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ABSTRACT

Given only a few image-text pairs, humans can learn to detect se-
mantic concepts and describe the content. For machine learning
algorithms, they usually require a lot of data to train a deep neural
network to solve the problem. However, it is challenging for the
existing systems to generalize well to the few-shot multi-modal sce-
nario, because the learner should understand not only images and
texts but also their relationships from only a few examples. In this
paper, we tackle two multi-modal problems, i.e., image captioning
and visual question answering (VQA), in the few-shot setting.

We propose Fast Parameter Adaptation for Image-Text Model-
ing (FPAIT) that learns to learn jointly understanding image and
text data by a few examples. In practice, FPAIT has two benefits. (1)
Fast learning ability. FPAIT learns proper initial parameters for
the joint image-text learner from a large number of different tasks.
When a new task comes, FPAIT can use a small number of gradient
steps to achieve a good performance. (2) Robust to few examples.
In few-shot tasks, the small training data will introduce large biases
in Convolutional Neural Networks (CNN) and damage the learner’s
performance. FPAIT leverages dynamic linear transformations to
alleviate the side effects of the small training set. In this way, FPAIT
flexibly normalizes the features and thus reduces the biases during
training. Quantitatively, FPAIT achieves superior performance on
both few-shot image captioning and VQA benchmarks.
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Image Captioning

AT i
The black and white dog stands
near a person holding a Frisbee.

A person wearing a helmet is
riding a motorcycle.

An open market full of people
and piles of vegetables.

Visual Question Answering

Question : Who is in a park
and next to a red bench?

L e = T~ ? =
Question : What walks toward Question : How many boats
the rope perimeter fence? close to shore?

: elephant : eight : a young child

Figure 1: Image Captioning: given an input image, the model
should generate a description of this image. Visual Question
Answering: given an open-ended question about an image,
the model should generate a natural language answer.

1 INTRODUCTION

It is challenging to build artificial intelligence (AI) systems with
human-level intelligence. One of the important abilities of such
Al systems is to quickly learn the new concept from only a few
examples, especially in the multi-modal scenario. For example, a
successful Al system should understand the visual and text inputs
as well as their relationship from only a few examples. Recently,
researchers have made significant progress in the new concept
learning from a few images or videos [8, 10, 29, 34, 37, 40], and
words or sentences [22, 41]. However, very few of them study on
learning from only a few examples in the multi-modal scenario,
e.g., few-shot image captioning and few-shot VQA. The few-shot
multi-modal learning problem is more challenging, where both
visual and semantic knowledge should be leveraged. Moreover, it
is beneficial for real-world applications. For example, Amazon has
thousands of new products per week, which contain uncommon
words in descriptions and new product images. Jointly understand-
ing images/words and their relationship can better recommend
these new products to customers than only focusing on images or
focusing on words. In summary, few-shot multi-modal learning is
not only challenging but also useful to real-world applications.

In this paper, we tackle few-shot image captioning and VQA
to study few-shot multi-modal learning. We show the settings of
image captioning and VQA in Figure 1. Image captioning requires
the algorithm to generate a description of an image. VQA requires
the algorithm to provide an accurate natural language answer given
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Figure 2: Illustration of FPAIT for visual question answering (VQA). We take the 5-way 1-shot setting for example. Each gray
box represents a specific VQA task, which only has five training examples (LEFT) and several testing examples (RIGHT; we
only show one testing example for simplification). For this specific task, the answer set in the testing data should be the same
with the answer set in the training data. The top row shows the meta-training procedure. During training, FPAIT learns a good
initialization of the joint image-text learner from multiple different VQA tasks. This model initialization is task-independent,
and it can be quickly adapted into a new different task (base training). The second row shows the meta-testing procedure. Given
a new task, FPAIT adapts the initial model to this new task and evaluates on the test set. The final evaluation performance is
the average of the testing accuracy on multiple different new tasks. Note that the questions, answers, and images in the tasks

of meta-testing are different from that of in meta-training,.

a natural language question about an image. For these two tasks,
most existing algorithms [30, 36, 44, 46, 50] focus on the supervised
setting, and they thus rely on a large amount of human annotated
image-text pairs for training. Since some words are uncommon or
even unseen in the few-shot scenario, these supervised algorithms
cannot well handle such novel words. Some researchers [1, 33, 47]
study how to handle novel objects for image captioning and VQA.
They usually leverage large external text data, which contains the
novel words, to learn the text representation. In this way, their text
models can understand the novel words, even if these words are not
in training image-text pairs. Compared to this novel object setting,
few-shot image captioning and VQA are more difficult, because the
target novel (new) objects or words cannot be used in the training
data with any form. In this way, their text model [1, 33, 47] cannot
learn a good representation for new words, and thus will result in
poor performance of image captioning and VQA. Therefore, the
existing algorithms might not be eligible for image captioning and
VOQA tasks in the few-shot setting.

To tackle image captioning and VQA in the few-shot setting,
we propose Fast Parameter Adaptation for Image-Text Modeling
(FPAIT). The main idea of FPAIT is to teach the joint image-text
learner how to learn. The classical algorithms [1, 33, 44, 47] usually
learn a model to fit the training data. In contrast, FPAIT teaches the

learner how to generalize well on a new task using a few training
examples quickly. To be specific, FPAIT trains the joint image-text
learner on a large number of different visual language tasks with
a few examples. As shown in Figure 2, the training objective of
FPAIT is to obtain good initial parameters of the joint image-text
learner, such that it can maximize the performance of a new task
by a few updating steps. Since this initialization is trained from
multiple different tasks, the internal representation of this model
should be suitable for various tasks, i.e, the model can generalize
well. Therefore, FPAIT can achieve good results on new tasks with
only a few fine-tuning steps.

Apart from the fast adaptation ability, FPAIT leverages an ad-
vanced model to learn the joint image and text representation in
the few-shot setting. The existing algorithms [30, 33, 36, 44] usually
apply state-of-the-art CNNs to encode image features. These CNN
models require a large amount of training data to guarantee a good
performance. However, in our settings, there might be only five
training examples for one task. Consequently, such small training
data will introduce large model bias, which is harmful to the CNN
model. To combat the effect of small training data, FPAIT intro-
duces dynamic linear transformations on the image features. These
linear transformations are integrated into the CNN model to scale
and shift the intermediate features, such that the undesired model



bias can be alleviated. Moreover, the parameters of these linear
transformations are generated from the encoded text features, and
thereby the text data can effectively influence the image feature. In
experiments, the proposed new architecture of FPAIT is superior
to the typical image and text embedding methods.

In sum, this paper makes the following contributions:

(1) We propose FPAIT to tackle few-shot image captioning and
VQA. FPAIT can train the joint image-text learner, which can
quickly adapt itself to a new task given few training examples.

(2) We propose to use an advanced neural network to learn
image and text representation in the few-shot scenario jointly. This
network generates dynamical parameters from the text data and
uses these parameters effectively influence the image encoding.

(3) The proposed FPAIT achieves superior performance on both
few-shot image captioning and VQA benchmarks.

2 RELATED WORK

This paper involves the neural image captioning (Sec. 2.1) and the
visual question answering (Sec. 2.2). These two problems align
with the recent trend of connecting computer vision and natural
language [19]. Since we study the few-shot multi-modal learning,
this paper is also related to the few-shot learning (Sec. 2.3).

2.1 Image Captioning

Before the success of deep learning [20], image captioning tech-
niques usually utilize hand-crafted features and the performance
is limited [9, 21, 28]. Benefit from the rapid development of deep
learning [5, 12, 13, 16, 20, 25, 51], researchers have made significant
improvements in the image captioning task [26, 43, 44]. The typical
approach first encodes the image via CNN into the static visual fea-
ture, and then feeds this feature into the recurrent neural network
(RNN), e.g., Long Short-Term Memory (LSTM) [14] or Gated Re-
current Units (GRU) [4], to generate natural language descriptions.
For example, Xu et al. [44] proposed the attention based model to
focus on most attentive regions in images. You et al. [48] proposed
to select semantic concept proposals and fuse them into the RNN.
Fill-in-the-blank [49] is also considered as an image captioning task,
which can be directly solved by the image captioning approaches.
The above algorithms achieve impressive image captioning results.
However, if there are not enough training image-text pairs, the per-
formance will dramatically decrease. In contrast, FPAIT can quickly
adapt the joint image-text learner using a few training examples
and result in a good performance.

There are few researchers that study the novel visual concept
learning from few language data. Mao et al. [27] proposed a trans-
posed weight sharing scheme to prevent the overfitting problem
in the new concept learning. They only evaluated on three novel
concepts, and the test dataset is quite small compared to the bench-
mark image captioning dataset, i.e., MSCOCO [24]. Therefore, it is
unclear about their effect on the large-scale dataset, especially when
evaluating the algorithm on a substantial number of novel concepts.
Yao et al. [47] incorporated the copying mechanism into LSTM to
describe novel objects in captions. However, these methods [1, 47]
use unpaired text training data to learn the representation of novel
objects. In this way, their text models will learn the concept of the
novel objects, which can not be considered as few-shot. Therefore,

their algorithm cannot deal with new objects that are unseen in
both image and text data.

2.2 Visual Question Answering

VOQA has attracted an increasing interest since Antol et al. [2]. A
simple baseline algorithm for VQA consists of two components
that (1) feed the concatenation of both the question text feature
and the image visual feature into RNN; (2) decode the concatenated
feature into the output answers [2]. It is essential for VQA models to
leverage how to combine image feature and text feature. A straight-
forward extension of the simple concatenation is joint embedding.
Many approaches follow this joint embedding idea [30, 36, 46, 52].
For example, Noh et al. [30] proposed to learn a CNN with a dynamic
parameter layer for VQA. Teney et al. [39] proposed to improve
VQA with structured representations of both scene contents and
questions. Hu et al. [15] proposed end-to-end module networks to
predict answers by reasoning. These supervised methods require
many manually labeled image-question-answer pairs for training.
Therefore, these approaches are not suitable to the cases, in which
only few training examples are available.

To tackle the novel object learning problem in VQA, some al-
gorithms [33] utilize the external text, e.g., book or Wikipedia, to
learn the word representation of novel objects. However, we study
a more difficult setting that the novel concept cannot appear in
any pre-training data. Teney et al. [38] leveraged a similarity-based
meta-learning approach for few-shot VQA. They only evaluate the
algorithm on the small VQA-Number dataset [11], in which the
number of classes is only seven. Therefore, they lack the evidence
of the effectiveness on the large-scale datasets.

2.3 Few-shot learning

The existing optimization algorithms require many labeled data to
update deep CNNs. Therefore, they perform poorly when only few
training examples are available. However, the model excelling at
learning from few examples can be useful in practical applications,
and this motivates the research on few-examples learning [6, 7, 42]
and few-shot learning [10, 29, 45]. Few-example learning allows
the use of unlabeled data, while few-shot learning not. In this paper,
we focus on the few-shot learning setting.

There are several types of notable methods for few-shot learn-
ing. Finn et al. [10] constrained the meta-learner to use ordinary
gradient descent to update the base-learner. Munkhdalai et al. [29]
investigated sophisticated weight update scheme for the few-shot
classification model. The most related work to ours is Finn et al. [10],
which only takes images as inputs. In contrast, ours can handle the
integrated image and text pair input. Moreover, to combat the side
effects of small training examples in the multi-modal scenario, we
use the text feature to generate dynamic parameters to normalize
the image features automatically.

3 METHODOLOGY

FPAIT is motivated by the recent techniques in meta-learning [10,
37] and conditional normalization [17, 31]. Meta-learning usually
focuses on few-shot image classification, whereas FPAIT extends
it into image and text joint modeling. Moreover, FPAIT takes the



advantages of conditional normalization to overcome the model
bias, which is introduced by few training examples.

3.1 Preliminary

For image captioning, we use the fill-in-the-blank setting [49]. This
kind of image captioning asks the algorithm to fill in the blank of
a description template for an image. For example, one description
template can be “The frisbee is [blank]”, which requires to fill in
the “[blank]” with the appearance of frisbee in a corresponding
image. This problem can be formulated as: given a fill-in-the-blank
description template Q and an image I, we need a function f that
takes Q and I as inputs to generate words or phrases A for this
blank. For VQA, given a natural language question about an image,
we need a function to generate the natural language answer to the
question. For the simplicity of notation, we denote the question as
Q, the function as f, and the image as I for VQA. Suppose that there
are C different classes of answers, the function f can be a neural
network that maps Q and I to the confidence scores over these C
candidate answers [46, 49]. In this way, the fill-in-the-blank and
VQA models can be formulated as: p = £(Q, 1), where p € RC is the
confidence score vector over C classes. Most existing algorithms
usually take y = arg max; p; as the the final prediction, where p;
denotes the i-th element of pand 1 < i < C.

Traditional image captioning and VQA settings. Suppose
the training set is 7/7%" = {(Q;,1;,A;) | 1 < i < n} and the testing
set is 77¢5¢ = {(Q;,1;,A;) | 1 < i < m}. Most image captioning
or VQA methods learn the parameters 6 of f by maximizing the
likelihood of the correct answers or blank words:

n
0 = arg méaxz log P(y: = Ailfp(Q1.1)), (1)
i=1

where i is the index of the training data, and P denotes the con-
ditional probability. To evaluate the performance, fy is applied to
each testing data to obtain the predicted answers or descriptions.
The evaluation performance is calculated by some evaluation met-
rics [24], e.g., METEOR for image captioning and WUPS for VQA.

3.2 Fast Parameter Adaptation

Instead of the traditional setup for Eq. (1), we consider the meta-
learning setup [10]. It has a distribution over tasks p(7)! and re-
quires the learned model can achieve good performance on differ-
ent task samples from p(7"), rather than a single individual task
in the traditional setup. In the K-shot learning setting, a new task
7 sampled from p(7") has only K training samples. Take the N-
way classification problem as an example, each task 7~ will contain
K X N training examples, i.e., K examples for each class. To solve
this meta-learning problem, FPAIT learns a good initialization of
fy to be able to quickly adapt to different tasks, which are sampled
from p(7"). The trained joint image-text learner fy should quickly
adapt its parameters based on these K training samples, and then
generalize well on new samples from 7. After the parameters of fy

Suppose the number of answer classes in the training set of the traditional setup is
C, a task sampled from p(7) in the N-way K-shot meta-learning setup is that (1)
randomly sample N classes from the total C classes; (2) for these sampled N classes,
randomly sample 2 X K data-points for each class; (3) the training set of this task
consists of the first K data-points and the testing set consists of the last K data-points.

Algorithm 1 Meta-Training Procedure of FPAIT (N-way K-shot)

Input: p(7): distribution over tasks
Input: net: the joint image-text learner with the parameter 0

1: initialize 0

2: while not converge do

3. Sample batch of tasks, in which each task is 7; ~ p(7")

4:  for all 7; do

5: Sample K x N examples D; = {IV), ), AU)} from 7;

6 Compute gradient and adapt 6 into 0;. via Eq. (2).

7: Sample K X N new examples Z); = {1V, QW), AV} from

Ti

8: end for

9:  Compute the meta gradient Vo L, (f,) for 0

10:  Update 0 based on the meta gradierllt via Adam to optimize

Eq. (3)

11: end while

Output: a good initialization parameter

are adapted into a specific 7°, we will evaluate fy on new examples
sampled from this 7.

Formally, FPAIT aims to learn good initial parameters 6 of the
joint image-text learner fy, such that fy can be fine-tuned by a
small number of gradient-based updating steps on the new tasks.
To be formal, given a new task 7;, we denote the parameters as 6,
and the parameters after adaptation as 0. Suppose that we use one
gradient update of the basic Stochastic Gradient Descent (SGD) [32]
for the parameter adaptation, then 0 is computed as:

0; = Opt(0,T7) = 0 — aVy Lr,(fp), (2)

where o denotes the learning step size, Vg.Lq; (fg) represents the
gradient of parameters 6 w.r.t. the loss function £, and £ is the
likelihood loss in Eq. (1). Here, we use one gradient step for the
notation simplicity, whereas the parameter adaptation algorithm
Opt can also use multiple gradient steps of SGD or Adam [18].

We show the meta-training procedure in Figure 2. During train-
ing, we optimize the test error of the adapted parameters 9;. for
various of different tasks 7; from the distribution p(7). Such objec-
tive function can be formulated as :

min > Lylfy) = ), Lrlomer) O
Ti~p(T) Ti~p(T)

This objective is computed based on the adapted parameters 6;, but
we should notice that it will finally optimize the parameters 6 of
the joint image-text learner. Therefore, FPAIT can optimize 6 to
generalize well on a new task after several gradient-based update
steps. The gradient of the parameters 6 in Eq. (3) is computed
as Vg Xq; p(7) L7:(£y)- Using this gradient, we can apply any
gradient-based optimilzation algorithms to update the parameters
0, such as Nesterov SGD or Adam.

3.3 FPAIT Architecture and Algorithm

Encode Image. To leverage the advantage of deep learning, we
use CNN to encode images into features [13, 16]. Similar to [10, 37],
we design a small CNN to generate the image features. As shown
in Figure 3, it consists of four convolutional blocks, in which each
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Figure 3: The joint image-text learner in FPAIT consists of two parts, the representation module and the prediction module.
The representation module jointly encodes both image and text inputs into one feature vector. The typical way is to concate-
nate the image CNN feature and text embedding feature, as Figure 3(a). In contrast, FPAIT uses text features to dynamically
generate parameters for a transformation function. This transformation function can adjust the intermediate features in the
CNN model. In this way, FPAIT can effectively model both image and text information, and combat the side effects of a few
training examples in few-shot learning. The prediction module takes the image-text representation as input to generate the

final classification probability.

block has a 3 X 3 convolutional layer with batch normalization (BN)
and ReLU. The feature channels in these four blocks are 64, 96, 128,
256, respectively. There are three pooling layer with stride of 2
after the first three convolutional blocks, and one global pooling
layer after the last convolutional block. Therefore, the output of
this CNN is a 256-dimension feature vector.

Encode Text. In the image captioning task (fill-in-the-blank),
the text input is the fill-in-the-blank description template. For ex-
ample, a template can be “<blank> is walking on the beach” for
the image in Figure 3. In the VQA task, the text input is a natural
language question. The typical way to encode text is first to use
the word embedding to transfer each word into a feature vector,
and then input these features into an RNN sequentially. Some re-
searchers also use temporal convolutional network [23] to replace
RNN. In this paper, we compare different kinds of encoders for text
in the experiment section, and we constrain the output of these
encoders to be a 512-dimension feature vector.

FPAIT. The joint image-text learner needs to fuse the text fea-
tures and image features effectively. A classical fusion method is
to concatenate the image feature and text feature, as shown in Fig-
ure 3(a). However, this kind of model requires a large amount data
to train, but few-shot learning only has a few training examples. It
will affect the performance due to the large model bias introduced
by the small number of training examples. Moreover, in the multi-
modal scenario, the model should not only learn the image/text
information but also their relationship, in which the model bias
problem becomes more severe. The classical fusion method, e.g.,

concatenation, product, and attention, might not be robust to such
few-shot multi-modal scenario. To alleviate the model bias problem
in few-shot multi-modal scenario, we apply a transformation func-
tion with dynamic parameters. We have multiple choices for this
transformation function, such as a convolutional layer or a fully
connected layer. In this paper, we choose a Channel-wise Linear
Transformation (CLT). Suppose the text encoder as g, it takes the
text Q as input to generate the text feature g(Q). For the features
of the c-th layer in CNN, the parameters of CLT are y. and S, as
follows:

Ye = 8y (8(Q); Be = gp(8(Q)), 4
CLT(F.) = Fe X ye + fe, (5)

where gy, and gz are fully connected layers. Fc denotes the features
of the c-th CNN layer. y, and . are two vectors, of which the
length is the same with the channel of F.. As shown in Figure 3(b),
we apply the CLT to the features after each BN layer. In this way,
the image-text representation is the CNN output.

To predict the final output of FPAIT, we use a prediction part
with three fully connected layers, as shown in Figure 3(c). The
output dimensions of the first two fully connected layers are 512
and 512. The last fully connected layer outputs the probability over
the candidate answers or blanks.

Overall Algorithm. The image-text learner in FPAIT consists
of two parts, i.e., Figure 3(b) and Figure 3(c). We denote this model
as f that takes the image I and text Q as inputs. The loss function
of base task is a cross-entropy loss between the prediction f(I, Q)



and the ground truth answer/blank A. The training algorithm is
shown in Algorithm 1.

Discussions about Pre-training. We do not use the ImageNet
[20] to pre-train the CNN. The image classes of ImageNet contain
the visual concepts in image captioning or VQA datasets. If we use
ImageNet for pre-training, the CNN will know many concepts, e.g.,
dolphin and dog. It is possible that these concepts are the target
new concepts in image captioning or VQA tasks. In this case, it can
not be considered as few-shot setting.

Discussions about CNN model in FPAIT. We follow [10, 37]
to use a similar small CNN model rather than large CNNs, such
as ResNet-101 [13]. The large CNN models can easily overfit the
few-shot training examples and be harmful to the performance.

4 EXPERIMENTAL EVALUATION

We evaluate the proposed algorithm on two benchmark datasets,
i.e., Toronto COCO-QA [35] for VQA and MSCOCO Captioning [24]
for image captioning. We first introduce the details of these datasets
in Section 4.1 and the experimental settings in Section 4.2. Later, we
compare with some state-of-the-art algorithms [44] in Section 4.3.
Lastly, qualitative results and analysis are shown in Section 4.4.

4.1 Benchmark Datasets

Toronto COCO-QA [35] contains 78,736 training questions, 38,948
testing questions, and 123,287 images in total. Each question is
associated with one answer and one image. Each question is also
labeled with one QA type, and there are four different QA types, i.e.,
object, number, color, and location. We use the following five steps
for pre-processing to clean up the questions and answers: (1) Merge
the official training and testing sets into one VQA set, denoted
as TVQA~1 (2) From 7VQA~1 select the image-question pairs,
which is labeled by the object type, as 7V 9472, (3) From 7V 2472,
select the image-question pairs, in which the answer occurs more
than four times, as 77V 2473, (4) From 7V 9473, select every image-
question pair, in which all words in this question occur more than
four times in all words of 77V9A™3, as 77VQA~4 (5) 7VQA~4 jg
a clean VQA dataset. We randomly select eighty percent of this
clean VQA dataset as the training set and the rest of this clean VQA
dataset as the testing set. Consequently, there are 57,834 questions
in the training set with 256 different kinds of words in the answer;
there are 13,965 questions in the testing set with 65 different kinds
of words in the answer. Note that if one word is in the answers of
the training set, then any answer of the testing set cannot contain
this word.

MSCOCO Captioning [24] contains 82,783 training, 40,504 val-
idation, and 40,775 testing images. Each image has around 5 crowd-
sourced captions. We pre-process MSCOCO Captioning to generate
the fill-in-the-blank dataset, denoted as COCO-FITB. There are four
steps. (1) Prepare image-caption pairs. We use the processed cap-
tioning data from Lu et al. [26], which has 616,767 image-caption
pairs. (2) Collect candidate blank words B. Following Lu et al. [26],
we use their manually selected 413 fine-grained classes for the
candidate “blank”s. We select classes with only one word as the can-
didate blank words B. (3) Generate image and description template
pairs. We first select the image-caption pairs with only one word
in the candidate blanks B. Then, if a word in captions is in B, this

Table 1: Statistics on two experimental benchmarks.

Toronto COCO-QA| COCO-FITB
Task VOQA Image Captioning
. Meta-Train 57,834 181,844
#Pair .
Meta-Testing 13,965 34,919
#Class Meta-Train 256 159
Meta-Testing 65 43

word will be replaced by “<blank>". (4) We randomly select eighty
percent of the filtered dataset as the training set, and the rest as the
testing set. Lastly, there are 181,844 image-caption pairs with 159
blank word classes for training, 34,919 image-caption pairs with 43
blank word classes for testing. Note that the blank word indicates
the ground truth labeled to fill in the blank. The blank words in
the training set are different from that of in the testing set. Besides,
blank words are not in the captions.

Table 1 shows the statistics on two benchmarks, which are public
available at GitHub?. These two datasets are much larger than
previous few-shot VQA datasets.

4.2 Experimental Settings

Few-shot VQA and image captioning setup. In few-shot image
captioning (fill-in-the-blank), given a task 7 with a few training
examples, the joint image-text learner should predict the blank for
a description template. In few-shot VQA, given a task 7~ with a few
training examples, the joint image-text learner should predict an
answer for an image-question pair. Following the common setting
in few-shot learning [10, 37, 40], we use the N-way K-shot setting,
where N € {5,10,20} and K € {1,5}. For N-way K-shot fill-in-
the-blank, there are N different kinds of blanks, and each blank
class has K training examples. For N-way K-shot VQA, there are N
different kinds of answers, where each answer class has K training
examples. Therefore, we view both image captioning and VQA as
the classification problem. Given an image-question pair for VQA
or an image-template pair for fill-in-the-blank, the joint image-text
learner takes the image and text as inputs to predict N confidence
scores, i.e., the probability of being the i-th blank/answer class.

Details of Compared Algorithms. We compare our algorithm
with six different state-of-the-art methods in Table 2 and Table 3.
These compared algorithms can be categorized into two different
classes. (1) One is to first pre-train the model on the training setting
in the classical supervised learning, denoted as pre-training task.
Given one new task, the last classification layer will be randomly
initialized since the classes are different between the pre-training
task and the new task. Then we fine-tune the model on the new
task with only few training examples and evaluate its performance.
This kind of method is indicated as “Fine-tuning” in Table 2 and
Table 3. (2) The other is using the Algorithm 1 to train the model in
the meta-learning setting, as introduced in Section 3.2. We indicate
the training set in the meta-learning setting as the meta-training
set.

Architectures. For different methods, we use the same CNN
architecture as introduced in Section 3.3 to make a fair comparison.

https://github.com/D-X-Y/FPAIT
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Table 2: Comparison of accuracy on Toronto COCO-QA for few-shot visual question answering. “w/0” indicates without.

5-way accuracy 10-way accuracy 20-way accuracy
Toronto COCO-QA [35] 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
CNN+RNN (Fine-tuning) 52.11 65.03 40.38 51.52 28.06 37.17
CNN+GRU (Fine-tuning) 53.38 66.12 42.71 53.99 29.24 40.56
CNN+LSTM (Fine-tuning) 53.50 66.65 40.33 54.55 29.99 43.05
CNN+TCN (Fine-tuning) 57.19 71.82 44.96 58.83 33.66 47.17
CNN+TCN+CLT (Fine-tuning) 56.72 70.10 43.76 59.19 32.92 46.97
FPAIT w/o CLT 59.38 71.92 45.11 60.20 34.09 47.91
FPAIT 60.61 72.17 46.37 60.92 34.54 48.20

Table 3: Comparison of accuracy on COCO-FITB for few-shot image captioning. “w/0” indicates without.

5-way accuracy 10-way accuracy 20-way accuracy
COCO-FITB [24] 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
CNN+RNN (Fine-tuning) 51.14 61.37 37.92 49.18 25.97 34.74
CNN+GRU (Fine-tuning) 53.16 62.34 39.16 50.92 29.64 37.29
CNN+LSTM (Fine-tuning) 50.12 62.39 39.30 49.50 28.53 37.10
CNN+TCN (Fine-tuning) 59.95 70.32 46.59 58.41 36.26 45.67
CNN+TCN+CLT (Fine-tuning) 57.89 69.84 45.39 57.94 34.89 44.42
FPAIT w/o CLT 60.13 70.88 47.10 59.31 37.09 46.91
FPAIT 61.01 71.13 47.79 60.91 38.17 47.32

To encode the text information, we analyze five different kinds of
models as follows: (1) The basic one-layer RNN with hidden state
dimension of 512 and dropout ratio of 0.5, denoted as RNN. (2)
The one-layer LSTM [14] with hidden state dimension of 512 and
dropout ratio of 0.5, denoted as LSTM. (3) The one-layer GRU [4]
with hidden state dimension of 512 and dropout ratio of 0.5, denoted
as GRU. (4) The one-block TCN [3] with hidden state dimension
of 512 and dropout ratio of 0.5, denoted as TCN. (5) The TCN
architecture integrated with the CLT module in FPAIT, denoted as
TCN+CLT. Note that in Table 2 and Table 3, CNN+TCN+CLT has
the same architecture with FPAIT, and CNN+TCN has the same
architecture with “FPAIT w/o CLT”. However, CNN+TCN+CLT and
CNN+TCN use the fine-tuning training strategy, but FPAIT and
“FPAIT w/o CLT” use the meta-learning training strategy.

4.3 Results on VQA and Image Captioning

Training Strategy. To train the fine-tuning method, we first train
the network on the training set by Adam with 50 epochs. The
learning rate is 0.001 and the batch size is 32. When the new task
with N X K training examples comes, we only retrain the last
classification layer of the network and fix the rest of the network.
When retraining, we use the Adam optimizer with learning rate of
0.001 and 100 epochs. To train FPAIT and “FPAIT w/o CLT”, we use
the baseline model as the initialization (step 1 in Alg. 1), and then
we use the SGD with learning rate of 0.01 and step of 5 for the inner
loop updating (Eq. (2)). For the meta-training, we use Adam with
batch size of 32 and learning rate of 0.001 to optimize the model
(step 10 in Algorithm 1). For Toronto COCO-QA and COCO-FITB,
we use the same training strategies.

Results on Image Captioning. We show the comparison re-
sults on MSCOCO Captioning in Table 3. For the fine-tuning meth-
ods, CNN+RNN is the simplest model and achieves the worst per-
formance. The performance of CNN+GRU is similar to the perfor-
mance of CNN+LSTM, and is higher than CNN+RNN by about 1%
absolute accuracy. The models, which have temporal convolutional
neural network to encode the text representation, are CNN+TCN
and CNN+TCN+CLT. These two models achieve much higher per-
formance compared to CNN with RNN/GRU/LSTM. On average,
the accuracies of CNN+TCN are higher than CNN+LSTM by about
5% absolute accuracy. CNN+TCN obtains a slightly higher accu-
racy than CNN+TCN+CLT. This can be caused by that, under the
fine-tuning setting, CNN+TCN+CLT overfits the pre-training set,
and thus the feature learned by CNN+TCN+CLT has a worse gen-
eralization ability. In Table 3, FPAIT is superior to all compared
algorithms. This implies that FPAIT is more suitable for the few-
shot multi-modal scenario than fine-tuning.

Results on VQA. We show the comparison of accuracies on
COCO-FITB in Table 2. We can obtain the same conclusion as in
Toronto COCO-QA. (1) The meta-learning algorithm used in FPAIT
is superior to the fine-tuning method. (2) The temporal convolution
neural network is superior to RNN for modeling the text represen-
tation in the few-shot multi-modal scenario. (3) FPAIT achieves the
best performance compared to all compared algorithms.

Fast learning ability. FPAIT can quickly adapt the learned
good initialization into a new task by only a few gradient steps
(usually five steps in experiments). Compared to the baseline meth-
ods, which requires about 100 gradient steps for adaptation, FPAIT
is more efficient and can learn fast.

Robust to few examples. In experiments, FPAIT can use one
training sample per class to train a robust model. By evaluating
on thousands of different samples, FPAIT can achieve the accuracy
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Figure 4: Qualitative results of FPAIT on the Toronto COCO-QA testing set.

of about 50%. This validates that FPAIT is robust to few training
examples.

4.4 Qualitative Analysis

We show the qualitative results of FPAIT in Figure 4. We should
notice that few-shot multi-modal learning is very difficult. During
training, in the fifth examples of the i-th task, the carrot (the answer
of the question) is blocked by the hand and not easy to recognize,
but the model must quickly learn how to reason from the question to
a tiny region in the image. In the first testing example, the question
is "what is the hand feeding to a giraffe”, and the model needs to
understand the question and then find the corresponding region in
the image as well as recognizing the object. Note that the model can
only see one carrot example during training, but should learn both
carrot representation and its relationship to questions. From the
visualized results, FPAIT can associate the image and text inputs,
and predict an accurate answer well. One failure case is about
“helicopter”. The training helicopter example is a black large one in
the warehouse. However, the testing helicopter example is a tiny
red one with a different model flying in the sky. FPAIT fails because
this example is quite different from the training examples.

5 CONCLUSION

We propose FPAIT for the few-shot multi-modal learning. FPAIT
leverages a fast parameter adaptation algorithm to train an joint
image-text learner in the few-shot multi-modal scenario. In this
way, FPAIT can learn a good parameter initialization, such that the
learner can quickly adapt to new tasks using a few gradient-based
updating steps. The classical models for image and text require a
large amount of training data. When the training set is extremely
small, the performance of these models will significantly degenerate.
To alleviate the side effects of the small training set, FPAIT equips
the visual model with dynamic linear transformations, of which
parameters are generated from text features. In experiments, we
focus on few-shot image captioning and few-shot VQA. On both
tasks, FPAIT is superior to the state-of-the-art algorithms.
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