct flight from new york to

los angeles for \$480. ok? (OFFER:

 $direct(fl) \land from(fl, NYC) \land to(fl, LA) \land cost$

(f1, 480))

[conversation continues]

Property	Loss
(from, fl, NYC)	-0.5
(to, fl, LA)	-0.83
(from, fl2, LA)	-0.16
(to, fl2, NYC)	-0.16

Given a Candidate Logical Expression

USER: i want to fly from new york to los angeles

 $\lambda x.from(x, NYC) \wedge to(x, LA)$

<u>Property</u>	Loss
(from, fl, NYC)	-0.5
(to, fl, LA)	-0.83
(from, fl2, LA)	-0.16
(to, fl2, NYC)	-0.16

Align

USER: i want to fly from new york to los angeles

 $\lambda x.from(x, NYC) \wedge to(x, LA)$ Alignment: $x \to fl$

<u>Property</u>	Loss
(from, fl, NYC)	-0.5
(to, fl, LA)	-0.83
(from, fl2, LA)	-0.16
(to, fl2, NYC)	-0.16

Match

i want to fly from new york to los **USER:**

angeles

 $\lambda x.from(x,NYC) \wedge to(x,LA)$ Alignment: $x \to fl$

Property	Loss
(from, fl, NYC)	-0.5
(to, fl, LA)	-0.83
(fren, fl2, LA)	-0.16
(to, fl2, NYC)	-0.16

Score

USER: i want to fly from new york to los

angeles

$$\lambda x.from(x, NYC) \wedge to(x, LA)$$

Alignment: $x \to fl$

$$Loss = -0.5 - 0.83 = -1.33$$

Property	Loss	
(from, fl, NYC)	-0.5	
(to, fl, LA)	-0.83	
(fren, fl2, LA)	-0.16	
(to, fl2, NYC)	-0.16	

Align and Score

USER: i want to fly from new york to los

angeles

$$\lambda x.from(x, NYC) \wedge to(x, LA)$$

Alignment: $x \to fl$

$$Loss = -0.5 - 0.83 = \boxed{-1.33}$$

<u>Property</u>	Loss
(from, fl, NYC)	-0.5
(to, fl, LA)	-0.83
(from, fl2, LA)	-0.16
(to, fl2, NYC)	-0.16

 $\lambda x[].from(x[0], NYC) \wedge from(x[1], LA)$

Alignment: $x[0] \to fl, x[1] \to fl2$

$$Loss = -0.5 - 0.16 = -0.66$$

Comparing Two Candidates

i want to fly from new york to los **USER:**

angeles

$$\lambda x.from(x, NYC) \wedge to(x, LA)$$

Alignment: $x \to fl$

$$Loss = -0.5 - 0.83 = -1.33$$

<u>Property</u>	Loss
(from, fl, NYC)	-0.5
(to, fl, LA)	-0.83
(from, fl2, LA)	-0.16
(to, fl2, NYC)	-0.16

$$\lambda x[].from(x[0], NYC) \wedge from(x[1], LA)$$

Alignment: $x[0] \to fl, x[1] \to fl2$

$$Loss = -0.5 - 0.16 = -0.66$$

• So far:

- Showed how to generate lexicon using the conversation
- Introduced our sources of loss

Next:

Combine everything into a Perceptron-like learning algorithm

Learning Algorithm

- Online
- Loss-driven
- 2 steps:
 - Lexical generation
 - Parameter update [Singh-Miller and Collins 2007]

Learning Algorithm

For T iterations, for each training sample:

- Step 1: Lexical generation
 - Generate a large lexicon from system utterances
 - Parse with the generated lexicon using the model
 - Get the minimal loss parses from the k-best parses
 - Add their lexical items to the lexicon
- Step 2: Update parameters

Learning Algorithm

For T iterations, for each training sample:

- Step 1: Lexical generation
- Step 2: Update parameters
 - Parse using the model
 - Split all parses into two sets using the loss function: optimal and non-optimal
 - Find model score violations between the sets
 - Do a perceptron update using these violations

Evaluation

- Dataset
- Experimental setup
- Evaluation metrics
- Systems and results

DARPA Communicator

- Raw conversational logs [Walker et al. 2002]
- Annotated system utterances

	Luc	ent	BBN		
	Train	Test	Train	Test	
Conversations	144	70	71	91	
Context Independent Utterances	208	96	67	67	

Experimental Setup

- Features similar to Zettlemoyer and Collins 2007:
 - Indicators for lexical item use
 - Indicators for parsing operators use
 - Properties of the logical form
- Seed lexicon:
 - Domain independent
 - "and", "the" ...
 - List of domain-specific noun phrases
 - "new york", "jfk", "delta" ...
- Learning parameters optimized on training data

Evaluation Metrics

- Performance against gold standard:
 - Exact match
 - Partial credit

Sentence: i want to return from seattle to boston

Label: $\lambda x.to(x,BOS) \wedge from(x,SEA) \wedge return(x)$

Guess: $\lambda x.to(x,BOS) \wedge from(x,SEA)$

Results: Ablation Tests

Development Set Results Exact Match, F1 Measure

Results: Evaluation Data

F1 Measure

Future Work

- Reason about context-dependent meaning
- Model and recover speech acts
- Combine in a complete self-improving dialog system

Contributions

- Developed a loss-driven learning approach for semantic parsers
- Demonstrated learning of semantic parsers from conversational logs
- Described a learning approach that will allow dialog systems to learn from failures

Contributions

- Developed a loss-driven learning approach for semantic parsers
- Demonstrated learning of semantic parsers from conversational logs
- Described a learning approach that will allow dialog systems to learn from failures

Thanks for listening

Supplementary Slides

Semantic Parsing

Context-Dependent vs. Context-Independent

hello, evaluation user. welcome to the bell labs travel reservation system. i SYSTEM have a tutorial explaining my new features . if you 'd like to hear it , just ask me for the tutorial . how can i help you? **USFR** i'd like to go from richmond to atlantic city on june seventh leaving richmond on thursday, june seventh arriving in kansas city leaving at SYSTEM what time? **USER** eight a. m. leaving in the morning what airline would you prefer? **SYSTEM USER** u. s. air i currently have you leaving richmond on thursday, june seventh in the **SYSTEM** morning arriving in kansas city flying on u. s. air . is this correct? **USER** yes **SYSTEM** o.k. then. where would you like to go next? richmond **USER**

[conversation continues]

i'd like to go from seattle to denver

i'd like to go	from	seattle	to	denver
$\frac{S/N}{\lambda f.f}$	$\frac{(N \backslash N)/NP}{\lambda y.\lambda f.\lambda x.f(x) \wedge from(x,y)}$	$\overline{\stackrel{NP}{SEA}}$	$\frac{(N\backslash N)/NP}{\lambda y.\lambda f.\lambda x.f(x) \wedge to(x,y)}$	$\overline{\stackrel{NP}{DEN}}$

i'd like to go	from	seattle	to	denver
$\frac{-S/N}{\lambda f.f}$	$\frac{(N \backslash N)/NP}{\lambda y.\lambda f.\lambda x.f(x) \wedge from(x,y)}$	\overline{NP} SEA	$\frac{(N\backslash N)/NP}{\lambda y.\lambda f.\lambda x.f(x) \wedge to(x,y)}$	\overline{NP} DEN

i'd like to go	from	seattle	to	denver
$\overline{S/N}$	$\overline{(N\backslash N)/NP}$	\overline{NP}	$\overline{(N\backslash N)/NP}$	\overline{NP}
$\lambda f.f$	$\lambda y.\lambda f.\lambda x.f(x) \wedge from(x,y)$	SEA	$\lambda y.\lambda f.\lambda x.f(x) \wedge to(x,y)$	DEN

i'd like to go	from	seattle	to	denver
$\overline{S/N}$	$(N \setminus N)/NP$	\overline{NP}	$\overline{(N\backslash N)/NP}$	\overline{NP}
$\lambda f.f$	$\lambda y.\lambda f.\lambda x.f(x) \wedge from(x,y)$	SEA	$\lambda y.\lambda f.\lambda x.f(x) \wedge to(x,y)$	DEN

Lexicon Lexical Entry Category Text Syntax \(\lambda\)

i'd like to go	from	seattle	to	denver
$\overline{S/N}$	$(N\backslash N)/NP$	\overline{NP}	$\overline{(N\backslash N)/NP}$	\overline{NP}
$\lambda f.f$	$\lambda y.\lambda f.\lambda x.f(x) \wedge from(x,y)$	SEA	$\lambda y.\lambda f.\lambda x.f(x) \wedge to(x,y)$	DEN

Application
Composition

Combinators

Application Composition Type-shifting

Input Training

Sentence: i'd like to go to los angeles

Example Logical form: $\lambda x.to(x,LA)$

Input Training Example

Sentence: i'd like to go to los angeles

Logical form: $\lambda x.to(x,LA)$

Input Training Example

Sentence: i'd like to go to los angeles

Logical form: $\lambda x.to(x,LA)$

Output Lexicon

All possible sub-strings:

i'd like

i'd like

to go to

to los

•••

<u>Categories created by rules</u> <u>triggered from the logical form:</u>

 $S/N : \lambda x.x$

 $N\NP : \lambda x. \lambda y. \lambda z. y(z) \wedge to(z,x)$

...

Input Training Example

Sentence: i'd like to go to los angeles

Logical form: $\lambda x.to(x,LA)$

Output Lexicon

All possible sub-strings:

i'd like i'd like to go to to los

...

<u>Categories created by rules</u> <u>triggered from the logical form:</u>

 $S/N : \lambda x.x$

 $N\N/P : \lambda x. \lambda y. \lambda z. y(z) \wedge to(z,x)$

. . .

Input Training Example

Sentence: i'd like to go to los angeles

Conversation: SYSTEM: how can i help you? (OPEN_TASK)

USER: i'd like to go to los angeles

SYSTEM: leaving what city? (ASK: λx.from

(fl, x)

USER: new york

SYSTEM: leaving new york. (CONFIRM:

from(fl, NYC)) going to which city?

(ASK: $\lambda x.to(fl, x)$)

USER: los angeles

SYSTEM: flying to los angeles. (CONFIRM:

to(fl, LA)

[conversation continues]

Training Sentence: i'd like to go to los angeles

Example Conversation: SYSTEM: how can i help you? (OPEN_TASK)

USER: i'd like to go to los angeles

SYSTEM: leaving what city? (ASK: λx from

(fl, x)

USER: new york

SYSTEM: leaving new york. (CONFIRM:

from (fl, NYC)) going to which city?

(ASK: λx to (fl, x))

USER: los angeles

SYSTEM: <u>flying</u> to los angeles. (CONFIRM:

to fl, LA))

[conversation continues]

Use logical constants from system utterances as triggers

Input Training Example

Sentence: i'd like to go to los angeles

Conversation: SYSTEM: how can i help you? (OPEN_TASK)

USER: i'd like to go to los angeles

SYSTEM: leaving what city? (ASK: λx from

(fl, x)

[conversation continues]

Output Lexicon

All possible sub-strings:

<u>Categories created by rules</u> triggered from the logical form:

i'd

like

i'd like

to go to

to los

• • •

 $S/N : \lambda x.x$

 $N\NP : \lambda x. \lambda y. \lambda z. y(z) \wedge to(z,x)$

 $N\N/P : \lambda x. \lambda y. \lambda z. y(z) \land from(z,x)$

...

Generated Lexicon is:

- Overgeneralized
- Incomplete

Output Lexicon

All possible sub-strings:

Categories created by rules triggered from the logical form:

i'd like i'd like to go to

to los

X

 $N\N/NP : \lambda x. \lambda y. \lambda z. y(z) \wedge to(z,x)$

 $N\N/NP : \lambda x. \lambda y. \lambda z. y(z) \land from(z,x)$

...

 $S/N : \lambda x.x$

..

Results: Ablation Tests

Development Set Results

Two at Match Matric	Lucent			BBN		
Exact Match Metric	Prec.	Recall	F1	Prec.	Recall	F1
Without conversational loss	0.35	0.34	0.35	0.66	0.54	0.59
Without domain loss	0.42	0.42	0.42	0.69	0.56	0.61
Our approach	0.63	0.61	0.62	0.77	0.64	0.69

Results: Evaluation Data

		Lucent		BBN		
Exact Match Metric	Prec.	Recall	F1	Prec.	Recall	F1
No conversations baseline	0	0	0	0.16	0.15	0.15
Our approach	0.58	0.55	0.56	0.85	0.75	0.79
Supervised method	0.7	0.68	0.69	0.87	0.78	0.82

Partial Credit Metric	Lucent			BBN		
Partial Credit Metric	Prec.	Recall	F1	Prec.	Recall	F1
No conversations baseline	0.26	0.35	0.29	0.26	0.33	0.29
Our approach	0.68	0.63	0.65	0.97	0.57	0.72
Supervised method	0.75	0.68	0.72	0.96	0.68	0.79