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Abstract. Deep clustering utilizes deep neural networks to learn fea-
ture representation that is suitable for clustering tasks. Though demon-
strating promising performance in various applications, we observe that
existing deep clustering algorithms either do not well take advantage of
convolutional neural networks or do not considerably preserve the local
structure of data generating distribution in the learned feature space.
To address this issue, we propose a deep convolutional embedded clus-
tering algorithm in this paper. Specifically, we develop a convolutional
autoencoders structure to learn embedded features in an end-to-end way.
Then, a clustering oriented loss is directly built on embedded features
to jointly perform feature refinement and cluster assignment. To avoid
feature space being distorted by the clustering loss, we keep the decoder
remained which can preserve local structure of data in feature space. In
sum, we simultaneously minimize the reconstruction loss of convolutional
autoencoders and the clustering loss. The resultant optimization prob-
lem can be effectively solved by mini-batch stochastic gradient descent
and back-propagation. Experiments on benchmark datasets empirically
validate the power of convolutional autoencoders for feature learning and
the effectiveness of local structure preservation.

Keywords: Deep Clustering, Convolutional Autoencoders, Convolution-
al Neural Networks, Unsupervised Learning

1 Introduction

Given a large collection of unlabeled images represented by raw pixels, how to
divide them into K groups in terms of inherent latent semantics? The traditional
way is first extracting feature vectors according to domain-specific knowledges
and then employing clustering algorithm on the extracted features. Thanks to
deep learning approaches, some work successfully combines feature learning and
clustering into a unified framework which can directly cluster original images
with even higher performance. We refer to this new category of clustering algo-
rithms as Deep Clustering.
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Some researches have been conducted, but what are the critical ingredients
for deep clustering still remains unclear. For example, what types of neural
networks are proper for feature extraction? How to provide guidance information
i.e. to define clustering oriented loss function? Which properties of data should
be preserved in feature space? In this paper, we focus on the first and third
questions and conclude that Convolutional AutoEncoders (CAE) and locality
property are two of key ingredients for deep clustering algorithms.

The most widely used neural networks in deep clustering algorithms are S-
tacked AutoEncoders (SAE) [12, 15, 17, 11]. The SAE requires layer-wise pre-
training before being finetuned in an end-to-end manner. When the layers go
deeper, the pretraining procedure can be tedious and time-consuming. Further-
more, SAE is built with fully connected layers, which are ineffective for dealing
with images. The work in [7] is the first trial to train CAE directly in an end-
to-end manner without pretraining.

In terms of properties of data to preserve in feature space, the primitive
work considers sparsity or graph constraints by adding prior knowledges to the
objective [14, 12]. They are two-stage algorithms: feature learning and then clus-
tering. Latter, algorithms that jointly accomplish feature learning and clustering
come into being [15, 18]. The Deep Embedded Clustering (DEC) [15] algorithm
defines an effective objective in a self-learning manner. The defined clustering
loss is used to update parameters of transforming network and cluster centers
simultaneously. However, they ignore the preservation of data properties, which
may lead to the corruption of feature space. We improve DEC algorithm by
preserving local structure of data generating distribution and by incorporating
convolutional layers.

Our key idea is that CAE is beneficial to learning features for images and
preserving local structure of data avoids distortion of feature space. The contri-
butions are:

– A Convolutional AutoEncoders (CAE) that can be trained in end-to-end
manner is designed for learning features from unlabeled images. The de-
signed CAE is superior to stacked autoencoders by incorporating spacial
relationships between pixels in images. We show that convolutional layer,
convolutional transpose layer and fully connected layer are sufficient for con-
structing an effective CAE.

– The local structure preservation is considered during tuning network param-
eters according to clustering oriented loss function. We demonstrate that
preserving local structure helps stabilize the training procedure and avoid
the corruption of feature space.

– We propose the Deep Convolutional Embedded Clustering (DCEC) algo-
rithm to automatically cluster images. The DCEC takes advantages of CAE
and local structure preservation. And the resulting optimization problem
can be efficiently solved by mini-batch stochastic gradient descent and back-
propagation.

– Extensive experiments are conducted on benchmark image datasets. The
results validate the effectiveness of CAE and local structure preservation.
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2 Convolutional AutoEncoders

A conventional autoencoder is generally composed of two layers, corresponding
to encoder fW (·) and decoder gU (·) respectively. It aims to find a code for each
input sample by minimizing the mean squared errors (MSE) between its input
and output over all samples, i.e.

min
W,U

1

n

n∑
i=1

‖gU (fW (xi))− xi‖22 (1)

For fully connected autoencoder,

fW (x) = σ(Wx) ≡ h
gU (h) = σ(Uh) (2)

where x and h are vectors, and σ is activation function like ReLU, sigmoid. Note
that the bias is omitted for convenient description. After training, the embedded
code h serves as the new representation of input sample. Then h can be fed
into another autoencoder to form Stacked AutoEncoders (SAE). To exploit the
spacial structure of images, convolutional autoencoder is defined as

fW (x) = σ(x ∗W ) ≡ h
gU (h) = σ(h ∗ U) (3)

where x and h are matrices or tensors, and “∗” is convolution operator. The
Stacked Convolutional AutoEncoders (SCAE) [9] can be constructed in a similar
way as SAE.

We propose a new Convolutional AutoEncoders (CAE) that does not need
tedious layer-wise pretraining, as shown in Fig. 1. First, some convolutional layers
are stacked on the input images to extract hierarchical features. Then flatten
all units in the last convolutional layer to form a vector, followed by a fully
connected layer with only 10 units which is called embedded layer. The input
2D image is thus transformed into 10 dimensional feature space. To train it in
the unsupervised manner, we use a fully connected layer and some convolutional
transpose layers to transform embedded feature back to original image. The
parameters of encoder h = Fω(x) and decoder x′ = Gω′(h) are updated by
minimizing the reconstruction error:

Lr =
1

n

n∑
i=1

‖Gω′(Fω(xi))− xi‖22 (4)

where n is the number of images in dataset, xi ∈ R2 is the ith image.
The key factor of the proposed CAE is the aggressive constraint on the

dimension of embedded layer. If the embedded layer is large enough, the network
may be able to copy its input to output, leading to learning useless features. The
intuitive way of avoiding identity mapping is to control the dimension of latent
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Fig. 1. The structure of proposed Convolutional AutoEncoders (CAE) for MNIST. In
the middle there is a fully connected autoencoder whose embedded layer is composed
of only 10 neurons. The rest are convolutional layers and convolutional transpose layers
(some work refers to as Deconvolutional layer). The network can be trained directly in
an end-to-end manner.

code h lower than input data x. Learning such under-complete representations
forces the autoencoder to capture the most salient features of the data. Thus
we force the dimension of embedded space to equal to the number of clusters of
dataset. In this way, the network can be trained directly in an end-to-end manner
even without any regularizations like Dropout [13] or Batch Normalization [4].
The learned compact representations are proved effective for clustering task.

Another factor is that we utilize convolutional layer with stride instead of
convolutional layer followed by pooling layer in the encoder, and convolutional
transpose layer with stride in the decoder. Because the convolutional (transpose)
layers with stride allow the network to learn spacial subsampling (upsampling)
from data, leading to higher capability of transformation.

Note that we do not aim at the state-of-the-art clustering performance, so we
do not adopt fancy layers or techniques like BatchNormalization layer, LeakyRe-
Lu activation or layer-wise pretraining.We only show the CAE is superior to fully
connected SAE in image clustering task.

3 Deep Convolutional Embedded Clustering

As introduced in Sect. 2, the CAE is a more powerful network for dealing with
images compared with fully connected SAE. So we extend Deep Embedded Clus-
tering (DEC) [15] by replacing SAE with CAE. Then we argue that the embed-
ded feature space in DEC may be distorted by only using clustering oriented loss.
To this end, the reconstruction loss of autoencoders is added to the objective
and optimized along with clustering loss simultaneously. The autoencoders will
preserve the local structure of data generating distribution, avoiding the corrup-
tion of feature space. The resulting algorithm is termed as Deep Convolutional
Embedded Clustering (DCEC). In the following sections, we first give the struc-



Deep Clustering with Convolutional Autoencoders 5

ture of DCEC, then introduce the clustering loss and local structure preservation
mechanism in detail. At last, the optimization procedure is provided.

3.1 Structure of Deep Convolutional Embedded Clustering

The DCEC structure is composed of CAE (see Fig. 1) and a clustering layer
which is connected to the embedded layer of CAE, as depicted in Fig. 2. The
clustering layer maps each embedded point zi of input image xi into a soft
label. Then the clustering loss Lc is defined as Kullback-Leibler divergence (KL
divergence) between the distribution of soft labels and the predefined target
distribution. CAE is used to learn embedded features and the clustering loss
guides the embedded features to be prone to forming clusters.

The objective of DCEC is

L = Lr + γLc (5)

where Lr and Lc are reconstruction loss and clustering loss respectively, and
γ > 0 is a coefficient that controls the degree of distorting embedded space.
When γ = 1 and Lr ≡ 0, (5) reduces to the objective of DEC [15].

clustering layer

Encoder

Decoder

𝑥

𝑥′

𝑞
𝐿 = 𝐿𝑟 + 𝛾𝐿𝑐
𝐿𝑟 = 𝑥 − 𝑥′ 2

2

𝐿𝑐 = 𝐾𝐿(𝑝||𝑞)

Fig. 2. The structure of deep convolutional embedded clustering (DCEC). It is com-
posed of a convolutional autoencoders and a clustering layer connected to embedded
layer of autoencoders.

3.2 Clustering Layer and Clustering Loss

The clustering layer and loss are directly borrowed from DEC [15]. We briefly
review their definitions for completeness of DCEC structure.

The clustering layer maintains cluster centers {µj}K1 as trainable weights and
maps each embedded point zi into soft label qi by Student’s t-distribution [8]:

qij =
(1 + ‖zi − µj‖2)−1∑
j(1 + ‖zi − µj‖2)−1

(6)
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where qij is the jth entry of qi, representing the probability of zi belonging to
cluster j.

The clustering loss is defined as

Lc = KL(P‖Q) =
∑
i

∑
j

pij log
pij
qij

(7)

where P is the target distribution, defined as

pij =
q2ij/

∑
i qij∑

j

(
q2ij/

∑
i qij

) (8)

3.3 Reconstruction Loss for Local Structure Preservation

DEC [15] abandons the decoder and finetunes the encoder using clustering loss
Lc. However, we suppose that this kind of finetuning could distort the embedded
space, weaken the representativeness of embedded features and thereby hurt
clustering performance. Therefore, we propose to keep the decoder untouched
and directly attach the clustering loss to embedded layer.

As shown in [12] and [3], autoencoders can preserve local structure of data
generating distribution. Under this condition, manipulating embedded space s-
lightly using clustering loss Lc will not cause corruption. So the coefficient γ is
better to be less than 1, which will be empirically fixed to 0.1 for all experiments.

3.4 Optimization

We first pretrain the parameters of CAE by setting γ = 0 to get meaningful
target distribution. After pretraining, the cluster centers are initialized by per-
forming k-means on embedded features of all images. Then set γ = 0.1 and
update CAE’s weights, cluster centers and target distribution P as follows.

Update autoencoders’ weights and cluster centers. As ∂Lc

∂zi
and ∂Lc

∂µj

are easily derived according to [15], then the weights and centers can be updated
by using backpropagation and mini-batch SGD straightforwardly.

Update target distribution. The target distribution P serves as ground
truth soft label but also depends on predicted soft label. Therefore, to avoid
instability, P should not be updated at each iteration using only a batch of
data. In practice, we update target distribution using all embedded points every
T iterations. See (6) and (8) for the update rules.

The training process terminates if the change of label assignments between
two consecutive updates for target distribution is less than a threshold δ.

4 Experiment

4.1 DataSets

The proposed DCEC method is evaluated on three image datasets: MNIST-
full: The MNIST dataset [6] consists of total 70000 handwritten digits of 28x28
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pixels. MNIST-test: The test set of MNIST, containing 10000 images. USPS:
The USPS dataset contains 9298 gray-scale handwritten digit images with size
of 16x16 pixels.

4.2 Experiment Setup

Comparing methods. We demonstrate the effectiveness of our DCEC algo-
rithm mainly by comparing with DEC [15]. The two-stage deep clustering al-
gorithm is denoted as SAE+k-means (or CAE+k-means), i.e. performing
k-means on embedded features of pretrained SAE (or CAE). IDEC [16] denotes
the algorithm that adds reconstruction loss Lr to DEC’s objective. Note that the
difference between the result of IDEC [16] reported in Table 1 and that in their
paper [16] is due to the different pretraining strategy (see next paragraph for
details). DEC-conv is the structure that directly replaces SAE in DEC with
CAE but without Lr. DCEC is the proposed structure, which adds both Lr
and convolutional layers to DEC. For the sake of completeness, two traditional
and classic clustering algorithms, k-means and Spectral Embedded Clustering
(SEC) [10], are also included in comparison.

Parameters setting. For SAE+k-means, DEC [15] and IDEC [16], the en-
coder network is set as a fully connected multilayer perceptron (MLP) with
dimensions d-500-500-2000-10 for all datasets, where d is the dimension of input
data (features). And the decoder network is a mirror of encoder, i.e. a MLP with
dimensions 10-2000-500-500-d. Except for input, output and embedding layers,
all internal layers are activated by ReLU nonlinearity function [2]. The SAE is
pretrained end-to-end for 400 epochs using SGD with learning rate 0.01 and
momentum 0.9.

For CAE+k-means, DEC-conv and DECE, the encoder network structure is
conv5

32 → conv5
64 → conv3

128 → FC10 where convkn denotes a convolutional layer
with n filters, kernel size of k × k and stride length 2 as default. The decoder
is a mirror of encoder. The CAE is pretrained end-to-end for 200 epochs using
Adam [5] with default parameters. The convergence threshold is set to δ = 0.1%.
And the update intervals T = 140. Our implementation is based on Python and
Keras [1] and the code is available at https://github.com/XifengGuo/DCEC.

Evaluation Metric. All clustering methods are evaluated by clustering ac-
curacy (ACC) and Normalized Mutual Information (NMI) which are widely used
in unsupervised learning scenario.

4.3 Results

The clustering results are shown in Table 1. Our DCEC algorithm outperforms
all opponents in terms of ACC and NMI on all datasets.

Advantage of CAE. SAE+k-means, DEC and IDEC share the same pre-
trained SAE network structure and weights. As a counterpart, CAE+k-means,
DEC-conv and DCEC use the same CAE structure and weights. By comparing
each pair of equivalents (like IDEC and DCEC), we see that methods using CAE
outperform their counterparts that use SAE by a large margin. Notice that, at
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Table 1. Comparison of clustering performance in terms of accuracy (%). The results
of DEC† [15] is obtained by using publicly available code. DEC shares the pretrained
weights with SAE+k-means and IDEC [16] for fair comparison.

Methods
MNIST-full MNIST-test USPS
ACC NMI ACC NMI ACC NMI

k-means 54.24 48.52 54.63 50.18 66.82 62.66
SEC [10] 80.37 – – – – –

DEC† [15] 86.55 83.72 82.36 79.58 73.68 75.29

SAE+k-means 78.17 71.46 66.81 59.59 61.65 57.27
DEC 84.08 81.28 69.94 67.69 69.28 70.18
IDEC [16] 84.21 83.81 71.45 69.40 72.10 73.23

CAE+k-means 84.90 79.27 79.00 72.55 74.15 73.30
DEC-conv 88.63 87.59 84.83 82.62 77.90 81.08
DCEC 88.97 88.49 85.29 83.61 79.00 82.57

pretraining stage, CAE is trained for 200 epochs while SAE for 400 epochs. And
at clustering stage, methods with CAE converge much faster than SAE coun-
terparts. This demonstrates that CAE is superior to SAE in image clustering
task.

Local structure preservation. We can see the effect of adding reconstruc-
tion loss by comparing DEC and DEC-reco (or DEC-conv and DCEC). The
clustering performance of IDEC are higher than that of DEC. And the same
is true for DEC-conv and DCEC. We assume that this superiority is due to
the fact that autoencoders can preserve local structure of data by minimizing
the reconstruction loss. We validate this property by visualizing the embedded
features. The t-SNE [8] visualization on a random subset of MNIST-full with
1000 samples is shown in Fig. 3. For DCEC, the “shape” of each cluster is al-
most maintained compared with pretrained CAE. Furthermore, when you focus
on clusters colored by red and blue (digits 4 and 9), in DCEC they are still
somehow separable but totallydistinguishable in DEC-conv. It can be conclud-
ed that the autoencoder can preserve the intrinsic structure of data generating
distribution and hence help clustering loss to manipulate the embedded feature
space appropriately. By comparing DEC and IDEC, the same conclusion was
conducted in [16].

5 Related Work

Existing deep clustering algorithms broadly fall into two categories: (i) two-
stage work that applies clustering after having learned a representation, and (ii)
approaches that jointly optimize the feature learning and clustering.

The former category of algorithms directly take advantage of existing un-
supervised deep learning frameworks and techniques. For example, [14, 12] use
autoencoder to learn low dimensional features of original graph or data sam-
ples, and then runs conventional clustering algorithm like k-means and non-
parametric maximum-margin clustering on learned representations.
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Pretrained CAE DEC-conv DCEC

Fig. 3. Visualization of clustering results on subset of MNIST-full. Different colors
mark different clusters. The data structure in DCEC is preserved better than DEC-
conv. Note points with red and blue colors, they are totally mixed together in DEC-conv
while still somehow separable in our DCEC.

The other category of algorithms try to explicitly define a clustering loss,
simulating classification error in supervised deep learning. [18] proposes a recur-
rent framework, which integrates feature learning and clustering into a single
model with a unified weighted triplet loss and optimizes it end-to-end. DEC [15]
learns a mapping from the observed space to a low-dimensional latent space with
SAE, which can obtain feature representations and cluster assignments simulta-
neously. DBC [7] improves DEC by replacing SAE with CAE. And IDEC [16]
adds reconstruction loss of autoencoders to the objective of DEC [15].

The proposed DCEC falls into the second category. It excels [18] by sim-
plicity without recurrent and outperforms DEC in terms of clustering accuracy
and feature’s representativeness. DBC [7] studied the CAE but still neglected
the local structure preservation problem. While IDEC [16] did not incorporate
convolutional layers. Our DCEC takes care of both convolutional networks and
local structure preservation.

6 Conclusion

This paper proposes a Deep Convolutional Embedded Clustering (DCEC) algo-
rithm to take advantage of both convolutional neural networks and local struc-
ture preservation mechanism. DCEC is a framework that jointly learns deep rep-
resentations of images and performs clustering. It learns good features with local
structure preserved by using Convolutional AutoEncoders (CAE) and manipu-
lates feature space by incorporating a clustering oriented loss. The experiment
empirically demonstrates the effectiveness of DCEC on image clustering task
and validates that both convolutional networks and local structure preservation
mechanism are vital to deep clustering for images. The future work include con-
ducting more experiments on high dimensional image datasets and exploring
more advanced convolutional networks.
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