For Xerox Internal Use Only -- December 15, 1980

ALTO OPERATING SYSTEM
REFERENCE MANUAL

Compiled on: December 15, 1980

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

For Xerox Internal Use Only -- December 15, 1980
Alto Operating System May 5, 1980 2

Alto Operating System Reference Manual

OS version 19/16
1. Introduction
This manual describes the operating system for the Alto. The manual will be revised asthe system
changes. Parts of the system which are likely to be changed are so indicated; users should try to isolate
their use of these facilities in routines which can easily be modified, or better yet, avoid them entirely, if

possible.

The system and its description can be separated into two parts:

a) User-callable procedures, which are of two kinds: standard procedures which are aways
provided, and library procedures which must be loaded with the user’s program if they are
desired. This manua describes only standard procedures; the library procedures are documented

in the "Alto Packages Manual ."

b) Data structures, such as disk files and directories, which are used by the system but which are aso
accessible to user procedures and subsystems.

The system iswritten almost entirely in Bepl. Its procedures are invoked with the standard Bcpl caling
seguence, and it expects the subsystemsit callsto be in the format produced by the Alto Bepl loader.

2. Hardware summary

This section provides an overview of the Alto Hardware. Briefly, every Alto has:
a) A memory of 64k words of 16 bits each. The cycletimeis850ns.
b) An emulator for a standard instruction set.

¢) Secondary memory, which may consist of one or two Diablo 31 cartridge disk drives, or one
Diablo 44 cartridge disk drive. The properties of these disks are summarized in Table 2.2.

d) An 875 line TV monitor on which araster of square dots can be displayed, 606 dots wide and 808
dots high. The display is refreshed from Alto memory under control of alist of display control
blocks. Each block describes what to display on ahorizontal band of the screen by specifying:

the height of the band, which must be even;

the width, which must be a multiple of 32; the space remaining on theright isfilled with
background;
The indentation, which must be amultiple of 16; the space thus reserved on the left is filled

with background;
the color of the background, black or white;

the address of the data (must be even), in which 0 bits specify background. Each bit controls
the color of one dot. The ordering isincreasing word addresses and then bit numbers in
memory, top to bottom and then left to right on the screen; and a half-resolution flag

which makes each dot twice as wide and twice as high.
Thereisalso a16 x 16 cursor which can be positioned anywhere on the screen. If the entire
screenisfilled at full resolution, the display takes about 60% of the machine cycles and 30704D

words of memory.

For Xerox Internal Use Only -- December 15, 1980
Alto Operating System May 5, 1980 3

€) A 44-key keyboard, 5-finger keyset, and mouse
f) A Diablo printer interface
0) An Ethernet interface

h) Interfaces for analog-to-digital and digital-to-analog conversion, for TV camerainput, and for a
RS-232b (teletype) connection

i) A real-time clock and an interval timer (seetable 2.1 for brief descriptions)

3. User-callable procedures

This section describes the operating system facilities provided by procedures which can be called from user
programs using the standard Bepl calling sequence. All of these procedures are a permanent part of the
operating system, automatically available to any user program.

Although this manual describes arather extensive set of facilities, which together occupy close to 12K
words of memory, portions of the system can be deactivated (see Junta), thus freeing the memory they use.
When the user program finishes execution, the deactivated portions can be retrieved from the disk and
reinitialized.

Default arguments; Many of the procedures given below have rather long argument lists, but have
convenient defaulting schemes. The documentation decorates argument lists with default values. An
argument followed by [exp] will default if omitted or zero to the value exp; an argument followed by
[...exp] will default if omitted to exp. Although Bcpl allows you to omit procedure arguments by using

"nil," the called procedure cannot detect its use; it therefore cannot be the basis for defaulting arguments.

3.1. Facilities
The facilities of the operating system fall into fairly neat categories; often thisis because the operating
system has simply loaded a standard library subroutine as part of its environment. This manual offers
summarized documentation for the functions in the various software "packages;" more documentation can
be found in the "Alto Software Packages Manual." (Note: Appendices to this manual include
documentation of the packages most relevant to the operating system.) In outline, the operating system
provides:
- A "basic" resident that maintains a time-of-day clock, that processes parity error interrupts, and
that contains the resident required to interface to Swat, the debugger.
- TheBcpl runtime support module, which provides severa functions (such as a stack frame
allocator) that are necessary to permit Bepl programs to run.
- Disk driversfor transferring complete pages between memory and existing files on the disk. This
isthe BfsBase package.
- Disk driversfor creating new files, and for extending or shortening existing files. Thisis the
BfsWrite package.

- A simple storage allocator for managing "zones" of working storage. Thisisthe Alloc package.

- Diskk"streams," which implement sequential byte or word I/O to the disk. Thisisthe DiskStreams
package.

- Disk directory management, which provides facilities for searching directory filesfor entries that
associate a string name and a disk file.

For Xerox Internal Use Only -- December 15, 1980
Alto Operating System May 5, 1980 4

- A keyboard handler, which decodes keyboard interactions into a sequence of ASCII characters.

- A display driver, which maintains a"system display,” and handles the printing of characters on the
display. Thisisthe DspStream package.

- Miscellaneous functions, including (1) the "call subsystem" function, which reads afile produced
by the Bcpl loader into memory and executes it; (2) allocation functions that manage the space not
used by the operating system or the user code, providing a stack for the user program and fixed-
size blocks that it may require; (3) the procedure for de-activating various portions of the operating

system; and (4) additional utilities.

3.2. Loading and Initialization

The facilities of the operating system are made accessible to user programs via static variablesthat refer to
system proceduresor system scalars. Because these objects are not defined in your Bepl program, you — must

declare the namesto be externa. The Bcpl loader, Bldr, automatically reads the file Sys.Bk, which
describes how to arrange that your program’s external references will match up with the operating system
objects (for details, see Bldr documentation in the Bcpl manual). This arrangement does not require re-
loading programs when objects in the operating system move.

When a Bcepl program is read into the Alto memory, all of the system procedures described below will have
beeninitialized. A region isreserved for alocating system objects (e.g., disk streams); currently, about 6
disk streams or equivalent can be accomodated. |If the space reserved is inadequate for your application,
the system zone can be replaced with one constructed by your program. In addition, most procedures that
cre;’:\te system objects have provision for an optional "zone" argument used for seizing space (see section
4.5).

3.3. Errors

Whenever the system detects an error for which the user program has not supplied its own error routine,
the call SysErr(pl, errCode, p2, p3, ...) isexecuted. The errCode isanumber that identifies the error; the
p's are parameters that add details.

Normally, SysErr calls Swat (the debugger), which will print out an intelligible error message retrieved
from thefile Sys.Errors. The facilities of Swat (see "Alto Subsystems Manual") can then be used to

interrogate the program state more fully, and ultimately to continue or abort its execution.

3.4. Streams

The purpose of streamsis to provide a standard interface between programs and their sources of sequential
input and sinks for sequential output. A set of standard operations, defined for all streams, is sufficient for
all ordinary input-output requirements. In addition, some streams may have specia operations defined for

them. Programs which use any non-standard operations thereby forfeit complete compatibility.

Streams transmit information in atomic units called items. Usually anitemisabyteor aword, andthis is

the case for all the streams supplied by the operating system. Of course, a stream supplied to a program
must have the same ideas about the kind of items it handles as the program does, or confusion will result.
Normally, streams which transmit text use byte items, and those which transmit binary information use
words. (The 16-bit quantity which Bcpl passes as an argument or receives as aresult of a stream operation
could be a pointer to some larger object such as a string, although the operating system implements no
(sjue](c:h thre)aams In this case, storage allocation conventions for the objects thus transmitted would have to be
ined.
Y ou are free to construct your own streams by setting up a suitable data structure (section 4.2) which

provides links to your own procedures which implement the standard operations.

For Xerox Internal Use Only -- December 15, 1980

Alto Operating System May 5, 1980 5
The standard operations on streams are (Sisthe stream; "error" means that Errors(S, ec) is executed,
where ec is an error code):

Gets(S) returns the next item. Some streams give an error if Endofs(S) is
true before the call, and others just wait for the next item.

Puts(S, 1) writes | into the stream as the next item; error if the stream is
read-only, if there is no more space or if there is some hardware
problem.

Resets(S) restores the stream to some initial state, generally as close as
possibleto the state it isin just after it is created.

Putbacks(S, 1) modifies S so that the next Gets(S) will return | and leave S in
the state it was in before the Putbacks. Error if thereis already a
putback in forceon S. (No streams provided by the operating
system implement a Putbacks operation.)

Endofs(S) true if there are no moreitemsto be gotten from S. Not defined
for output streams.

Closes(S) destroys Sin an orderly way, and frees the space all ocated for it.
Note that this has nothing to do with deleting a disk file.

Stateofs(S) returns aword of state information which is dependent on the
type of stream.

Errors(S, ec) reports the occurrence of an error with error code ec on the
stream. When a system stream is created, Errorsisinitialized to
SysErr (see section 3.3), but the user can replace it with his own
error routine.

Streams are created differently depending on the device being accessed (disk, display, keyboard, or

memory). The procedures for creating streams are described below.

3.4.1. Disk streams

The system distinguishes four kinds of object which have something to do with storing data on the disk:

Disk Pack:

Disk file:

File directory:

Disk stream:

A storage medium that is capable of storing datain various
pages. Most operating system functions default the choice of
disk to "sysDisk", a structure which describesdrive0of a Diablo
model 31 cartridge.

A vector of bytes of data held on some disk, organized into pages

for some purposes. A file exists only on the disk (except that
parts of it may be in memory if an output streamis associated
\(Nitl’)l it) and is named by an 80-bit entity called a file pointer
FP).

A disk file which contains alist of pairs <string name, FP>.
Documentation on the format of the file can be found with the
BFS %Iackage documentation contained in an appendix to this
manual .

Used by aprogram to transfer information to or from a disk file.
A stream exists only in memory and is named by a pointer to a
data structure.

For Xerox Internal Use Only -- December 15, 1980

Alto Operating System May 5, 1980 6
The procedures that operate on disk streams are described in documentation for the "DiskStreams’
software package contained in an appendix to this manual. Below isasummary list of the functions (in
addition to the generic functions described above):

CreateDiskStream(filePtr, type [ksTypeReadWrite], itemSize [worditem], Cleanup [Noop], errRtn
[SysErr], zone [sysZone], nil, disk [sysDisk]) = adisk stream, or
0if an error is encountered while initializing the stream. filePtr
isthe sort of object stored in afile directory. Legal types are
ksTypeReadOnly, ksTypeReadWrite, and ksTypeWriteOnly.
Legal item sizes are wordltem and charltem.

CleanupDiskStream(s) Flush any buffersto the disk.

ReadBlock(s, address, count) = actual Count. Read up to count words from the stream into
consecutive memory locations; return the actual number of
words read. (Non-intuitive things happen at the end of a file
with an odd number of bytes -- read the documentation
carefully)

WriteBlock(s, address, count) Write count words from consecutive memory locations onto the
stream.

LnPageSize(s) =log (base 2) of the page size, in words, of thefiles manipulated
by the stream.

PositionPage(s, page) Positions the file to byte O of the specified page (page 1 is the
first data page).

PositionPtr(s, byteNo) Positions the file to the specified byte of the current page.

FileLength(s, filePos[]) = Length. Returns number of bytesin file; positions stream to
the last byte.

FilePos(s, filePos[]) = Pos. Returnsthe current byte position in thefile.

SetFilePos(s, filePos) or SetFilePos(s, HighOrder, LowOrder) Sets the position of the file to the
specified byte.

GetCurrentFa(s, fileAddress) Returns the current file address.

JumpToFa(s, fileAddress) Positions the file to the specified address (usually obtained from
GetCurrentFa).

GetCompl eteFa(s, completeFileAddress) Returns a complete file address, including a
filePtr.

TruncateDiskStream(s) Truncates thefile to the current position.

ReadL eaderPage(s, address) Reads the 256-word leader page of the file into consecutive
locations starting at address.

Writel eaderPage(s, address) Writes 256 words onto the leader page of thefile.

The operating system also contains a package for dealing with files at alower level, the "Bfs" (Basic file
system) package.

Disk Errors: The system will repeat five times any disk operation which causes an error. On the last three
repetitions, it will do arestore operation on the disk first. If five repetitions do not result in an error-free

operation, a (hard) disk error occurs; it is reported by a call on Errors for the stream involved.

For Xerox Internal Use Only -- December 15, 1980

Alto Operating System May 5, 1980 7
3.4.2. Display streams
Display streams are implemented with the "DspStream” package, described in separate documentation
contained in an appendix to this manual. Below isalist of the functionsincluded (in addition to the
generic stream functions):

CreateDisplayStream(nLines, pBlock, IBlock, Font [sysFont], wWidth [38], options

[DScompactleft+DScompactright], zone [sysZone]) = a display
stream. pBlock isthe address of aregion IBlock words long for
the display bitmap. nLinesis the number of text linesin the
stream. This procedure does not commence displaying the
stream text -- see ShowDisplay Stream.

ShowDisplayStream(s, how [DSbelow], otherStream [dsp]) This procedure controls the presentation

GetFont(s)
SetFont(s, font)
ResetLine(s)

GetBitPos(s)
SetBitPos(s, pos)

GetLinePos(s)

SetLinePos(s, pos)

InvertLine(s, pos)

EraseBits(s, nBits, flag [0])

GetLmarg(s); SetLmarg(s)
GetRmarg(s); SetRmarg(s)

of the stream on the screen. If how is DShelow, the stream will
be displayed immediately below otherStream; if DSabove,
immediately above; if DSalone, the stream will become the only
display stream displayed. If how is DSdelete, the stream s will
be removed from the display. For DSalone and DSdel ete, the
third argument is needless.

Returns current font.

Sets current font (use carefully -- see documentation).

Erases all information on the current line and resets the position
to the left margin.

Returns the horizontal position of the stream.

Sets the horizontal position on the current line (use carefully --
see documentation).

Returns the index of the line into which characters are presently
being put.

Sets the line number into which subsequent characters will be
put.

Inverts the black/white sense of the line given by pos.

Erase bits moving forward (nBits>0) or backward (nBits<0) from

the current position. Set to background if flag=0; to the
complement of the background if flag=1; invert present values
if flag=-1.

Get and set left margin for the current line.

Get and set right margin for the current line.

CharWidth(StreamOrFont, char) Get the width of the character, using the specified font or the

current font in the specified stream.

The "system display stream"” is always open, and can be accessed by the system scalar "dsp.”

For Xerox Internal Use Only -- December 15, 1980
Alto Operating System May 5, 1980 8

3.4.3. Keyboard Streams

Thereisasingle keyboard stream in which characters are buffered. The stream is always open, and may be
accessed through the system scalar "keys." The only non-null operations are Gets; Endofs, which is true if
no characters are waiting; and Resets, which clears the input buffer.

The keyboard handler periodically copies the mouse coordinates into the cursor coordinates, truncating at
the screen boundary. Thisfunction is governed by the value of a cell referenced by @ IvCursorLink; if it is

zero, the function is disabled.

Low-level keyboard functions. Although the standard keyboard handler contains no facilities for detecting

transitions of keyset or mouse keys, a user function may be provided that will be called 60 times a second
and can extract relevant information from a table passed to it. The call SetKeyboardProc(uKbProc, stack,
stackL ength) will install uKbProc as the user procedure; stack is a vector that will be used for stack space
when uKbProc is run (you must provide enough!). SetKeyboardProc() will reset the keyboard handler,

and cease calling uKbProc. (Note: If the program has used the Junta procedure, the user keyboard

procedure must be deactivated during a CounterJunta or finish unless all its state lies below
OsFinishSafeAdr.) If active, every 16 milliseconds, the keyboard handler will execute uKbProc(tab), where
tab points to a data structure defined by the KBTRANS structure (see the file SysDefs.d). The Transition

word is non-zero if akey transition has been detected; GoingUp or GoingDown tell which sort of
transition has occurred; and Keylndex gives the key number. KeyState is a 5-word table giving the state of
the keys after the transition has occurred: if akey with Keylndex=i is presently down, bit (i rem 16) of
word (i div 16) will be 1. The entries CursorX and CursorY give the current location of the cursor.

The value returned by uKbProc determines subsequent processing. If trueisreturned, the operating

system treats the key transition (if any) according to normal conventions. If falseis returned, the operating

system assumes that uKbProc has performed whatever processing isintended, and the interrupt is simply
dismissed.

Keylndex values are tabulated below. Keysare normally given by their lower-case marking on the key
top; those with more than one character on their tops are specified by <name>. <X> are unused bits;

<blank-top> is the key to the right of the <bs> key; <blank-middie> to the right of <return>; and <blank-

bottom> to the right of <shift-right>.
Vaues Keys

0-15 546e7duvO0k-p/\<If><bs>

16-31 32wqsa9ixol,’] <blank-middle> <blank-top>

32-45 1<esc> <tab>f <ctrl> ¢ b z <shift-left> . ; <return> _ <X>

48-63 rtgy h8nm<lock> <space> [= <shift-right> <blank-bottom> <X> <X>
64-71 unused

72-76 Keyset keysin order, left=72; right=76

77 RED (or left or top) mouse button

78 BLUE (or right or bottom) mouse button

79 YELLOW (or middie) mouse button

Asan aid to interpreting Keylndex values, the system scalar kbTransitionTable points to atable, indexed
by Keylndex, that givesa KBKEY structure for the key; if it is zero, the operating system has no standard
interpretation of the key.

3.4.4. Fast Streams to Memory

The operating system also contains procedures that allow very efficient stream 1/0 to memory blocks.
These functions, described in the Streams package documentation, allow one for example to use much
more memory buffering for disk transfers than normally allocated by the disk stream mechanism.

For Xerox Internal Use Only -- December 15, 1980
Alto Operating System May 5, 1980 9

3.5. Directory Access

Most user programs do not concern themselves with file pointers, but use system routines which go directly
from string names to streams. By a"file name" we mean a string which can be converted into a file
identifier by looking it up in adirectory. File names are arbitrary Bepl strings which contain only upper
and lower case letters, digits, and charactersin the string "+-.1$". File names are stored in directories as

they are typed, but no distinction is made between upper and lower case |etters when they are looked up.
Dots (".") are used to separate file names into parts. If thereis more than one part, the last part is caled
the extension, and is conventionally used much like extensionsin Tenex.

Thereis an optional version number facility. Itisnot availablein the standard release of the operating
system (NewOs.boot), but is available in an unsupported aternate version (NewOsV .boot). If the version
number facility is enabled, the interpretation of exclamation mark ("!") is specid; if afile name ends with
a! followed only by digits, the digits specify the file version number.
A lookup name, presented to one of the directory functions given below, isusually afile name. However,
it may optionally specify the name of a directory in which to look for the file (or record the new file). The
lookup name is processed from left to right. If the character "<" appears at the head of the lookup name,
the system directory ("SysDir.") becomes the "current” directory; whenever the character ">" follows a
name, the nameis looked up in the current directory and that file becomes the new current directory. If no
directory is specified in the lookup name, the "working directory” is assumed. Example: "<dir>fil." will
look up dir in the system directory SysDir, and will then look up fil in dir. Any illegal charactersin a
lookup name are replaced with "-" characters.
File Versions: The file system also supports multiple versions of the samefile; this feature may be enabled
or disabled when the operating system isinstalled. The version number is recorded by appending an
exclamation mark and the decimal version number to the file name; file names without version numbers
appended act asif they are "version 0." The OpenFile function uses lookup names and version control
information to locate adesired file. If the lookup name contains a version number (e.g., "Sys.Errors!3."),
then no version defaulting is done--the lookup operates on precisely the file specified. (This processing is
identical with versions enabled and disabled.)
If the lookup name does not specify a version number and file versions are enabled, then the
versionControl parameter specifies how defaulting is to be done (in the definitions, "oldest” refersto the
file with the "lowest" version number; "latest” refersto the file with the "highest" version number):
verLatest The latest version is used.
verLatestCreate The latest version is used. If the file does not exist, itis created
with version number O (i.e., no number will be appended
explicitly to the file name): thisis to prevent needless
accumulation of version numbersin system-related files (.eq,
.Run files).
verOldest The oldest version is used.
verNew A new file will always be created. A system parameter,
established when the system isinstalled, determines how many
old versions will be preserved. If that default should be
overriden, just add the desired number of versions to verNew,
e.g. aversionControl value of verNew+4 will create a new file

and retain at most three older versions.

This version option may reuse disk pages alocated for the oldest
version of thefile, but the serial number and file name will of
course be changed. If (newest-oldest)+1 is greater than or equal
to the number of versionsto keep, oldest isreused inthis fashion
to become version newest+1. For example, if verNew is
specified, 2 versions are to be kept, and foo! 2 and foo! 3 exist,

For Xerox Internal Use Only -- December 15, 1980

Alto Operating System

verNewAlways

May 5, 1980 10

verNew will create the file fool4 by remaking the old file foo!2.
Note that this calculation does not verify that all versions
between oldest and newest actualy exist.

If only one file matches the lookup name, and its version
number is 0, thefileis simply overwritten (like verLatestCreate);
anew version is not created.

If no files of the given name exist, version number O of thefile is
created (i.e., no version number is explicitly attached to the file
name). The verNewAlways option (below) can be used if
version 1 should be created.

Similar to verNew, but if no earlier version of thefile exists,
version 1is created.

If versions are not enabled, then exact matches are performed on the entire file name. Thus, if the file
"Sys.Errors! 2" is present on a disk with versions disabled, the lookup name " Sys.Errors' will not match
thisfile; the lookup name " Sys.Errors!2" will. The versionControl parameter is still relevant: if no file
matching the lookup name is found, verLatest and verOldest will not create anew file, whereas the other

versionControls will.

The following function creates adisk stream (see above) in conjunction with the Alto directory structure:

OpenFile(lookupname, ksType [ksTypeReadWrite], itemSize [wordItem], versionControl [if

OpenFileFromFp(hintFp)

ksType=ksTypeReadOnly then verL atest else if
ksType=ksTypeWriteOnly then verNew else verL atestCreate],

hintFp [0], errRtn [SysErr], zone [sysZong], nil, disk [sysDisk],
CreateStream [CreateDiskStream|) = a disk stream, open on the

specified file, or O if the open is unsuccessful for some reason.
This routine parses the lookup name, searching directories as
needed. After applying version control (e.g., making a new
version), it calls CreateStream(filePointer, ksType, itemSize,

Noop, errRtn, zone, nil, disk), and returns the value of that call.

If hintFp is provided, it is assumed to be afile pointer (FP) that
"hints" at the correct identification of the file. Before searching a

directory, OpenFile will try using the hint to open the file,
quickly returning astreamif the hint isvalid (thoughnoname or
version checking isdone). If the hint fails and lookupname is
non-zero, the name will be parsed and looked up in the normal

fashion. hintFp will be filled in with the correct file pointer.

Note: If you wish to use standard file-lookup procedures, but to
have the FP for the resulting file returned to you, zero the

hintFp vector before calling OpenFile. In this case, the value of
hintFp is not used in the lookup, but isfilled in with the resuilts.

= OpenFile(0, 0, 0, 0, hintFp)

DeleteFile(lookupname, versionControl [verOldest], errRtn [SysErr], zone [sysZong], nil, disk
[sysDisk]) = success. Deletesthefile on the disk and removes
the corresponding entry from the directory specified in
lookupname. Returns "true” if afile was correctly found and
deleted, otherwise "false."

SetWorkingDir(name, fp, disk [sysDisk]) Setsthe "current” directory for further lookups on the
given disk. When the system is booted, the current directory is

set to "<SysDir."

For Xerox Internal Use Only -- December 15, 1980

Alto Operating System May 5, 1980 11
3.5.1. Lower-leve directory functions

Several functions are provided for those who wish to deal with directories and file names at a lower level.
The format of an Alto file directory is documented in the Disks documentation; definitions appear in
AltoFileSys.d.

ParseFileName(destName, srcName, list, versionControl) = stream or 0. Strips leading directory
information from srcName, puts theresult in destName,
appending a"." if necessary, and returns a stream open on the
directory in which the file should be looked up. list!0 = an
errorRoutine, list!1 = a zone, list!3 = adisk which will be
passed to OpenFile along with versionControl when opening the
directory stream.

FindFdEntry(s, name, compareFn [0], dv [], hd [], versionControl [verLatest], extraSpace [Q]) = a
word pointer into the stream s of adirectory entry, or -1 if no
entry Islocated. If compareFn is 0, normal comparison of file
names and version control is performed; the result isa directory
entry in dv, and a hole descriptor (hd) for a hole large enough to
include the name, a new version number, and extraSpace words.
Otherwise, compareFn is a user procedure that isinvoked as
each file name is read from the directory: compareFn(name,
nameRead, dvRead). nameRead is the Bepl name extracted from
the directory; dvRead isthe dv extracted from the directory; and
name is simply the second argument passed to FindFdEntry
(which need not be astring). If compareFn returns false, the
directory scan halts; the value of FindFdEntry isthe byte
position in the stream. If compareFn returnstrue, the search
proceeds.

Strategic note: If compareFn is TruePredicate, the directory is
simply scanned in order to locate a hole large enough for
extraSpace words. The result is saved in the hd hole descriptor,

which may be passed to MakeNewFdEntry.

In the standard release of the operating system (version
numbering absent), the directory stream isleft positioned at the
matching directory entry if one was found and at the position

described by hd otherwise.

MakeNewFdEntry(s, name, dv, hd, extraStuff) makes a directory entry: dv is a pointer to a DV

DeleteFdEntry(s, pos)

StripVersion(string)

AppendVersion(string, version)

structure for the first part of the entry; nameisaBcpl string that
isrecorded after the entry (this string must be alegal internal file
name, with the dot "." appended), and extraStuff is a pointer to a
vector of additional stuff that will be entered following the
name. The hd parameter is a pointer to a "hole descriptor” as

returned from FindFdEntry.

Deletes the directory entry at byte location pos of the directory
open on stream s.

= version number. This function strips a version number, if
any, from the end of the string argument, and returns the
number (O if no version specified). If, after stripping, thereis no
final "." on the string, one is appended.

Appends a version number and final "." to the string.

For Xerox Internal Use Only -- December 15, 1980

Alto Operating System

WriteDiskDescriptor()

ReadDiskDescriptor()

3.6. Memory management

May 5, 1980 12
If changes have occurred, the copy of the disk descriptor for
sysDisk that resides in memory is written onto the disk file
"DiskDescriptor."

This function restores the copy of the disk descriptor for sysDisk
that resides in memory from the disk file "DiskDescriptor."

Table 3.1 shows the layout of memory. Table 3.2 tells how to obtain the current values of the symbolic
locationsin Table 3.1. The free space (EndCode to StackEnd) can be manipulated as follows:

GetFixed(nwords) returns a pointer to ablock of nwords words, or O if there isn't
enough room. It won't leave less than 100 words for the stack to
expand.

FreeFixed(pointer) frees ablock provided by GetFixed.

FixedL eft() returns the size of the biggest block which GetFixed would be
willing to return.

SetEndCode(newV alue) resets endCode explicitly. It isbetter to do this only when
endCode is being decreased.

The allocator is not very bright. FreeFixed decrements endCode if the block being returned is
immediately below the current endCode (it knows because GetFixed puts the length of the block in th
word preceding the first word of the block it returns; please do not rely on this, however, since thereis no
guarantee that later allocators will use the same scheme). Otherwise it puts the block on afree list. When
another FreeFixed is done, any blocks on the free list which are now just below endCode will aso be freed.

However, the allocator makes no attempt to allocate blocks from the freelist.

3.7. The Alloc alocator

The operating system includes a copy of the Alloc package; documentation is contained in an appendix to
this manual.

InitializeZone(start, length, OutOf SpaceRoutine [...SysErr], MalFormedRoutine [...SysErr]) = a
"zone." These zones are compatible with the "zone" arguments
to operating system functions (e.g., sysZone). Allowing
MalFormedRoutine to default to SysErr causes a through check
of the zone data structures to be performed each time a block is
allocated or freed. To avoid this (considerable) overhead, pass a
zero for the MalFormedRoutine. The default sysZone has a

MalformedRoutine of SysErr.

AddToZone(zone, block, length) Adds block to the zone.

Allocate(zone, length, returnOnNoSpace [false], even [falseg]) = pointer to a block of length words

Free(zone, ptr)
CheckZone(zone)

allocated from zone. If evenistrue, the pointer is guaranteed to
be a even number.

Returns the block pointed to by ptr to the zone.

Performs a consistency check on the zone data structure.

For Xerox Internal Use Only -- December 15, 1980
Alto Operating System May 5, 1980 13

3.8. The Basic File System

A set of procedures for driving the disk hardware for Diablo Model 31 and 44 disk cartridgesisincluded in
the operating system. These functions are documented in the "Disks" documentation, appended to this
manual.
3.9. Objects
It is often convenient to define an abstract object and its operations by a single entity in the Bepl language.
Asthe largest entity Bepl can deal with isa 16-bit number, we must use a pointer to a structure of some
kind that defines both the procedures and data associated with the object. Streams, Zones and Disks are
examples of such abstract objects. Such objects are typically defined by a structure such as:
structure ZN:

[

Allocate word //Op

Free word //Op

Base word //Val

Length word //Va
]

where the Op's point to procedures and the Val’ s are data for the structure. A typical call on one of the
abstract procedures is thus (zone>>ZN.Allocate)(zone, argl, arg2, arg3). The virtue of such an
arrangement is that any structure that simulates the effects of the procedures can pose as a Zone.

In order to encourage the use of such objects, the operating system has very efficient implementations for
this calling mechanism:

Calo(s, a b, ...) Does (sl0)(s, a b, ...)
Cdli(s,a b, ..) Does(sl1)(s, a b, ...)
Cdl2, Cal3, ..., Cdl15 analogoudly.
Thus, the operating system defines Allocate=Call0, and Free=Call1, consistent with the Alloc package

described above. Note for assembly-language programmers: the CallX functions actually enter the proper
function at the second instruction, having already executed a STA 3 1,2 to save the return address.

3.10. Miscellaneous

This section describes a collection of miscellaneous useful routines:

Wss(S, string) writes the string on stream S.

Ws(string) writes the string on the system display stream, dsp.

WI(string) Ws(string), followed by a carriage return.

Wns(S, n, nc [Q], r[-10]) writes a number n to stream S, converting using radix abs(r). At
least nc characters are delivered to the stream, using leading
spacesif necessary. The number is printed in signed notation if
r<0, in unsigned notation if r>0.

Wos(S, n) writes an unsigned octal representation of n on stream S.

Wo(n) writes an unsigned octal representation of n on the display

stream.

For Xerox Internal Use Only -- December 15, 1980

Alto Operating System

TruePredicate()

Fal sePredicate()

Noop()

Dvec(caller, nV1,nv2,..)

May 5, 1980 14

awaysreturns - 1.
aways returns 0.

null operation; returnsits first argument if any.

this routine allocates "dynamic" vectorsin the current frame.
caller is the name of the procedure calling Dvec. The use of the
routine is best given with an example: the routine ShowOff

wants two vectors, V1 and V2:

let ShowOff(V llength, V2length) be

let V1 =Vllength
let V2 = V2length

Dvec(ShowOff, Iv V1, Iv V2)
/I now V1 points to ablock V 1length+1 words long
/l and V2 points to ablock V2length+1 words long

]

DefaultArgs(lvNa, base, dv1, dv2,

Warning: any addresses that point into the stack frame of
ShowOff beforeit is moved by the Dvec call will not be correct
after the call. Thus, for example, a"let a=vec 10" before the
call will cause the address in ato be useless after the call.

...) Utility procedure to fill in default arguments. IvNa points to
the "numargs" variable in the procedure; abs(base) is the

number of initial arguments that are not to be defaulted; the dv;
arethe default values (i<11). If base<O, then an actual ~ parameter
of zero will cause the default to be installed; otherwise only
(trailing) omitted parameters are defaulted. Thus:

let Mine(how, siz, zone, errRtn; numargs n) be

[
DefaultArgs(lv n, -1, 100, sysZone, SyskErr)

]

MoveBlock(dest, src, count)
SetBlock(dest, val, count)
Zero(dest, count)
BitBIt(bbt)

Usc(a, b)

Min(a, b), Max(a, b)

Umin(a, b), Umax(a, b)

will default arguments siz, zone, errRtn if missing or zero to 100,
sysZone and SysErr respectively. Note that Bepl will allow you
to omit parametersin the middle of a parameter list by using
"nil," but DefaultArgs has no way of knowing that you did this.
UsesBLT: for i = 0to count-1 do dest!i = srcli.

Uses BLKS: for i = 0 to count-1 do dest!i = val.

Same as SetBlock(dest, O, count).

Executesthe BITBLT instruction with bbt in AC2.

Usc performs an unsigned compare of aand b and returns -1 if
a<b, 0if a=b, 1if a>b.

Returns the minimum or maximum of two signed integers,
which must differ by less than 2°15.

Returns the minimum or maximum of two unsigned integers.

Alto Operating System

DoubleAdd(a, b)

Enabl el nterrupts()
Disablelnterrupts()
StartlO(ac0)

Idle()

Timer(tv)

ReadCalendar(dv)

SetCalendar(dv)

EnumerateFp(proc)

CallSwat(sl, 2)

For Xerox Internal Use Only -- December 15, 1980

May 5, 1980 15
The parameters aand b each point to 2-word double-precision
numbers. DoubleAdd doesa at+b. Note that subtraction can
be achieved by adding the two's complement; the two's

complement is the one's complement (logical negation) plus 1.
Enables Alto interrupt system.

Disablesinterrupt system. Returnstrueif interrupts were on.

Executes the SIO emulator instruction with its argument in acO.
Thus StartlO(#100000) will boot the Alto if it hasan Ethernet
interface.

This procedure is called whenever the operating system is

waiting for something to happen (e.g., akeyboard character to be
struck, or adisk transfer to complete). The static Ividie points to
the operating-system copy of the procedure variable so that
programmers may install their own idle procedures by executing
"@lvidle= Myldle".

Reads the 32-bit millisecond timer into tv!0 and tv!1. Returns
tv!l asitsvalue.

Reads the current date-and-time (32 bits, with agrain of 1
second) into dv!0 and dv!1l. Returnsdv asits value.
(Subroutines for converting date-and-time into more useful
formats for human consumption are available. See subroutine

package documentation, under Time.)

Sets the current date-and-time from dv!0 and dv!1. (Normally it
should not be necessary to do this, asthe timeis set when the
operating system is booted and has an invalid time. Thereafter,

theti ;ner facilitiesin the operating system maintain the current
time.

For every file pointer saved by the system (e.g., fpComCm,
fpRemCm, etc.), call proc(fp).

This function invokes an explicit "call" on Swat. Either of the
arguments that appears to be a Bepl string will be printed out by
Swat.

3.10.1. Routines for Manipulating Bcpl Frames

The following routines ease massaging Bcpl frames for various clever purposes such as coroutine linkages.
See section 4.7 for adescription of the data structures involved.

FrameSize(proc)
MyFrame()
CallersFrame(f)

FramesCaller(f)

Returns the size of the frame required by proc.

Returns the address of the current frame.

Returns the address of the frame that "called" the framef (if f is
omitted, the current frame is used).

Returns the address to which the caller of frame f sent control,

provided that he made the call with a normal instruction (jsrii,

Jsris). If error, returns 0.

For Xerox Internal Use Only -- December 15, 1980

Alto Operating System May 5, 1980 16

CallFrame(f, a, b) Sends control to frame f and links it back to this one (i.e., when f
returns, the CallFrame call returns). aand b are optional
arguments.

GotoFrame(f, a, b) Like CallFrame, but does not plant areturn link.

CoCall(a, b) CallFrame(CallersFrame(), a, b)

CoReturn(a, b) Like CoCall, but does not plant return link.

ReturnTo(label) Returnsto a given label in the frame of the caler.

GotolL abel(f, label, v) Sends control to the specified label in the specified frame, and
passesv in ACO.

RetryCall(a, b) Repeats the call which appears to have given control tothe caller
with aand b as the first 2 arguments, and the other arguments
unchanged. There are certain ways of calling functions which
cannot be retried properly. In particular, the address of the
procedure must be the value of a static or local variable; it
cannot be computed. Thus "a>>proc(s, b)" cannot be retried,
but "let pr=a>>proc; pr(s, b)" can be retried.

ReturnFrom(fnOrFrame, v) Looks for aframe f which is either equal to fnOrFrame, or has
FramesCaller(f) equal to fnOrFrame. It then cuts back the stack
to f and simulates areturn from f with v asthe value. If error, it
returns 0.

3.11. Subsystems and user programs

All subsystems and user programs are stored as "Run files", which normally have extension ".Run". Such
afileis generated by Bldr and is given the name of the first binary file, unless some other nameis specified
for it. Theformat of an Alto run fileis discussed in section 4.8 and in the Bepl manual.

CallSubsys(S, pause [false], doReturn [false], userParams [0]) will read in arun file and send control to its
starting address, where S is an open disk stream for the file, positioned at the beginning of thefile. If pause
istrue, then CallSwat("Pause to Swat"); Ctrl-P starts the program. (doReturn will never be implemented,
but would have allowed areturn to the caller after the called subsystem "finished.") userParamsis a
pointer to avector (Ilength up to IUserParams) of parameters which will be passed to the called subystem.
The parameters are formatted according to conventions given in SysDefs.D (structure UPE): each
parameter is preceded by aword that specifiesits type and the length of the block of parameters; a zero
word terminates thislist. When the Alto Executive invokes a program with CallSubsys, it passes in
userParams an entry with type global Switches which contains alist of ASCII values of global switches
supplied after the program name.

The open stream is used to load the program into Alto memory according to placement information
included in the file. The stream is then closed; no other open streams are affected.

The program is started by a call to its starting address, which will normally be the first procedure of the
first file given to Bldr. This procedureis passed three arguments. Thefirst isthe 32 word layout vector for
the program, described in the Bepl manual. The second is a pointer to a vector of parameters provided by
the caller (the userParams argument to CallSubsys). Thethird isthe "complete file address" (CFA) for a
particular point in the file that was used to load the program. If no overlays are recorded in the Run file,
thispoint isthe end of file. If overlaysare contained in the file, the CFA points to the first word of the first
overl a]}yl s)ecti on (this can be used asahint in a call to Openfile when loading overlays contained in the
samefile).

Subsystems conventionally take their arguments from a file called Com.Cm, which contains a string which

For Xerox Internal Use Only -- December 15, 1980

Alto Operating System May 5, 1980 17
normally is simply the contents of the command line which invoked the subsystem (see section 5). The
subroutine package GP contains a procedure to facilitate reading this string according to the conventions
by which it is normally formatted. Thisis not a standard routine but must be loaded with your program.

(For more information on GP, see the "Alto Software Packages Manual.")

3.12. Finish -- Terminating Execution

When a program terminates operation, it "finishes," returns to the operating system and ultimately to the
Executive. A program may finish in several ways:

Bepl return If the main procedure in the user program (the one invoked by
CallSubsys) ever returns, the program finishes. Equivalent to
OsFinish(fcOK).

Bepl finish If the "finish" construct is executed in a Bepl program, it
terminates. Equivalent to OsFinish(fcOK).

Bepl abort If the "abort" construct is executed in a Bepl program, it
terminates. Equivalent to OsFinish(fcAbort).

Swat abort If, during program execution, the "left shift" key and the "Swat
key" (lower-rightmost key on Alto | keyboards, upper-rightmost
key on"ADL" Alto Il keyboards) are depressed concurrently,
the program is aborted. Similarly, if the <control>K ("kill™)
command is typed to Swat, the program is aborted. Both are
equivalent to OsFinish(fcAbort).

OsFinish(fCode) An explicit call to this function will also terminate execution.
The value of fCode is saved in the static OsFinishCode, which
may be examined by the Executive and the next program that it
invokes. Vaues of fCode presently defined are: fcOK=0;
fcAbort=1.

When a program finishes, the value of the finish code isfirst recorded. Then, if the value of the static
UserFinishProc is non-zero, the call UserFinishProc(OsFinishCode) is performed before restoring the
operating system state. Thisfacility is useful for performing various clean-ups. (Note: To set
UserFinishPrac, it is necessary to execute @lvUserFinishProc = value.) In order to permit independent

software packages to provide for cleanups, the convention is that each initialization procedure saves the
present value of UserFinishProc and then replaces it with his procedure. This procedure will do the

cleanups, restore UserFinishProc, and return:
/' Initialization procedure
static savedUFP

savedUFP = @lvUserFinishProc
@lvUserFinishProc = MyCleanUp

/I The cleanup procedure
let MyCleanUp(code) be

... cleanups here
@lvUserFinishProc = savedUFP
]

Finally, control is returned to the operating system, which resets the interrupt system, updates the disk
allocation table, and invokes the executive anew.

For Xerox Internal Use Only -- December 15, 1980

levBuffer

levFilePointers

levBcpl
levStatics

levBFShase

levBFSwrite

levAlloc

levStreams

levScan

levDirectory

levK eyboard
levDisplay

levMain

Alto Operating System May 5, 1980 18

3.13. Junta

This section describes some procedures and conventions that can be used to permit exceptionally large

programs to run on the Alto, and yet to return cleanly to the operating system. The basic ideaisto let a

program deactivate various operating system facilities, and thereby recover the memory devoted to the

code and data used to implement the facilities. To this end, the system has been organized in a series of

"levels:"

levBasic Basic resident, including parity interrupt processing, time-of-day

maintenance, the resident interface to the Swat debugger, and
theinitial processing for OsFinish. Important system state is
saved here: EventVector, UserName, UserPassword,

OsFinishCode. (Approximate size: 1000 words. This portion of
the operating system is guaranteed not to extend below address
175000B.)

The system keyboard buffer (see section 4.6). (Approximate — size:
100 words)

File hints. Thisregion contains "file pointers' for frequently
referenced files. (Approximate size: 70 words)

Bcpl runtime routines. (Approximate size: 300 words)

Storage for most of the system statics. (Approximate size: 300
words)

Basic file system "base" functions, miscellaneous routines.

(Approximate size: 1500 words)

Basic file system "write" functions, the disk descriptor (used to
mark those pages on the disk which are already alocated),

interface to the time-of-day clock. (Approximate size: 1850
words)

The Alloc storage allocation package. (Approximate size: 660
words)

Disk stream procedures. (Approximate size: 2400 words)

Disk stream extension for overlapping disk transfers with
computation. (Approximate size: 400 words)

Directory management procedures. (Approximate size: 1400
words)

Standard keyboard handler. (Approximate size: 500 words)

Display driver (although the storage for the display bitmap and
for the system font lie below). (Approximate size: 1600 words)

The"Main" operating system code, including utilities,
CallSubsys, and the Junta procedure. (Approximate size; 1000
words)

Below levMain, where the stack starts, the system free-storage
pool islocated. Here are kept stream data structures, the system
font, and the system display bitmap. (Approximate size: 6000

words)

For Xerox Internal Use Only -- December 15, 1980

Alto Operating System May 5, 1980 19

Thistable of levels corresponds to the order in which the objects are located in the Alto memory: levBasic

is at the very top; the bottom of levMain is the highest location for the Bepl stack.

The"Junta' function is responsible for de-activating these levels, thereby permitting the space to be

reclaimed. When aprogram that has called Juntais ready to finish, it calls OsFinish in the normal way.

OsFinish performs the "counter-junta,” reading in portions of the operating system from the boot file and

rebuilding the internal state of those levels that were previously de-activated, and then proceeds with the

finish, calling the Executive, etc.

During the counter-junta process (which takes about 1/2 second), the display and interrupt system can

continue to be active, provided that the code and storage they use lies below the address that is the value of

OsFinishSafeAdr. This permits atoken display to remain; also a keyboard handler can continue to sense

key strokes and record characters in the system keyboard buffer.

Junta(levName, Proc) This function, which may be called only once before a "finish"

or CounterJuntais done, de-activates all levels below levName.
Thus levName specifies the name of the last level you wish to

retain. (Manifest constants for the level namesarein SysDefs.d.)
It then sets the stack to a point just below the retained level, and
cdls Proc(), which should not return.

The stack present at the time Juntais called is destroyed. The
recommended procedure for saving data across a call to Junta is
to locate the data below EndCode.

A Junta always destroys the system free-storage pool and does
not re-create it. Therefore, open streams, the system display and
system font are all destroyed.

It isthe user’s responsibility to take care not to call operating
system procedures that lie in the region de-activated by the
Junta. If in doubt, consult the file Sys.Bk, which documents the
association between procedures and levels.

finish... Any of the methods for terminating execution (section 3.12)
automatically restores the full operating system.
CounterJunta(Proc) This function restores all de-activated sections of the operating
system, and then calls Proc. The program stack present when
CounterJunta was called is destroyed. Thisfunctionis provided
for those programs that do not wish to return to the operating
system with a"finish," but may wish to do other processing (e.g.,
CallSubsys).
After calling Junta, many programmers will wish to restore some of the facilities that the Junta destroys,
such as afree storage zone, a display stream, etc. Below isan example of how to go about this. Note that
some thought is required because the operating system keeps a separate copy of statics from those
referenced in your program. Thus when the OS defaults the third argument of CreateDisplayStream to

sysFont, it uses the OS copy of sysFont, not the copy available to your program.
Junta(levX XX XX, Proc)

let Proc() be

/IMake a new sysZone:

letv=vec 7035 //Youcan makeitany size

v = InitializeZone(v, 7035)

@lvSysZone=v [/ Patch the os' s version of the static

For Xerox Internal Use Only -- December 15, 1980
Alto Operating System May 5, 1980 20

sysZone=vV [/ Patch my program’s version of the static

/IRead in the system font again:

let s= OpenFileFromFp(fpSysFont)

let | = FileLength(s)/2

let f = Allocate(sysZone, 1)

Resets(s); ReadBlock(s, f, 1); Closes(s)

sysFont = f+2 /[Patch my program’s version of the static
I/ Note that because os's version is not patched,
/I 1 cannot call Ws or otherwise default dsp.

/IMake adisplay stream:
dsp = CreateDisplayStream(6, Allocate(sysZone, 4000), 4000, sysFont)
ShowDisplayStream(dsp, DSalone)

3.14. Events

The operating system reserves a small communication region in which programs may record various things.
Theintended use for thisregion is the recording of events by one program that deserve attention

another. The Executive cooperatesin invoking programs to deal with events posted in the communication

region.

Events are recorded sequentially in atable pointed to by the static EventVector. The total length of the
table, available as EventVector!-1, must not be exceeded by any program generating events. Each event
entry (structure EVM; see SysDefs.d) contains a header that specifies the type and length of the entry
(lengthisin words and includes header size); following the header comes type-specific data (eventData).

A zero word terminates the event table.

At present, events are defined for:

eventBooted The operating system has just been booted.

eventAboutToDie The operating system is about to be flushed, probably to run a
diagnostic.

eventinstall The operating system isto be re-installed. (This event need only

be used by the Executive "Install" command.)

eventRFC A Request For Connection packet arrived. The event data is:
Connection ID (2 words), RFC Destination Port (3 words), RFC
Source Port (3 words) and Connection Port (3 words).

eventCallSubsys When the next "finish" occurs, the system will try to execute the
filewhose name isgiven asaBcpl string in theeventData ~ block.
If the eventData block has length 0, the system will invoke the

copy of Ftp that is squirreled away inside Sys.Boot. Because a
"finish" is performed right after the system is bootstrapped, it is
possible to InLd Sys.Boot with a message that contains an
eventCallSubsys, and thereby to invoke an arbitrary program.
See the next section for a description of InLd.

eventinLd Whenever the next "finish" occurs, the system will cal
InLd(eventData, eventData). This suggests that the first words
of event data should be an FPRD for afile you wish to InLd.

For Xerox Internal Use Only -- December 15, 1980
Alto Operating System May 5, 1980

If a program that generates an event has destroyed the event communication region, it is still possible
pass the event to the operating system. For example, if the memory diagnostic is running and an
connection request arrives, the mechanism can be used to load the operating system and pass
eventRFC message to it. The mechanism is described in the next section.

3.15. OutLd, InLd, BootFrom

Three functions are provided for dealing with "OutLd" files that record the entire state of the
machine. When the operating system isloaded with the "boot" button, such afile restores the

state exactly as it was at the time of the Installation of the operating system. The Swat debugger also
these facilities, saving the entire machine state on the file " Swatee”" when a break is encountered,
restoring the Swat debugger state from the file "Swat."

In the discussion that follows, an FPRD structure is like afile pointer (FP), but the disk addressisthe
disk address of thefirst page of Datain thefile.

OutLd(FPRD, OutLdMessage) Saves the state of the machine on the file described by

which must exist and be at least 255 data pageslong. Note
the state saved includes a PC inside OutLd. OutLd returns

after writing the file. Unless you know what you are
interrupts should be off when calling OutLd (otherwise,
may save some parts of the machine state, such as
Activelnterrupts word, that was pertinent to an interrupt
progress!).

Programmers should be warned to think carefully about the

that is being saved in an OutLd. For example, the

21

to
Ethernet
the

Alto
machine
uses

and

Redl

FPRD,
that
0
doing,
OutLd
the
in

state

operating

system normally savesin memory some state associated with the

default disk, sysDisk. If OutLd saves this state on afile, and the
program is later resumed with InLd, the state will be incorrect.
To be safe, state should be written out before calling OutLd (i.e,
WriteDiskDescriptor()), and restored when OutL d returns (i.e,
ReadDiskDescriptor()).

InLd(FPRD, InLdMessage) Copies the InLdMessage (Iength lInLdMessage) to a
momentarily safe place and restores the machine state from the
file described by FPRD, which must have been created by
OutLd. Because the PC wasin OutLd, OutLd again "returns,”
but this time with the value 1, and the InLdMessage has been
copied into the OutLdMessage. Note: OutLd returns with
interrupts disabled in this case.

If the operating system boot fileis InLd’ ed, the message is
assumed to be alegal data structure for the EventV ector, and is
copied there.

BootFrom(FPRD) This function "boots' the Alto from the specified file. If it is
applied to afile written by OutLd, the state of the machine is
restored and OutLd "returns’ 2 with interrupts disabled. (Note:
The effect of this function differs from the effect of depressing
the "boot" button. Unlike the boot button, the function in no
way initializes the internal state of the Alto processor.)

Some programs (e.g., DMT) will need to know how to simulate InLd or BootFrom:
1. Turn off the display and disable interrupts.
2. Read thefirst data page of the boot file into memory locations 1, 2, ...#400. If you are loading

the installed operating system, the first data page of the boot fileis at real disk address 0.
3. Storethelabel block for the page just read into locations #402, #403, .. #411.

For Xerox Internal Use Only -- December 15, 1980

Alto Operating System May 5, 1980 22
4. (Thisstep appliesonly if simulating InLd.) Now let msa=rv 2. This points to alocation where
abrief message can be stored. Set msal0=1. Then for i=0to lInLdMessage-1 do msal (i+1)
= PrototypeEventVector!i.

5. Jump to location 3, never to return.

4. Data structures

This section describes the data structures used by the operating system that may be required by users.

4.1. Reserved Memory Locations

The Alto Hardware Manual describes addresses reserved for various purposes. Thefile AltoDefs.d
distributed with the OS declares most of these as manifest constants.
4.2. Streams

The standard data structures for streams are given in the DiskStreams package file "Streams.d”.
Documentation for the streams package includes a description.

4.3. Disk files
The structure of the Alto file system is described in documentation for the Alto file system (Disks). This
includes a description of files, disk formats, directory formats, and the format of the disk descriptor. Bepl

declarations for these objects may be found in the file AltoFileSys.d.

4.4. Display
The data structures used to drive the Alto display are described in the Alto Hardware Manual. The font
format for the Alto ((LAL format) is also described there. Note that afont pointer such as the one passed to

CreateDisplayStream points to the third word of an AL font.

4.5. Zones

A program that wishes to create an operating-system object and retain control over the allocation of storage
to the object may pass a"zone" to the operating system function that needs space (e.g., CreateDiskStream).
A zoneis simply a pointer "zone" to a structure ZN (see SysDefs.d), with zone>>ZN.Allocate containing
the address of the allocation procedure (called by (zone>>ZN.Allocate)(zone, lengthRequested)) and
zone>>ZN.Free containing the address of the free procedure (called by (zone>>ZN.Free)(zone, block)).

The zones created by the Alloc allocator package obey these conventions.

The zone provided by the operating system is saved in the static sysZone. The user may replace the system

zone by executing @IvSysZone = value. Subseguent free-storage requirements for the operating system
will be addressed to thiszone. The system zone is restored when the user program terminates. Warning:

The operating system keeps various (and undocumented) information in the system zone, and is unwilling
to have the zone changed out from under it. The normal use of lvSysZone is to change the value of
sysZone immediately after acall to Junta (which clears away sysZzone). If you wish to create disk streams

and preserve them across a call to Junta, pass your own zone as an argument to OpenFile.

For Xerox Internal Use Only -- December 15, 1980

Alto Operating System May 5, 1980 23
4.6. Operating System Status Information

A good deal of information is retained in memory that describes the state of the Alto. Much of this
information is of relevance to programmers, and is contained in some static scalars:

OsVersion The version number of the operating system. This number is
incremented with each new release of the operating system,
incorporating changes however minor.

OsVersionCompatible The lowest operating system version number believed to be
compatible with the present system.

UserName This static points to a Bepl-format string that isthe user’'s last
name. Itisinitialized when the operating systemisinstalled on
the disk. The maximum length (in words) that the UserName
may occupy isrecorded in UserName!-1.

UserPassword This static points to a Bepl-format string that is the user's
password, typed to the Executive Login command. The
maximum length (in words) that the UserPassword may occupy
isrecorded in UserPassword!-1.

SerialNumber The serial number of the Alto you areon. Thisstatichas proved
troublesome, becauseit is easy to forget that thistoo will be
saved by OutLd, and can confuse Ethernet code when it
suddenly springs to life months later on a different host half way
around theworld. Itsuseis discouraged.

AltoVersion This static contains the result of executing the VERS instruction.
This static has proven troublesome for the same reasons as
SerialNumber. Its useis discouraged.

sysDisk A pointer to the DSK structure, described in Disks.d, which
describes the "disk" to be used for standard operating system
use. Thisstructureis actualy of the format BFSDSK, and
contains a copy of the DiskDescriptor data structure. The static
diskKd points to this structure alone (structure KD; see
AltoFileSys.d). The storage for sysDisk isin levBFSwrite; if you
Junta to levBFSbase, you will need to manufacture a new
sysDisk structure, by loading and calling BFSInit in your own
program.

IvSysErr This static points to the operating-system copy of the static that
contains the address of the error procedure. 1f you wish to
replace Syskrr, it suffices to say @lvSysErr=Replacement.
Note that some procedures may have already copied the value of
SysErr (e.g., when a stream is created, the value of SysErr is
copied into the ST.error field in most cases).

IvParity SweepCount This static contains the address of the highest memory location
examined when sweeping memory looking for parity errors. If
no parity checking is desired, set @lvParitySweepCount = 0.

IvParityPhantomEnable This static points to a flag that determines whether phantom
parity errorswill invoke Swat (a phantom parity error results
from a parity interrupt that can find no bad locations in
memory). @lvParityPhantomEnable=0 will disable phantom

reporting.

For Xerox Internal Use Only -- December 15, 1980

Alto Operating System

ErrorLogAddress

ClockSecond

File Hints

Keyboard Buffer

OsBuffer>>0sBUF.First
OsBuffer>>0sBUF.Last
OsBuffer>>0sBUF.In
OsBuffer>>0sBUF.Out

May 5, 1980 24
This static points to a network address of a spot where error
reports (for such things as parity errors) should be sent. The
structureisa"port,” as defined in Pup documentation.
This static points to a double-precision integer that gives the
count of number of RCLK ticks (when RCLK isviewed as
returning a 32-bit number) in asecond. This number is used for
keeping time, and is nominally 1680000. If timekeeping is
extremely critical, you may wish to calibrate your Alto and
change this number.
The operating system maintains file pointers for several
commonly-used files. Using these hintsin conjunction with
OpenFile will substantially speed the process of opening
streams. Thefilesand file pointers are:

SysDir fpSysDir

SysBoot fpSysBoot

DiskDescriptor fpDiskDescriptor

User.Cm fpUserCm

Com.Cm fpComCm

Rem.Cm fpRemCm

Executive.Run fpExecutive

SysFont.Al fpSysFont
Although the system keyboard buffer is normally managed by
the keyboard handler provided in the system, some programs
may want to operate on it themselves. The most important
instance of thisiswhen a program that has done a Junta is
finishing: if the program keeps its keyboard handler enabled,
any characters typed during the counter-junta can till be
recorded in the system buffer, and thus detected by the first

program to run (usually the Executive).

The static OsBuffer pointsto astructure OsBUF (see SysDefs.d)
that controls access to the buffer:

First address of the ring buffer

Last address of the ring buffer+1

"Input" pointer (place to put next item)
"Output” pointer (place to take next item)

The following code can be executed with interrupts on or off to
deal with the buffer:

Getltem() =valof //Returns 0 if none there!

[

if OsBuffer>>0sBUF.In eq OsBuffer>>0sBUF.Out then resultis O

let newOut = OsBuffer>>0sBUF.Out+1

if newOut eq OsBuffer>>0sBUF.Last then newOut = OsBuffer>>0sBUF.First
let result = @(OsBuffer>>0sBUF.Out)

OsBuffer>>0sBUF.Out = newOut

resultis result

]

Putltem(i) = valof //Returns 0 if buffer full already

let newln = OsBuffer>>0OsBUF.In+1
if newln eq OsBuffer>>0sBUF.Last then newln = OsBuffer>>0OsBUF.First
if newln eq OsBuffer>>0sBUF.Out then resultis 0

For Xerox Internal Use Only -- December 15, 1980
Alto Operating System May 5, 1980 25

@(OsBuffer>>0sBUF.In) =i
OsBuffer>>0sBUF.In = newln
resultis -1

GetltemCount() = valof //Returns count of itemsin buffer
[
let ¢ = OsBuffer>>0OsBUF.In-OsBuffer>>0sBUF.Out

if cls0 then c = c+OsBuffer>>0sBUF.L ast-OsBuffer>>0OsBUF.First
resultisc

ResetltemBuffer() be //Set buffer to empty

[
OsBuffer>>0sBUF.In = OsBuffer>>0sBUF.First
OsBuffer>>0sBUF.Out = OsBuffer>>0sBUF.First

]

#176777 Thislocation, the last in memory, points to the beginning of the
area used to save statics for levBasic through levBcepl. The file
Sys.Bk documents offsets from this number where the various

statics will be found.

4.7. Swat

The operating system contains an interface to the Swat debugger (described in the "Alto Subsystems'
manual). Thisinterface uses OutLd to save the state of the machine on the file "Swatee," and InLd to
restore the state of the machine from the file "Swat," which contains the saved state of the debugger itself.
Theinverse processis used to proceed from an interrupt or breakpoint. Two aspects of the Swat interface
are of interest to programmers:

IvAbortFlag If @lvADbortFlag is zero, holding down the <left-shift> and <B3>
keyswill simulate the call OsFinish(fcAbort), thus terminating
execution of the running program. In critical sections, setting
@lvAbortFlag to a non-zero value will disable aborts. The
standard convention is to increment @lvAbortFlag when
entering such a section and to decrement it when exiting. This
permits separate software modules to use the feature
concurrently.

IlvSwatContextProc Although Swat saves and restores the state of the standard Alto
I/0 devices, it has no way to know about special devices
attached to the machine. The programmer may arrange that a
peice of code will be called whenever Swat istrying to turn of f
1/O preparatory to calling OutLd, or trying to restart 1/0 after
an InLd. If the programmer does
@lvSwatContextProc=DL SProc, Swat will execute DL SProc(0)
when turning off 1/0, and DL SProc(-1) when turning it on.
Since Swat can be invoked at any time, the Swat context
procedure must be written in machine language and must not
assume anything about the state of the machine or any data
structures (in particular the Bepl stack may bein an inconsistant

state).

For Xerox Internal Use Only -- December 15, 1980
Alto Operating System May 5, 1980 26

4.8. The Bepl stack

The Bepl compiler determines the format of aframe and the calling convention. The strategy for alocating
stack frames, however, is determined by the operating system. We begin by describing the compiler
conventions, which are useful to know for writing machine-language routines.
A procedure call: p(al, a2, ...), isimplemented in the following way. The first two actual arguments are
put into ACO and AC1 (AC2 always contains the address of the current frame, except during a call or
return). If there are exactly three actual arguments, the third is put into F.extraArguments. If there are
more than three, the frame-relative address of a vector of their values is put there (except for the first two),
so that the value of the i-th argument (counting from 1) is frame>>F.extraArguments! (frame+i). Once the
arguments are set up, code to transfer control is generated which puts the old PC into AC3 and sets the PC
top. Atthispoint, AC3!0 will be the number of actual arguments, and the PC should be set to AC3+1 to
return control to the point following the call.
A procedure declaration: let p(f1, f2, ...) be..., declares p as a static whose value after loading will be the
address of the instruction to which control goeswhen pis called. Thefirst four instructions of a procedure
have a standard form:

STA 312 ; AC2>>F.savedPC _ AC3

JSR @GETFRAME

<number of words needed for this procedure’ s frame>

JSR @STOREARGS
The Bepl runtime routine GETFRAME allocates storage for the new frame, NF, saves AC2 in
NF>>F.calersFramefield, sets AC2 to NF, and stores the values of ACO and ACL1 (thefirst two
arguments) at NF>>F.formals 0 and 1. If there are exactly three actual arguments, it stores the third one
also, at NF>>F.formals~2. Then, if there are three or fewer actual arguments, it returnsto L+3, otherwise
it returnsto L+2 with the address of the vector of extraargumentsin ACL, at thispoint a JSR
@STOREARGS will copy the rest of the arguments. In both cases, the number of actual argumentsis in
ACQO, and thisis till true after acall of STOREARGS. A Bcpl procedure returns, with the result, if any, in
ACQO, by doing:

JMP @RETURN

to aruntime routine which simply does:

LDA 20,2 ; AC2_AC2>>F.callersFrame

LDA 31,2 : PC_AC2>>F.savedPC+1

JMP 1,3
Theinformation above is a (hopefully) complete description of the interface between a Bcpl routine and
the outside world (except for some additiona runtime stuff which is supplied by the operating system).
Notethat it isOK to usethe caller’s F.Temp and F.extraArguments in a machine-language routine which
doesn’t get its own frame, and of courseit is OK to save the PC in the caller’s F.savedPC.
The operating system currently allocates stack space contiguously and grows the stack down. To allocate a
new frame of size S, it simply computes NF=AC2-S-2 and checks to see whether NF > EndCode. If not,
thereisafatal error (Swat breakpoint at finish+1); if so, NF becomes the new frame. (Note: the "-2" in

the computation is an unfortunate historical artifact.)

4.9. Runfiles

The format of afile produced by Bldr to be executed by Call Subsysis described by the structure definition
SV in BCPLFiles.d. Consult the Bcpl manual (section on Loading) for interpretations of the various fields
and the handling of overlays.

For Xerox Internal Use Only -- December 15, 1980
Alto Operating System May 5, 1980 27

5. The Executive

The Alto Executive isitself a subsystem and lives on the file Executive.Run; if you don’t like it, you can
write your own. It is currently invoked from scratch after the operating system is booted, and whenever a
subsystem returns. The Executiveis fully documented in the "Alto Subsystems" manual.

6. Operating Procedures

6.1. Installing the operating system

The"Install" command causes the operating system to execute special code which completely initializes
the system. The options of the install procedure are controlled by prompts. Installation is needed:

- When anew version of the operating system is distributed. New versions are caled
"NewOS.boot" (or "NewOsV .boot", the variant that supports the file version numbering facility).
Y ou should transfer NewOS.boot to your disk and install it by saying "Install NewOs.Boot". It
will ask you several questions which determine it’s configuration on your disk ("SysGen", if you
will parden the expression) and finally the Executive will be invoked. The newly configured oS
writesitself on the file Sys.boot, so you can delete NewOS.boot after installing.

- When you wish to ERASE a disk completely and re-initialize it. This option pauses to let you
insert the disk pack you want initialized. This"new disk" function isinvoked by answering
affirmatively the question "Do you want to ERASE adisk before installing?" after answering
affirmatively that you want the "Long installation dialogue”. See also the NEWDISK section of
the Alto Subsystems Manual.

- When you wish to change the "user name" or "disk name" parameters of the operating system.
Theinstall procedure will prompt for these strings. It is also possible to specify adisk password
that will be checked whenever the operating system is booted.

- When you wish to enable the "multiple version” feature of the file system. (Because few programs
presently cope with al the subtleties of thisfeature, it iswiseto leave it disabled.)

- When you wish to extend afile system. Basic disks are often kept on Interim File Systems from
which users can copy them with CopyDisk. They are usually configured for asingle Diablo
model 31 disk. If your machine has more disk space, you can extend the file system by answering
"Yes' to the question "Do you want to extend this file system?" (thisis also part of the "long

installation dialog™).

6.2. How to get out of trouble

It occasionally happens that adisk will not boot, or something runs awry during the booting process. In
this case, the following steps should be considered:

1. Runthe Scavenger. Thiscan be donein two ways:

Place agood disk in the Alto, and invoke the Scavenger. When it asksif you wish to change
disks, respond affirmatively, put the damaged disk in the machine and proceed when the
drive becomes ready.

If you have network accessto a "boot server", hold down the <BS> and <’> keys and push the
boot button. Continue to hold down <’> until atiny square appears in the middl e of the
screen. You should now betalkingtothe Network Executive; type Scavenger<cr>.

For Xerox Internal Use Only -- December 15, 1980
Alto Operating System May 5, 1980 28

When the Scavenger finishes, the attempt to invoke the Executive may fail because Scavenger was
invoked from another disk. Try booting. If unsuccessful, go on to step 2.

2. UseFtpto get fresh copies of SysFont.al and Executive.Run. Again, this can be done in two ways:

Place agood disk in the machine and invoke Ftp. After itisinitialized, change disks, wait for
the damaged one to become ready, and type the necessary Ftp commands to retrieve the files.

Invoke Ftp viathe Network Executive asin step 1.
Now try booting. If unsuccessful, go to step 3.
3. Instal the OS. Y ou guessed it; this can be done in two ways:

Place agood disk in the Alto and type "Install." When asked for your name, place the
damaged disk in the machine, wait for the drive to become ready, and proceed.

Invoke the "NewOS' via the Network Executive. Y ou will be asked: "Do you want to
INSTALL this operating system?"

6.3. File Name Conventions

Various conventions have been established for Alto file names. The conventions are intended to be
helpful, not authorative.
1. All filesrelating to a subsystem "Whiz" should have file names of the form "Whiz.xxx", i.e. typing
"Whiz.*" to the Executive should list them all, delete them all, etc. Example: Bepl.Run, Bepl.Syms, etc.
2. File extensions are of preference chosen to be language extensions, i.e. they specify the language in
which they are written. The present set is:

Bepl Bcpl source code

Mu Micro-code source

Asm Assembler source code

Mesa Mesa source code

Help A help file for the system given in the name

Cm A command file for the Alto Executive

3. File extensions are otherwise chosen to reflect the format of thefile. The present set is:

Bravo Text file with Bravo format codes

Run Executable file produced by Bldr

Image Executable file produced by Mesa

Al Alto format font file

Boot A file that can be booted

Br Bcpl relocatable binary file

Syms Bldr symbol table output

BCD Mesa object code

Dm File produced by the Dump command,
read by the Load command

Ts Text file containing a transcript

Disk disk image CopyDisk format

For Xerox Internal Use Only -- December 15, 1980
Alto Operating System May 5, 1980

6.4. Miscellaneous information

The key in the lower right corner of the keyboard on a Microswitch keyboard (<blank-bottom>) or in
upper right on an ADL keyboard (FR1) is called the Swat key. If you pressit, aswell as the <ctrl>
<left-shift> keys, the Swat debugger will beinvoked. If you do this by mistake, <ctrl>P will resume
program without interfering with its execution, and <ctrl>K will abort your program.

Y ou can force an abort at any time by depressing the Swat key together with the <left-shift> key.

In order for the operating system to run properly, the following files should be on your disk (those
* are optional):

SysDir System directory.

DiskDescriptor Disk allocation table.

SysFont.Al System display font.

Executive.Run Executive (command processor).

Sys.Boot Boot-file containing the operating system.
Sys.Errors * Error messagesfile.

Swat * Debugger program, created by running Install Swat.
Swatee Debugging file essential to Swat.

(Note: If you wish to change the font used by the operating system, it suffices to copy a new font
SysFont.Al and boot the system.)

29

the
and
your

marked

to

If you intend to write programs that use the operating system facilities, you will want some additional files:

Sys.Bk Required by Bldr to load programs that reference
system functions. Thisfile also shows which functions

implemented in which levels and the names of source files

the code.

SysDefs.d Definitions of standard system objects. Y ou will probably

to "get" thisfilein Bcpl compilations that use operating
functions extensively.

Streams.d Data structure definitions relating to streams.
AltoFileSys.d Data structure definitions relating to files.

Disks.d * Data structure definitions relating to the "disk™ object.
AltoDefs.d Definitions of places and things peculiar to an Alto.

BeplFiles.d * Definitions of the formats of Bepl-related files.

operating

are
for

want
system

For Xerox Internal Use Only -- December 15, 1980

Alto Operating System May 5, 1980 30

Name

CYCLE
JSRII
JSRIS
CONVERT
DIR

EIR

BRI

RCLK

SIO

BLT
BLKS
SIT
JMPRAM
RDRAM
WRTRAM
DIRS
VERS
DREAD
DWRITE
DEXCH
MUL
DIV
BITBLT

Notes:

Opcode Address Function

60000 C ACO_ACOIcy (if Cne0 then C else AC1); smashes AC1

64400 D AC3 _PC+1; PC_rv (rv (PC+D))

65000 D AC3_PC+1; PC_tv (rv (AC2+D))

67000 D character scan conversion

61000 - disable interrupts

61001 - enableinterrupts

61002 - PC _interruptedPC; EIR

61003 - ACO_16 msb of clock (from rea TimeClock); ACL1 10 Isb of clock *
#100 + 6 bits of garbage; resolution is 38.08 us.

61004 - start 1/0

61005 - Block transfer of -AC3 words; ACO=address of first source word-1;
ACl=addressof |last destination word; ACO and AC3 are updated
during the instruction

61006 - Block store of -AC3 words; ACO=data to be stored; ACl=address
of |ast destination word; AC3 is updated during the instruction

61007 - start interval timer. For an interrupt when the time is
timerInterruptTime, ACO should be 1 when thisinstruction is
executed

61010 - Emulator microcode PC_AC1 in control RAM

61011 - ACO_(if AC1[4] then RAM else ROM)!ACL1 (left half if AC1][5],
right half otherwise)

61012 - RAM!AC1_(ACO,AC3)

61013 - * Disableinterrupts and skip if interrupts were on

61014 - * ACO_((EngineeringNumber-1)* 16 +BuildNumber)* 256
+MicrocodeVersion

61015 - ** ACO_rv(AC3); AC1_rv(AC3 xor 1)

61016 - ** ry(AC3)_ACO; rv(AC3+1)_AC1

61017 - ** t rv(AC3); rv(AC3) ACO; ACO t; t rv(AC3+1);
rv(AC3+1) _AC1; ACL t

61020 - Same as NOVA MUL: ACO, 1 AC2*AC1+ACO

61021 - Similar to NOVA DIV: AC1_AC0,/AC2; ACO has remainder.
DIV (unlike NOVA version) skips the next instructionif no overflow
OCCurs.

61024 - * character scan conversion of bit-map manipulation

Address: C=bits 12-15; D=bhits 8-15; -=no address

variablesin function descriptions are machine registers or page 1 locations
* indicates available only in "new" microcode (SIO leaves ACO[0]=0)

** indicates available only on Alto 1

Table2.1: New instructionsin Alto emulator
(see Alto Hardware Manual for more details)

Alto Operating System

Device
Number of drives/Alto
Number of packs

Number of cylinders
Tracks/cylinder/pack
Sectors/track
Words/sector

Data words/track
Sectors/pack

Rotation time

Seek time (approx.)
min-avg-max

Average access

to 1 megabyte

Transfer rates:
peak-avg
peak-avg
per sector
for full display
for big memory
wholedrive

For Xerox Internal Use Only -- December 15, 1980

May 5, 1980

Diablo 31
lor2
1 removable

203

2

12

2 header
8 label
256 data
3072
4872

40

15+8.6* sgrt(dt)
15-70-135

80

1.6-1.22
10.2-13
3.3

46

1.03
19.3

Diablo 44

1

1 removable
1 fixed

406
2

12
same

3072
9744

25

8+3* sgrt(dt)
8-30-68

32 (both packs)

ohNON
NS
oo

44 (both packs)

Table 2.2: Properties of Alto disks

ms
ms
ms
ms

MHz
us-word
ms

sec

sec

sec

31

Alto Operating System

LastMemLoc
é'tartsystem
StackBase
StackEnd

EndCode

StartCodeArea
400-777
300-377
20-277

0-17

LastMemLoc
StackEnd

EndCode
StartCodeArea

For Xerox Internal Use Only -- December 15, 1980

May 5, 1980 32

Last memory location

Base of system

Root of stack; stack extends downward from here

Top of stack, which grows down

End of user program+1

This space contains user code and statics, loaded as specifiedby the
arguments to Bldr. Default isto start at StartCodeArea and load
statics into the first 400 words, and code starting at
StartCodeArea+400. See Bepl manual.

Start of user program area

Page 1: machine-dependent stuff (see Alto Hardware Manual)

Bcpl runtime page 0

User page 0

Unused

Table 3.1: Memory layout (all numbers octal); see section 3.6

The operating system described in this document runs on 64K
Altos; thislocation is 176777.

The address of the frame in which the current procedure is
executing is computed by the MyFrame procedure; aternatively,
compute lv (first argument of current procedure) -4

Rv(335)

User code may start at any address > 777.

Table 3.2: Values of symbolic locationsin Table 3.1

(al numbers octal)

For Xerox Internal Use Only -- December 15, 1980
Alto Operating System May 5, 1980 33

Operating System Change History

Thisfile contains an inverse chronological listing of changes to the Alto operating system.

The "normal way" to install a new operating system isto retrieve a copy of the files NewOS.Boot,
Sys.Syms, Sys.Errors and Sys.Bk that are being distributed. Say "Install NewOS.boot" to the Exec, answer
the configuration questions and then delete NewOs.Boot.

Version 19/16 -- December 15, 1980

Additions: The major addition is that you can now erase adisk and format it to use 14 sectors per cylinder
on DOs and Dorados. It isnot possible to extend a 12 sector file system to 14 sectors "in place”; you must
save your files, erase the disk and restore them.

Changes: [BFSInit] The OS refuses to boot when only one disk of a double disk file system is spinning. It
can also detect certain other blunders like DP1 containing a single disk file system rather than the second
half of the filesystem starting on DPO. It is not possible to detect all bad cases. [KeyStreams] the static
kbTransitionTableis not exported to users who wish to modify the OS's treatment of the keyboard.

[DspStreams] it used to be that character codes below 40b unconditionally called the stream scroll
procedure. Now, if the character has a non-zero width or height it isdisplayed. Only characters with zZero

width and height (CR and LF in particular) call scroll.
Version 18/16 -- May 5, 1980

Additions: The major addition isthat you can now extend afile system by reinstalling the OS. A single
model 31 file system can be extended to a double model 31, a single model 44 or a double model 44, and a
single model 44 can be extended to a double model 44. Thisisaccomplished by a subdiaog of the "long
installation dialog’.

Changes: [Calendar] DOs and Dorados now use Alto | clock format. [Dirs] A bug in the 'CompareFn’
feature has been fixed. [BFS] 'return on check error’ is handled better. [InOutLd] Disk error recovery
during InLd and OutLd has been improved. [DiskStreams] A bug in FilePos, introduced in OS17 and
responsible for problems with long filesin FTP, has been fixed. CleanupDiskStream now does the proper

thing if afileis extended to a multiple of the page size and then trimmed back by lessthan a page.
[DisplayStreams] EraseBitsis much faster now because it uses BitBIt. [BfsMI] BitBIt calls Swat if the BBT
starts at an odd address.

Version 17/16 -- September 9, 1979

The most significant improvements are that the DSK object has been extended to permit disk-independent
operation at the DoDiskCommand/GetCb level; procedures have been added to scan a disk stream at full
disk speed; and the directory lookup procedures have been modified to take advantage of these facilities
and thereby improve performance substantially. To make way for these improvements, all support for file
version numbers (alittle-used feature) has been removed.

Incompatibilities are confined to those programs that create DSK objects, since several of the OS routines
now expect to be passed the extended versions. Programs that include the TFS must be rel oaded with the
latest release of TFS; they will then run under OS 17 or OS 16. Programs that include BFSInit must be
reloaded with the OS 17 version of BFSInit; they will then not work under previous OS releases. Of the

standard Alto subsystems, FTP falsinto the first category and Neptune in the second.

In the DSK object, the fields fpDiskDescriptor, driveNumber, retryCount, and total Errors have moved,
and fpSysLog has been deleted; it is believed that no existing programs are affected by this.

Additions: [BFS] the DSK object is extended to include generic procedures InitializeDiskCBZ,
DoDiskCommand, GetDiskCh, and CloseDisk, and constants lengthCB and lengthCBZ. The CBz

For Xerox Internal Use Only -- December 15, 1980

Alto Operating System May 5, 1980 34
structure is now public, and is defined in Disks.d and documented in the "Disks and BFS" description.
InitializeDiskCBZ defaults its errorRtn argument. DoDiskCommand has an optional nextCb argument.
DefaultBfsErrorRtn and BfSNonEXx are exported in Sys.bk, so user programs can load BFSInit. The BFS
can now operate in any of the file system partitions available on the large disks of Dorados and DOs. An
optional hintL astPage argument to ActOnDiskPages, WriteDiskPages, and Del eteDiskPages has been

added. New procedures include Min, Max, Umin, Umax, and Call10 through Call 15.

[Disk streams] A DiskStreamsScan level has been added, containing the procedures InitScanStream,
GetScanStreamBuffer, and FinishScanStream; these support overlapped reads at full disk speed.

[Keyboard] Shift-LF generates Ascii 140B -- accent grave.

Deletions: The remaining vestiges of the Sys.Log code are gone. BFSSetStartingV DA removed -- use
ReleaseDiskPage(disk, AssignDiskPage(disk, desiredVDA-1)). All support for version numbers has been
removed from the standard release; an alternate release (NewOsV .boot) is available in which the version
number facility has been retained, but it does not benefit from the improved directory lookup
performance, it is somewhat larger, and it may not be supported in the future.

Changes: levBasic is now guaranteed to be at 175000B or higher, for the benefit of Mesa and Smalltalk.
ReleaseDiskPage doesn’t increment the page count if the page released is already free. The BFS now
retries data-late errors indefinitely. The BFS cleanup routine is now called with three arguments. The
DiskDescriptor file is now allocated next to SysDir rather than in the middle of the disk asit wasin OS 16.
The old write date is not restored to a directory file (directory bit on in serial number) if thefileis opened
for writing but never dirtied. A number of bugsin the disk streams code have been fixed that prevented
manipulation of files greater than 32767 pages long. Directory operations (OpenFile, DeleteFile, etc.) now
search the directory at essentially full disk speed. Booting has been speeded up somewhat. The OS uses

and maintains disk shape information as a DSHAPE file property in the leader page of SysDir.
Version 16/16 -- February 19, 1979

This version contains many internal changes but few external ones. Eventhoughitis technically
incompatible with previous releases (OS 16/16 rather than OS 16/5), most programs are not affected.
There are three magjor changes: 1) backward compatibility for the "old" OS has been removed, 2) the disk
bit table is now paged rather than occupying afixed areain memory, and 3) the interface between Swat
and the OS changed - Swat.25 is required.

Additions: the BitBIt instruction is accessible from Bepl and a structure definition for a BitBlt table was
added to AltoDefs.d. More of the page 1 and I/O arealocation names were added to AltoDefs.d. A new
declaration file, BeplFiles.d, was created and the Bepl file format definitions were moved there from
SysDefs.d. The OS corrects parity in extended memory banks during booting. The "new" file date
standard isimplemented. The DDMgr object operations were added to Calls.asm.

Deletions: the compatiblity package has been removed. All of the commonly used subsystems which
depended on it have been updated. They are: Asm, RamLoad, CleanDir, EDP, and Scavenger. If you
keep any of these on your disk, you should get new copies from the <Alto> directory. fpSysLog, fpSysTs,
fpWorkingDir, faSysL og, and nameWorkingDir went away.

Reorganiztions: the BFS was extensively reorganized to bring it into sync with the TFS. The code for
creating avirgin file system and creating a DSK object has been disentangled from OS initiaization. The
Bcpl frame-munging code was split out of BFSML.asm and put into anew file; Bcepl Tricks.asm.
Initialization for the keyboard was moved from the OS initializtion modules into KeyStreamsB.bcpl,
making it self-contained. Parity Error handling, Calendar clock update, Swat interface, and InOutLd were
split into separate modules.

Changes: Disablelnterrupts returns true if interrupts were on. The VERS and DCB structure were moved
into AltoDefs.d. The names of many OS modules changed. The long installation dialog permits more
precise control over the handling of memory errors. The erase disk dialog permits you to create an extra

big directory. Theinterface to Swat has changed - Swat.25 is the new version.
Version 15/5 -- March 15, 1978

For Xerox Internal Use Only -- December 15, 1980
Alto Operating System May 5, 1980 35

Fixed abug in the file date code; introduced another bug in the same code.

Version 14/5 -- March 1, 1978

Additions: ReadCalendar and SetCalendar - analogus to DayTime and SetDaytime only they conform to
the new time standard. DayTime and SetDaytime will continue work correctly until April 30, 1978. A new
declaration file, AltoDefs.d was created; some things were moved there from SysDefs.d. Definitions of the
format of .BB (overlay), and .Symsfiles were added to SysDefs.d. This OS has room for a’big’ bittable - a
special OS version is not required.

Deletions: The system log was de-implemented. LogOpen, LogClose, and MakelL ogEntry are now Noops.

They will be removed when an incompatible OS is next released.

Reorganizations: Noop, TruePredicate and Fal sePredicate were moved from StreamsML.asm to
BFSML.asm (up afew Juntalevels). Fast streams were split out of disk streams: FastStreamsB.bcpl and
FastSteamsA.asm. Streams.bcpl was split into 3 files: DiskStreams.bcpl, DiskStreamsMain.bcpl, and
DiskStreamsAux.bcpl; StreamsML .asm disappeared.

Changes: A bug in ReturnFrom was fixed (this only mattersif you use the microcode version of the frame
allocator). TruePredicate now returns-1 (it used to return 1). [f the unrecoverable disk error routinein the
BFS returns, the cleanup procedure is called and things plunge on. OpenFile with afilename containing a
non-existant directory now returns O instead of calling Swat. The Diablo printer bits (0-7) are now ignored

by the keyboard interrupt routine.

Version 13/5 -- May 16, 1977

Additions: ParseFileName (alower level directory function) was made available to users.
Changes: Minor, yeainsignificant bugs fixed.

Version 12/5 -- March 20, 1977

Additions: ClockSecond. Location 613b is now reserved to indicate to RAM microcode what sort of Alto
weareon: OimpliesAlto I; -1 implies Alto I1.

Changes: Time-keeping accuracy improved slightly. BFSis now reentrant--you may have severa
independent disk activities going concurrently (this will make CopyDisk more reliable).

Version 11/5 -- January 9, 1977

Additions: eventinLd and eventCall Subsys processing added. Also now possible to install the operating
system with logging disabled.

Changes: Booting process somewhat more robust. Several changes to improve diagnostic information
about parity errors provided by Swat. Improved password protection. Alto |1 fixesin parity and timer
routines.

Version 10/5 -- November 2, 1976

Changes: A nasty bug in the disk routines was uncovered and fixed. It was responsible for occasionally
garbaged files.

Version 9/5 -- September 25, 1976
Additions: verNewAlways option to OpenFile; changeSeria entry on file leader pages.
Changes: Various bugs relating to keeping file version numbers were fixed.

Version 8/5 -- August 28, 1976

For Xerox Internal Use Only -- December 15, 1980
Alto Operating System May 5, 1980 36

Changes: Several bugsin parity error detection and reporting were removed.

Version 7/5 -- August 10, 1976

Additions: The Idle procedure and corresponding static Ividie; lvParityPhantomEnable global static; more
installation options.

Minor changes: Two bugs in PositionPage are fixed -- one permitted read-only filesto be accidently
lengthened.

Version 6/5 -- July 8, 1976

Additions: (1) Severa global statics have been added: AltoVersion (code for machine, build and
microcode versions), ErrorLogAddress (Ethernet address to report hardware errors), #176777 points to
the global statics.

(2) Theformat of Sys.Boot has been altered dightly so that Altos may be booted over the Ethernet.

Version 5/5 -- April 28, 1976

How to get it: Because version 5 introduces some incompatibilities, it is essential that several subsystems be
updated: (1) get anew Executive and Bravo 5.5 or later (these will run under version 4 or version 5 of the
operating system); (2) get Sys.Bk, Sys.Syms, Sys.Boot (under another name, e.g. NewOs.Boot); (3) install
your new system; (4) get anew version of DDS, which depends on version 5 of the operating system; 5)
get anew Install Swat.Run and invoke it; (6) if you are a programmer, be sure to get new copies of al

definitionsfiles (e.g. AltoFileSys.d).

Incompatibilities: (1) Most calling sequences and subroutine names for the "Bfs" routines have changed.
These changes were made in order to Introduce the concept of a"disk" object, so that standard OS stream
and directory functions could be applied to non-standard disks (e.g., the Trident T80). The static
IvDiskKd has been removed.

(2) The "disk address" returned as part of a CFA or FA isnow avirtual disk address. The routine
RealDiskDA can be used to convert it to aphysical disk addressif desired.

Minor changes: (1) The handling of the UserFinishProc has changed. The recommended procedure for
such proceduresisto simply return from a finish procedure, not to call OsFinish again.

(2) Several bugs in the streams package are fixed, e.g. ReadBlock applied to afile with 511 bytesin the last
data page did not work correctly.

(3) The "new disk" refreshing procedure has been changed to use the new FTP; it is now mandatory that
thisfile be present on your disk when you attempt to make a brand new disk.

(4) 1t isnow possible to change disk packs during the Install sequence; simply change packs when some
question is asked of you (exception: If you are creating a"new disk," do not change packs until told to do
S0).

(5) The log functions have been made much more robust. It is now possible to delete Sys.Log and

continue operations.

(6) Numerous bugs in ReturnFrom and FramesCaller are fixed.

(7) The default number of file versions to keep is now stored in the DiskDescriptor.
(8) Wns has been changed to allow both signed and unsigned number conversion.

(9) The arguments to DeleteFile have changed slightly (only if you pass more than 2 argumentsto it).

For Xerox Internal Use Only -- December 15, 1980
Alto Operating System May 5, 1980

(10) The introduction of the "disk" object has added some statics: sysDisk, some functions:
LnPageSize, and optional "disk" arguments to disk stream opening functions.

37

KsGetDisk,

For Xerox Internal Use Only -- December 15, 1980
Alto Operating System May 5, 1980 38

Operating System Software Packages

Several of the modules of the operating system are also available as software packagesin case the
programmer wishes to include them in overlays, or modify them, etc. The sourcesare in
<AltoSource>0SSources.dm, and the binaries are in <Alto>0OSBrs.dm. Y ou are urged to get listings and
ponder them since proper use of these proceduresin aforeign context may require some modifications,

and will certainly require some understanding. The BootBase package, in the BuildBoot documentation in
the Subsystems manual, offers configurations of these packages that permit making most any subsystem
into a boot file without souce level changes.

Utilities. Thefile OsUtils.Bcpl contains severa of the utility procedures located in levMain: Wss, Ws, Wi,
Whns, Wos, Wo, GetFixed, FreeFixed, FixedL eft, SetEndCode. The procedure GetFixedinit must be

called to initialize the GetFixed/FreeFixed procedures.

Password. The file Password.Bcpl contains the Alto password routines, and can be used to do password
checking in subsystems.

Keyboard. The keyboard handler is available in KeyStreamsB.Bcpl, KeyStreamsA.Asm and
LevBuffer.asm. The procedure CreateK eyboardStream initializes the package, and returns avalue (keys)
that can be used as a keyboard stream.

Display. The display handler is available in the file DspStreamsB.Bcpl and DspStreamsA.Asm.
Documentation is found later in this manual.

Directory. Thefile Dirs.Bcpl contains the directory manipulations described in section 3.5.

Fast Streams. The files FastStreamsB.bcpl and FastStreamsA.asm implement fast streams to memory.
Documentation is part of DiskStreams.

Disk Streams. The files DiskStreams.bcpl, DiskStreamsMain.bepl, and DiskStreamsAux.bepl contain
procedures for implementing disk streams. The fast file scanning facilities require the additional file

DiskStreamsScan.bcpl. Documentation is found later in this manual.

Alloc. Thefile Alloc.Bepl implements the allocator. See documentation later in this manual.

Basic File System. Thefiles Bfslnit.bcpl, BfsBase.Bcpl, BfsWrite.Bcpl, BfsCreate, BfsClose.bcpl,
BfsDDMgr.bepl, BfsNewDisk.bepl and BfsFindHole.bcpl implement the basic file system (documentation
appears later in thismanual). They are maintained separately from the OS (sources:
<AltoSource>BFSSources.dm; BRs: <Alto>BFSBRs.dm). They require Calendar.Asm, Dvec.Bcpl,

Cadls.Asm, Bcpl Tricks.asm and SysErr.bcpl in order to operate.

For Xerox Internal Use Only -- December 15, 1980
Disk Streams September 9, 1979 39

Disk Streams: A Byte-Oriented Disk I nput/Output Package

The disk streams package provides facilities for doing efficient sequential input/output to and from Alto
disk files. It aso includes operations for doing random positioning with moderate efficiency, and for
performing various housekeeping operations. An introduction to streams can be found in the Alto
Operating System Manual.

As part of these facilities, a"fast stream" capability permits very fast sequential byte accessto objects
stored in memory. An extension to the disk streams package permits reading of a disk stream to be
ove(rjl_apped with computation, thereby enabling the reading of files at full disk speed under favorable
conditions.

The source files for the disk streams package are kept with the Alto Operating System in OS.DM:

Streams.D: public declarations;

DiskStreams.decl: private declarations;

FastStreamsB.bcpl and FastStreamsA.asm: Memory streams,
DiskStreams.bcpl: create/destroy a stream;
DiskStreamsMain.Bcpl: the’'main ling’ code;
DiskStreamsAux.bepl: auxiliary disk stream functions;
DiskStreamsScan.bcpl: fast file scanning;
DiskStreamsOEP.bcpl: overlay entry point declarations.

The DiskStreams code (hot the FastStreams code) may be swapped. To this end, the functions are
distributed among three moderate-sized modules and intermodul e references are minimized.

Streams use the generic procedures of a"disk object" to do disk transfers. The stream routines default the
choice of disk to "sysDisk," adisk object created by the Alto operating system to provide access to the

standard disk drive. However, you are free to open streams to other disks.

1. Data structures

Thefile Streams.D contains the public declarations of the disk streams package. Most users will not be
concerned with these structures (except occasionally with their size, so as to be able to allocate the right

amount of space for one of them), because the streams package provides procedures to perform all the
operations which are normally needed.

The ST structure is common to all streamsin the Alto operating system. It includes the procedures which
implement the generic stream operations for this particular stream: Closes, Gets, Puts, Resets, Putbacks,

Errors, and Endofs. In addition, thereisatype, which for disk streamsis aways stTypeDisk, and three
parameter words whose interpretation depends on the stream. The parameter words are not used by disk
Streams.

Fast streams are a specialization of streams, designed to quickly get or put bytes or words until a count is
exhausted, and then call on a fixup routine which supplies a new count. Usually the count specifies the
number of items remaining in abuffer, and the fixup routine empties or refills the buffer, but no such
assumptions are made by fast streams. Thisfacility is described in alater section; it is used by disk streams,

but is of no concern to a program which simply wants to use disk streams.

A file pointer contains all the information required to access an Alto disk file. Its structureis described in
detail in the Disks documentation. For anormal user of streams, afile pointer is simply a small structure

which must be supplied to the CreateDiskStream routine to specify the file to which the stream should be
attached. File pointers are normally obtained from directories, but a user is free to store them wherever he

wishes.

For Xerox Internal Use Only -- December 15, 1980
Disk Streams September 9, 1979 40

A file address FA is a pointer to a specific bytein afile. It includes the address of the byte, divided into a
page humber (the page size depends on the disk in use; normally pages contain 512 bytes) and a byte
number. It also includes adisk address, which isahint asto the physical location of the specified page.
Stream routines which use file addresses check the hint; if it turns out to be correct, they proceed, and

otherwise they start at the beginning of the file and search for the desired page.

A complete file address CFA contains both afile pointer and afile address; it is a pointer to a specific byte
anywhere in the file system.

A file position (FPOS) is a double-precision number which addresses abytein afile. Thefirst wordis the
most-significant half.

2. Properties of disk streams

All the stream procedures take as their first parameter a structure called adisk stream. A disk stream
provides access to afile stored on the Alto disk. Each stream is associated with exactly one file, although it
Is possible to have several streamsin existence at once which are associated with the samefile. Thefileis a
permanent object, which will remain on the disk until explicitly deleted. The streamisan ephemeral
object, which goes away when it is closed, or whenever the Alto’s memory is erased.

A file consists of aleader page, alength L, and a sequence of L bytes of data; each byte contains 8 bits. A
stream is always positioned to some byte of the file, and the normal stream operations proceed sequentially
from the current position to later positionsin thefile. The first byteis numbered 0. When the stream is
positioned at byte n, thiswill be the next byte transferred by a Gets or Puts. There are a'so operations
which reposition the stream. When datais written into the stream, the file is lengthened if necessary to
make room for it. Thefileis never shortened except by TruncateDiskStream (which may be called by

Closes; see below).

A stream can transact business aword at atime or abyte at atime, depending on how it is created. In the
former case, if the length of the fileis odd, the last word delivered will have garbage in its right byte.

Y ou can replace the generic stream procedures if you wish (Gets, Puts, Closes, Resets, Errors, Endofs,
Stateofs). The one you are most likely to want to replace is the error procedure. Itisinitialized to SysErr.

3. Procedures

This section describes the calling sequences and behavior of all the user-callable proceduresin the streams
package. If aparameter isfollowed by an expression in brackets, this means that the parameter will be
defaulted to that expression if you supply O. If the last few parameters you are supplying are defaulted,

you can just omit them. Empty brackets mean that the parameter may be omitted. The parameter s stands
for the disk stream the procedure works on.

Warning: Because the stream procedures occasionally use the RetryCall function, a procedure address
cannot be computed, but must be the value of a static (global) or local variable. Thus"a>>proc(stream, b)"

is not permitted, but "let pr=a>>proc; pr(stream, b)" isfine.

3.1. Creating and destroying

CreateDiskStream(filePtr, type [ksTypeReadWrite], itemSize [worditem], Cleanup [Noop], errRtn
[SysErr], zone [sysZone], nil, disk [sysDisk]) returns diskStream. A new disk stream is created and
returned. It is associated with the file specitied by filePtr on the given "disk,” and positioned at item O. Its

type may be one of (see Streams.D for definitions):

For Xerox Internal Use Only -- December 15, 1980
Disk Streams September 9, 1979 41

ksTypeReadOnly
ksTypeWriteOnly
ksTypeReadWrite

Its itemSize may be one of (see Streams.D for definitions):

charltem

wordltem
If you supply acleanup routine, it will be called with the stream as parameter just before the stream is
destroyed by a Close. If returnOnCheckError istrue, the routine will return O if the fileid of the leader
page at the address specified in the file pointer is different from the fileid in the file pointer. You would
want thisif you wanted to use the file pointer as a hint, perhaps to be backed up by a directory lookup if it
fails. Infact, the standard directory routine OpenFile does exactly that. If you supply a zone, it will be
used to allocate the space needed by the stream. This space comesin two parts: the stream itself, about 60

words long, and the buffer, one page long.

Resets(s): flushes any buffers associated with the stream to the disk, and positions the stream to 0.

Closes(s): closes the stream, flushing the buffer and updating various information in the leader page if
necessary. Thelast thingsit does are to call the cleanup routine passed to CreateDiskStream, and then to
free the space for the stream. |If the stream is open for writing only and it is not positioned at date byte 0,

thefile length is truncated to the current position.

CleanupDiskStream(s): flushes any buffers associated with the stream to the disk.

3.2. Transferring Data

Gets(s): returnsthe next item (byte or word, depending on the item size), or causes an error if there are no
more items in the stream.

Puts(s, item): writes the next item into the stream. It causes an error if thereis no more disk space, or if the
stream was created read-only.

ReadBlock(s, address, count) returns actual Count: reads count words from the stream into memory,

starting at the specified memory address. It returns the number of words actually read, which may be less
than count if there were not enough wordsiin thefile. It never causes an end-of-file error. It ispossible to
use ReadBlock on abyte stream, but only if the stream is currently positioned at an even byte; otherwise

there will be an error.

WriteBlock(s, address, count): writes count words from memory into the stream, starting at the specified
memory address. The comment in ReadBlock about byte streams applies here also.

3.3. Reading state

Endofs(s): returnstrue if and only if there are no more items in the stream.
L nPageSize(s) returns the log (base 2) of the number of words in a page of thefile.

FileLength(s, filePos[]) returns lengthL : positionsthefile to its last byte and returns the length in bytes in
filePos (FPOS), and the length mod 2** 16 asits value.

FilePos(s, filePos[]) returns posL: returns the current byte position in filePos (FPOS), and the current
position mod 2** 16 asitsvalue.

GetCurrentFa(s, fileAddress) stores the current position in the file address (FA), including the disk address
of the current page as a hint which can be used by JumpToFa.

For Xerox Internal Use Only -- December 15, 1980

Disk Streams September 9, 1979 42
GetCompl eteFa(s, completeFileAddress) stores both the file pointer and the current position in the
complete file address (CFA). Thisisenough information to create a stream (passing the file pointer to

CreateDiskStream) and then to return to the current position (passing the file address to JumpToFa).

KsBufferAddress(s) returns address: returns the address in memory of the buffer for the stream. This is
useful if you want to move the buffer; you can do so, and then reset the address with KsSetBufferAddress.

K sGetDisk(s) returns a pointer to the DSK object that describes the disk on which this stream is open (see
Disks documentation).

KsHintL astPageFa(s) returns a pointer to a hint for the end of the file opened by stream s.

ReadL eaderPage(s, |d) reads the 256 word |eader page for the file on which sis openinto the vector
pointed to by Id. The stream is|eft positioned at data byte 0.

3.4. Setting state

TruncateDiskStream(s) truncates the stream at its current position. Afterwards, Endofs(s) will be true.

PositionPage(s, page, doExtend [true]) returns wantedToExtend: positions the stream to byte O of the

specified page. |f doExtend istrue, it will extend the file with zerosif necessary in order to make it long

enough to contain the specified page. |f doExtend isfase, it will not do this, but will return trueif it was

unable to position the stream as requested because the file wasn’t long enough. NOTE: This routine

interprets "page” in the units associated with the disk on which the stream is open. If youwish a device-

independent positioning command, see SetFilePos.

PositionPtr(s, byteNo, doExtend [true]) returns wantedtoExtend: positions the stream to the specified byte

of the current page. DoExtend isinterpreted exactly as for PositionPage.

JumpToFa(s, fileAddress) positions the file to the specified address (FA). It triesto use the disk address

hint in the address, but falls back to PositionPage if that fails.

(SetFiIe)Pos(s, filePos): positions the file to the byte specified by the double-precision number in filePos
FPOS).

SetFilePos(s, filePosH, filePosL): positions the file to the byte specified by the filePosH* 2** 16+filePosL.

K sSetBufferAddress(s, address): sets the buffer address to the specified memory address. Itisthe caler's

responsibility to be sure that the buffer has the proper contents, and that it was allocated from the proper

ﬁone, so that when it is freed using the zone which was used by CreateDiskStream the right thing will
appen.

ReleaseK s(s) will release al the storage used by the stream s, without referencing the disk at al. Thisis a

way of aborting a stream, often useful when recovering from an unrecoverable disk error.

Writel eaderPage(s, |d) writes the 256-word vector pointed to by Id on the leader page of the file on which
sisopen. The stream Isleft postioned at data byte O.

3.5. File Scanning

The disk stream procedures described above have the property that they perform disk operations
synchronously. When one of these procedures requires a disk transfer to be performed, it initiates the
transfer and waits for it to complete. While certain procedures (e.g., ReadBlock, WriteBlock, SetFilePos,
etc.) are capable of transferring many consecutive pagesin a single disk operation, most stream routines are
limited to one page per disk revolution. This performance is an order of magnitude below the raw transfer

rate of the disk.

For Xerox Internal Use Only -- December 15, 1980

Disk Streams September 9, 1979 43
The procedures in the DiskStreamsScan module permit reading (but not writing) of afileto proceed at up
to full disk speed, if the amount of computation to be performed per page is not too great (about 2
milliseconds). To make use of this facility, you must provide a certain amount of extra buffer space to be
managed by the disk streams package, and you must take care of sequencing through the datain each page
yourself rather than obtaining it oneitem at atime using Gets.

The flow of control isbasically asfollows. You create a disk stream in the normal fashion. When you want
to start scanning the file, you pass the stream to InitScanStream, along with one or more additional page-
size buffers, and it returns a Scan Stream Descriptor (SSD). Now, every time you want to examine the
next page of thefile, you call GetScanStreamBuffer, which returns a pointer to a buffer containing the
contents of that page. The contents of the buffer remain valid until the next call to GetScanStreamBuffer.
When you have scanned as much of the file as you care to, you call FinishScanStream, which destroys the
SSD and leaves the stream positioned at the beginning of the page most recently returned by
GetScanStreamBuffer. Y ou should not execute any normal stream operations between the calls to
InitScanStream and FinishScanStream.

InitScanStream(s, buf Table, nBufs) returns SSD. Creates a Scan Stream Descriptor in preparation for
scanning the file corresponding to the stream s. buf Table is an array of pointers to page-size buffers, and
nBufs is the number of buffers (there must be at least one). That is, the buffers are located at buf Table!0,
bufTablell, ..., buf Table! (nBufs-1). The SSD is alocated from the zone from which swas allocated.
InitScanStream does not actually initiate any disk activity.

GetScanStreamBuffer(ssd) returns a pointer to a buffer containing the next page of the file being scanned,
or zero if end-of-file has been reached. This procedure waits if necessary for the transfer of the next page
to complete, and before returning it initiates as many new disk transfers asit has buffersfor. Thefirst page
returned by GetScanStreamBuffer is the one at which the stream was positioned at the time
InitScanStream was called. The initial portion of the SSD is a public structure (defined in Streams.d)
containing the disk address, page number, and number of characters in the page most recently returned by
GetScanStreamBuffer; you may use thisinformation for whatever purposes you wish (e.g., in building up a
file map for subsequent efficient random access to the stream).

FinishScanStream(ssd) waits for disk activity to cease, updates the state in the corresponding stream, and
destroys the SSD. The stream is|eft positioned at the beginning of the last page returned by
GetScanStreamBuffer, or at end-of-file if GetScanStreamBuffer most recently returned zero.

The package uses the stream buffer in addition to the buffers passed explicitly to InitScanStream. It is
possible to scan afile at full disk speed (assuming the file is consecutively allocated) with two buffers (i.e,
Just one additional buffer), so long asthe interval between calls to GetScanStreamBuffer is no greater than
3.3 milliseconds (or about 2 milliseconds of computation on the caller’s part). I1f more computation per
pageis required, or the amount of computation per page is highly variable, then more buffers are required

to maintain maximum throughput.

4. Fast Streams

A fast stream structure must begin with the structure declared as FS in Streams.D; following this you can
put anything you like. To initialize this structure, use

InitializeFstream(s, itemSize, PutOverflowRoutine, GetOverflowRoutine, GetControl CharRoutine
[Noop]). The s paramter points to storage for the stream structure, IFS words long. TheitemSizeisas for
CreateDiskStream. The overflow routines are explained below. GetControlCharRoutine(item, s) will be
called whenever a Gets for a charltem stream is about to return an item between 0 and #37, and its value
isreturned as the value of the Gets. The initialization provides Gets, Puts, and Endofs routines; the other

stream procedures are | eft as Errors.

SetupFstream(s, wordBase, currentPos, endPos) is used to set up afast stream to transfer data to or from a
buffer in memory. WordBase is the address of the buffer in memory, and currentPos and endPos are byte

For Xerox Internal Use Only -- December 15, 1980

Disk Streams September 9, 1979 44
addresses in the buffer. CurrentPos is the address of the first byte to be transferred, and endPos is the
address of the first byte which should not be transferred. CurrentPos is rounded up to aword if the item
size iswordltem, and endPos is rounded up to aword.

When a Gets or Puts attempts to transfer the byte addressed by endPos, the corresponding overflow
routineis called, with the same parameters that were passed to the Gets or Puts. The overflow routine can

do one of two things:
do the work and return

fix things up so that the Gets or Puts can succeed, and then exit with RetryCall(stream, item).

SetEof (s, newVaue) setsthe end-of-file flag in the stream. When thisflag is set, the Gets routine is
replaced by a routine which gives an end-of-file error, and when it is cleared, the old Gets routine is
restored.

CurrentPos(s) returns the current position in the buffer, always measured in bytes.
ItemSize(s) returns the item size of the stream.

Dirty(s) returnstrueif the dirty flag istrue. Thisflag is set to true whenever a Putsis done.
SetDirty(s, vaue) setsthe dirty flag to the specified value (true or false).

5. Errors
Whenever an operation on a stream causes an error, the error procedure in the stream is called with two
parameters: the stream, and an error code. The error procedureisinitialized to SysErr, but you can change

it to whatever you like. The error codes for errors generated by the disk stream package are:

1301 illegal item size to CreateDiskStream or
InitializeFstream

1302 endof file

1303 attempt to execute an undefined stream operation

1200 attempt to write aread-only stream

1201 attempt to do ReadBlock or WriteBlock on a stream not
positioned at a word.

1202 attempt to PositionPointer outside the
range [0 .. #1000]

1203 attempt to do adisk operation on something
not adisk stream

1204 bug in disk streams package

1205 CreateDiskStream cannot allocate space for the stream
from the zone supplied

For Xerox Internal Use Only -- December 15, 1980
Display stream package February 20, 1979 45

Display stream package

A library package is now available which provides display streams of great flexibility. Special features
include multiple fonts, repositioning to any bit position in the current line (or, under proper circumstances,
any line), selective erasing and polarity inversion, and better utilization of the available bitmap space.

The package consists of two files, DspStreamB.Bcpl and DspStreamA.Asm. In addition, files Streams.d
and AltoDefs.d provide useful parameter and structure declarations, in particular the parameters IDCB
and IDS mentioned below. The package does not require any routines other than those in the operating
system.

1. Creating adisplay stream

CreateDisplayStream(nLines, pBlock, IBlock, Font [sysFont], wWidth [38], Options
[DScompactleft+D Scompactright], zone [sysZone]): creates adisplay stream. nLinesisthe maximum
number of lines that will be displayed at once: it is completely independent of the amount of space
supplied for bitmap and DCBs. pBlock is the beginning address of storage that can be used for the display
bitmap and control blocks; itslength isIBlock. This block may be shortened dlightly in order to aign
things on even word boundaries. Font is a pointer to the third word of afont in AL format to use for the
stream. wWidth gives the width of the screen in Alto screen units, divided by 16; it must be an even
number. Zoneis afree-space pool from which any additional space needed by the stream can be seized.
(For adescription of zones, see the Alto OS manual.)

The minimum space for adisplay stream is IDCB* nLines+fh*wWidth+1, where fh is the height of the
standard system font, rounded up to an even number; the +1 allows the display stream package to align
the space on an even word boundary. This, however, only provides enough bitmap for asingle line. A
space allocation of IDCB* nLines+fh*wWidth* nLines+1 guarantees enough bitmap for all nLines lines.
The display stream package uses all the available space and then, if necessary, blanks lines starting from the
top to make room for new data.

Options, if supplied, controls the action of the stream under various exceptional conditions. The various
options have mnemonic names (defined in Streams.d) and may be added together. Hereisthelist of
options:

DScompactleft allows the bitmap space required for aline to be reduced when
scrolling by eliminating multiples of 16 initial blank bit ~ positions
and replacing them with the display controller’s "tab" feature.
However, aline in which this has occurred may not be
overwritten later (with SetLinePos, see below).

D Scompactright allows the bitmap space for aline to be reduced when scrolling
by eliminating multiples of 16 blank bit positions on the right.
Overwriting is allowed up to the beginning of the blank space,
i.e. you cannot make aline longer by overwriting if you select
this option.

DSstopright causes characters to be discarded when aline becomes full,
rather than scrolling onto anew line.

DSstopbottom causes characters to be discarded in preference to losing data
from the screen. This applies when either all nLineslines are

occupied, or when the allocated bitmap space becomes full.

DSnone none of the above (this option is necessary so that 0 defaults to
D Scompactleft+DScompactright).

2. Displaying the stream contents

For Xerox Internal Use Only -- December 15, 1980

Display stream package February 20, 1979 46

ShowDisplay Stream(s, how [DSbelow], otherStream [dsp]): This procedure controls the presentation of a
chain of display control blocks on the screen. If how 1d DSbelow, the stream will be displayed

immediately below otherStream; if DSabove, immediately above; if DSalone, it will be the only stream

displayed; if DSdelete, the stream s will be removed from the screen. The third argument is not needed for
DSalone or DSdel ete.

If you wish to construct your own "stream” for purposes of passing it to ShowDisplayStream, it is sufficient

that s>>DS.fdcb point to the first DCB of alist and that s>>DS.Idcb point to the last DCB. These are the
only entr)iec referenced by ShowDisplayStream (note that fdcb and Idcb are the first two words of a stream

structure).

3. Current-line operations
ResetLine(ds): erases the current line and resets the current position to the left margin.

GetFont(ds): returns the current font of ds.

SetFont(ds, pfont): changes the font of the display stream ds. Pfont is a pointer to word 2 of afont, which
is compatible with GetFont. Characters which have been written into the stream already are not affected;
future characters will be written in the new font. If the font is higher than the font initially specified,
writing characters may cause unexpected ateration of lines other than the line being written into. if
pFont!-2 is negative, then pFont!-1 is a pointer to afont (word 3, remember) and subsequent characters
put to the stream will be shown in synthetic bold face by scan converting the character, moving over one

bit and scan converting it again.

GetBitPos(ds): returns the bit position in the current line. The bit position is normally initialized to 8.

SetBitPos(ds, pos): sets the bit position in the current line to pos and returns true, if posis not too large;
otherwise, returns false. Pos must be less than 606 (the display width) minus the width of the widest
character in the current font. Resetting the bit position does not affect the bitmap; characters displayed a
overlapping positions will be "or"ed in the obvious manner.

EraseBits(ds, nbits, flag): changes bits in ds starting from the current position. Flag=0, or flag omitted,
means set bits to 0 (same as background); flag=1 means set bitsto 1 (opposite from background); flag=-1
means invert bits from their current state. If nbitsis positive, the affected bits are those in positions pos
through pos+nbits-1, where posis GetBitPos(ds); if nbitsis negative, the affected positions are pos+nbits
through pos-1. In either case, the final position of the stream is pos+nbits.

Here are two examples of the use of EraseBits. If the last character written on dswas ch, EraseBits(ds,
-CharWidth(ds, ch)) will erase it and back up the current position (see below for CharWidth). 1f aword of

width ww has just been written on ds, EraseBits(ds, -ww, -1) will change it to white-on-black.
4. Inter-line operations
GetLinePos(ds): returns the line number of the current line; the top line is numbered 0. Unlike the

present operating system display streams, which always write into the bottom line and scroll up, the display
streams provided by this package start with the top line and only scroll when they reach the bottom.

SetLinePos(ds, pos): sets the current line position in dsto pos. If the line has not yet been written into, or
if it has zero width, or if it isindented as the result of compacting on the left, SetLinePos has no effect and
returns false; otherwise, SetLinePos returnstrue. Note that if you want to get back to where you were

before, you must remember where that was (using GetLinePos and GetBitPos).

InvertLine(ds, pos): Inverts the black/white sense of the line given by pos. Returnsthe old sense (0 is
black-on-white).

ds>>DS.cdch: points to the DCB for the current line. Y ou may (at your own risk) fiddle with this to
achieve various effects.

5. Scrolling

For Xerox Internal Use Only -- December 15, 1980

Display stream package February 20, 1979 47
The display stream package writes characters using a very fast assembly language routine until either the
current lineisfull or it encounters a control character. In either of these situationsit callsa scrolling
procedure whose address is a component of the stream. The scrolling procedure is called with the same
arguments as PUTS, i.e. (ds, char), and is expected to do whatever is necessary. The standard procedure

takes the following action:

1) Null (code 0) isignored.

2) New line (code 15b) causes scrolling.

3) Tab (code 11b) advances the hit position to the next multiple of 8 times the width of "blank"
(code 40b) in the current font: if this would exceed the right margin, just puts out a blank.

4) Other control characters (codes 1-10b, 12b-14b, 16b-37b) print with whatever symbol appears in

the font.

5) If acharacter will not fit on the current line, scrolling occurs and the character is printed at the
beginning of the new line (unless the DSstopright option was chosen, in which case the
character is simply discarded).

The scrolling procedure is also called with arguments (ds, -1) whenever a contemplated scrolling operation
would cause information to disappear from the screen, either because nLines lines are already present or
because the bitmap space is full (unless the DSstopbottom option was chosen, in which case the procedure
isnot called and the action is the same asiif it had returned false). If the procedure returnstrue, the
scrolling operation proceeds normally. [f the procedure returns false, the scrolling does not take place, and

the character which triggered the operation is discarded.
The user may supply adifferent scrolling procedure simply by filling it into the field ds>>DS.scroll.
6. Miscellaneous

GetLmarg(ds): returns the left margin position of ds. The left marginisinitialized to 8 (about 1/10" from
the left edge of the screen).

Setl.marg(ds, pos): setsthe left margin of dsto pos.

GetRmarg(ds): returns the right margin position of ds. The right margin isinitialized to the right edge of
the screen: thisisthe value of the displaywidth parameter in DISP.D.

SetRmarg(ds, pos): sets the right margin of dsto pos.

CharWidth(StreamOrFont, char): returns the width of the character char in the stream StreamOrFont; if
StreamOrFont is not a stream, it is assumed to be afont pointer.

For Xerox Internal Use Only -- December 15, 1980
Alloc February 19, 1979 7:23 PM 48

Alloc -- A Basic Storage Allocator

The Alloc package contains a small and efficient non-relocating storage allocator. It doesn’t do much, but
what it doesit does very well. Initially the user gives the allocator one (or several) blocks of storage by cals
on InitializeZone. The user can later add storage to a zone by calling AddToZone. The function Allocate
returns a pointer to a block allocated from a given zone. Calling Free returns a previously-allocated block

to agiven zone.

Argument lists given below are decorated with default settings. An argument followed by [exp] will default
if omitted or zero to the value exp; an argument followed by [...exp] will default if omitted to exp.

InitializeZone, AddToZone

The function zone = InitializeZone(Zone, Length, OutOf SpaceRoutine [...SysErr], MalFormedRoutine
[...SysErr]) initializes the block of storage beginning at address Zone and containing Length words to be a
free storage zone. OutOf SpaceRoutine is taken to be an error handling routine that will be called whenever
arequested allocation cannot be satisfied. MalFormedRoutine is an error printing routine that is caled
whenever the Alloc package detects an error in the consistency of the zone data structure. InitializeZone
builds the zone data structure, and returns a pointer to a"zone," which is used for all subsequent calls to
Allocate and Free for the zone.

The function AddToZone(Zone, Block, Length) adds the block of storage beginning at Block and
containing Length words to the zone pointed to by Zone.

Alloc restricts the maximum size of the blocks it will allocate and of the "Length" arguments for
InitializeZone and AddToZone to 32K-1.

Allocate, Free

The function Allocate(Zone, Length, returnOnNoSpace[...0], Even [...0]) allocates a block of Length words
from Zone and returns a pointer to that block. If the allocation cannot be done, one of two cases pertains:
(1) returnOnNoSpace is non-zero or the OutOf SpaceRoutine provided for the zone is 0: Allocate returns
the value O; if returnOnNoSpace is hot -1, the size of the largest available block is stored in
@returnOnNoSpace; (2) otherwise, the value returned to the caller is the result of
OutOf SpaceRoutine(Zone, ecOutOf Space, Length).

If the optional parameter Even is true, the block allocated will be guaranteed to begin on an even word
boundary. Thisis useful when allocating display buffers.

The procedure Free(Zone, Block) gives a previously-allocated block of storage back to the zone pointed to
by Zone. Block must have been the value of acall on Allocate.

CheckZone

The Alloc package contains considerable facilities for debugging. Conditional compilation will enable
various levels of consistency checking; the remainder of this paragraph assumes that the checking is
enabled. Users should consult the source file (Alloc.Bcpl) for details concerning the conditional
compilation.

The procedure CheckZone(zone), which may be called conveniently from Swat, will perform a fairly
exhaustive consistency check of the zone (provided that conditional compilation has caused the code to be
present!).

In addition, certain checking will be performed on the various calls to the package, provided that the

Mal FormedRoutine parameter supplied for the zone is non-zero.

For Xerox Internal Use Only -- December 15, 1980
Alloc February 19, 1979 7:23 PM

If an error is detected, the call MaFormedRoutine(zone, errCode) is executed. Va ues of the error
are:

ecOutOf Space 1801 Not enough space to satisfy arequest.
ecZoneAdditionError 1802 Too large or too small addition to zone.
ecBlockNotAllocated 1803 Free has been called with a bad block.
ecllIFormed 1804 The consistency-checker has found some

error in the zone. Consult Alloc.Bcpl.
Free-Standing Zones

It is often desirable to use a single 16-bit quantity to describe an entire free-space pool, together with
allocating and freeing procedures. For example, one can pass to the operating system such a quantity;
system can thereafter acquire and release space without knowing the details of how the operations
done. The zones constructed by Alloc have this property:

zone>>ZN.Allocate(zone, Length) will allocate a block
zone>>ZN.Free(zone, Block) will free ablock

By convention, these entries are at the beginning of azone. Thus, all you need to know about the ZN
structureis:

structure ZN[
Allocate word //Allocation procedure
Free word //Free procedure
...rest of zone...

Example
The following terrible implementation of the factorial function illustrates the use of Alloc:

static [Spare
SparelsAval
FactZone

let Factorial(n) = valof
[let FactZoneV = vec 256
let MySpare = vec 37
Spare = MySpare
SparelsAvail = true

FactZone = InitializeZone(FactZoneV, 256, StkOvfl)
let FactVal = InnerFact(n)
resultis FactVal
and InnerFact(n) = valof
[structure STKENT:

[link word
value word

manifest [empty = -1;
wordsize = 16

49

code

its
the
are

data

Alloc

For Xerox Internal Use Only -- December 15, 1980

February 19, 1979 7:23 PM

let stack = empty

whilengr1do
[let stkent = Allocate(FactZone, size STKENT/wordsize)
stkent>>STKENT.link = stack
stkent>>STKENT.value=n
stack = stkent
n=n-1

]
let value=1

while stack ne empty do
[value = value* (stack>>STKENT.value)
let stkent = stack
stack = stkent>>STKENT.link
i:ree(Fathone, stkent)

resultis value

]

and StkOvfl(Zone, nil, Length) = valof

[unless SparelsAvail do
[Ws("Aargh! Stack stuck!™)
finish

]
AddToZone(FactZone, Spare, 37)
SparelsAvail =false
resultis Allocate(FactZone, Length)

50

For Xerox Internal Use Only -- December 15, 1980
Disks & Bfs August 10, 1980 51

Disks: The Alto File System

This document describes the disk formats used in the Alto File System. It also describes a"disk object,” a
Bcpl software construct that is used to interface low-level disk drivers with packages that implement
higher-level objects, such as streams.

The primary focus of the description will be for the "standard" Alto disks: either (1) up to 2 Diablo Model
31 disk drives or (2) one Diablo Model 44 disk drive. Thelow-level driversfor these disks are called "Bfs'
(Basic File System). With minor modifications, the description below applies to the Trident Model T80
and T300 disk drives, when formatted for Alto file system conventions. The differences are flagged with

the string [Trident]. Low-level driversfor the Trident disks are called " Tfs."

1. Distribution
Relocatable binary files for the BFS are kept in <Alto>BFSBrs.dm. The sources, command files, and test
program (described later in this document) are kept in <AltoSource>BFSSources.dm Relocatable binary

filesfor the TFS are kept in <Alto>TFS.dm; sources are kept on <AltoSource>TFSSources.dm.

2. File and Disk Structure

This section describes the conventions of the Alto file system. The files AltoFileSys.D and Bfs.D contain

Bepl structure declarations that correspond to this description ([Trident]: See also "Tfs.D").

The unit of transfer between disk and memory, and hence that of the file system, isthe disk sector. Each

sector has three fields: a 2-word header, an 8-word label, and a 256-word data page. ([Trident]: The fields
are a 2-word header, a 10-word label, and a 1024-word data page.)

A sector isidentified by a disk address; there are two kinds of disk addresses, real and virtual. The
hardware dealsin real addresses, which have a somewhat arbitrary format. An unfortunate consequence is
that the real addresses for all the pages on adisk unit are sparse in the set of 16 bit integers. To correct this
defect, virtual addresses have been introduced. They have the property that the pages of adisk unit which

holds n pages have virtual addresses 0 ... (n-1). Furthermore, the ordering of pages by virtual address is
such that successive pages in the virtual space are usually sequential on the disk. Asaresult, assigning a

sequence of pages to consecutive virtual addresses will ensure that they can be read in asfast as possible.

2.1. Legal Alto Files

An Alto fileis a data structure that contains two sorts of information: some is mandatory, and is required
for al legal files; the remainder is "hints'. Programs that operate on files should endeavor to keep the
hints accurate, but should never depend on the accuracy of ahint.

A legal Alto file consists of a sequence of pages held together by a doubly-linked list recorded in the label
fields. Each label contains the mandatory information:

The forward and backward links, recorded as real disk addresses.
A page number which gives the position of the page in the file; pages are numbered from 0.

A count of the number of characters of datain the page (numchars). This may range from O (for a

For Xerox Internal Use Only -- December 15, 1980

Disks & Bfs August 10, 1980 52
completely empty page) to 512 (for acompletely full page). ([Trident]: A full page contains 2048
characters.)

A redl fileid, which is athree-word unique identifier for the file. The user normally deals with virtual
fileids (see the discussion of file pointers, below), which are automatically converted into real file ids
when alabel is needed.

Three bitsin the file id deserve special mention:

Directory: Thishitisonif thefileisitself adirectory file. Thisinformation is used by the disk
Scavenger when trying to re-build a damaged disk data structure.

Random: Thisbit is currently unused.

NoLog: Thisbit isno longer used, but many existing files are likely to have it set.

Leader Page: Page O of afileiscalled the leader page; it contains no file data, but only a collection of file

properties, al of which are hints. The structure LD in AltoFileSys.D declares the format of aleader page,

which contains the following standard items:
The file name, a hint so that the Scavenger can enter thisfile in adirectory if it isnot aready in one.
The times for creation, last read and last write, interpreted as follows:
A file's creation date is a stamp generated when the information in thefile is created. When a
fileis copied (without modification), the creation date should be copied with it. When a file
ismodified in any way (either in-place or as aresult of being overwritten by newly-created
information), anew creation date should be generated.
A file'swrite date is updated whenever that fileis physically written on a given file system.
A file'sread date is updated whenever that file is physically read from within a given file
system.
A pointer to the directory in which the file is thought to be entered (zeroes imply the system
directory SysDir).
A "hint" describing the last page of the file.
A "consecutive" bit which is a hint that the pages of thefilelie at consecutive virtual disk addresses.
The changeSerial field related to version numbering: whenever a new version of afile "foo" is
made, the changeSerial field of al other files"foo" (i.e., older versions) isincremented. Thus, a
program that wishesto be sure that it is using the most recent version of afile can verify that
changeSerial=0. If aprogram keeps an FP asahint for afile, and is concerned about the relative
position of that filein thelist of version numbers, it can also keep and verify the changeSerial entry
of thefile. Version numbers have been deimplemented.

These standard items use up about 40 words of the leader page. The remaining spaceis available for

storing other information in blocks which start with a one word header containing type and length fields.

A zero terminatesthe list. The structure FPROP in AltoFileSys.d defines the header format. The only

standard use of thisfacility is to record the logical shape of the disk in the leader page of SysDir.
Data: Thefirst data byte of afileisthefirst byte of page 1.
Inalegal file with n pages, the label field of pagei must contain:

A next link with the real disk address of page (i+1), or O if i=n-1.

A previous link with the real disk address of page (i-1), or O if i=0.

For Xerox Internal Use Only -- December 15, 1980
Disks & Bfs August 10, 1980 53

A page number between 0 and (n-1), inclusive.

A numcharsword = 512 if i<n-1, and <512 if i=n-1. The last page must not be completely full.
([Trident]: = 2048 if i<n-1, and <2048 if i =n-1.)

A real fileid which isthe same for every pagein thefile, and different from the real file id of any other
file on the disk.

A fileis addressed by an object called afile pointer (FP), which is declared in AltoFileSys.D. A file pointer

contains avirtual fileid, and also the virtual address of the leader page of thefile. The low-level disk
routines construct areal fileid from the virtual one when they must deal with adisk label. Sinceit is
possible for the user to read alabel from the disk and examine its contents, the drivers also provides a
routine which will convert thereal fileid in the label into afile pointer (of course, the leader address will
not befilled in).

Note: Real disk address 0 (equal virtual disk address 0) cannot be part of any legal Alto file because the
value O isreserved to terminate the forward and backward chains in sector labels. However, disk address 0
isused for "booting” the Alto: when the boot key is pressed when no keyboard keys are down, sector O is
read in as a bootstrap loader. The normal way to make afile the "boot file" isto first create alegal Alto file
with the bootstrap loader as the first data page (page 1), and then to copy this page (label and data) into

disk sector 0. Thusthe label in sector O points forward to the remainder of the boot file.

2.2. Legal Alto Disks

A legal disk isone on which every pageis either part of alegal file, or free, or "permanently bad.” A free
page has afileid of all ones, and the rest of itslabel isindeterminate. A permanently bad page has afile id
with each of the three words set to -2, and the remainder of the label indeterminate.

2.3. Alto Directory Files

A directory isafile for associating string names and FP's. It has the directory bit set initsfileid, and has
the following format (structure DV declared in AltoFileSys.D).

It isasequence of entries. An entry contains a header and a body. The length field of the header tells how
many words there are in the entry, including the header. The interpretation of the body depends on the

type, recorded in the header.
dvTypeFree=0: free entry. The body is uninterpreted.

dvTypeFile=1: fileentry. The body consists of afile pointer, followed by a Bcpl string containing the
name of thefile. The file name must contain only upper and lower case letters, digits, and characters
inthe string "+-.!1$". They must terminate with a period (".") and not be longer than maxL engthFn
characters. If there are an odd number of bytes in the name, the "garbage byte" must be 0. The
interpretation of exclamation mark (!) is special; if afile name endswith ! followed only by digits (and
the mandatory "."), the digits specify afile version number.

The main directory is afile with its leader page stored in the disk page with virtual address 1. Thereis an

entry for the main directory in the main directory, with the name SysDir. All other directories can be

reached by starting at the main directory.

2.4. Disk Descriptor

Thereisafile called DiskDescriptor entered in the main directory which contains a disk descriptor
structure which describes the disk and tells which pages are free. The disk descriptor has two parts: a 16
word header which describes the shape of the disk, and a bit table indexed by virtual disk address. The

declaration of the header structureisin AltoFileSys.D.

For Xerox Internal Use Only -- December 15, 1980

Disks & Bfs August 10, 1980 54
The "defaultVersionsKept" entry in the DiskDescriptor records the number of old versions of files that
should be retained by the system. If thisentry is 0, no version accounting is done: new files simply replace
old ones. Version numbers have been deimplemented.

The entry in the disk descriptor named "freePages’ is used to maintain a count of free pages on the disk.
Thisisahint about a hint: it is computed when a disk is opened by counting the bitsin the bit table, and
then incrementing and decrementing as pages are released and allocated. However the bit table is itself
just acollection of hints, as explained below.

The bit table containsa"1" corresponding to each virtual disk address that is believed to be occupied by a
file, and "0" for free addresses. These values are, however, only hints. Programs that assign new pages
should check to be sure that a page thought to be free isindeed so by reading the label and checking to see
that it describes a free page. (The WriteDiskPages and CreateDiskFile procedures in the disk object

perform this checking for you.)

2.5. Oversights

If the Alto file system were to be designed again, severa deficiencies could be corrected:

Directory entries and label entries should have the same concept of fileidentifier. Presently, we have
filePointers and filelds.

Thereis no reason why the last page of afile cannot contain 512 bytes.

It is unfortunate that the disk controller will not check an entry of 0 in alabel, because these values
often arise (humChars of the last page, page number of the leader page). Another don’t care value
should be chosen: not alegal disk address; with enough high order bits so that it will check numChars
and page number fields.

The value used to terminate the chain of disk addresses stored in the labels should not be alegal disk
address. (It should also not be zero, so that it may be checked.) If it isalegal address, and if you try to
run the disk at full speed using the trick of pointing pagei’slabel at pagei+1'sdisk addressin the
command block, the disk will try to read the page at the legal disk address represented by the chain
terminator. Only when thisresultsin an error is end of file detected. A terminator of zero has the

undesirable property that a seek to track 0 occurs whenever a chain runsinto end-of-file.

3. The Disk Object

In order to facilitate the interface between various low-level disk drivers and higher-level software, we

define a"disk object." A small data structure defines a number of generic operations on adisk -- the

structure DSK is defined in "Disks.D." Each procedure takes the disk structure as its first argument:
ActOnDiskPages: Used to read and write the data fields of pages of an existing file.

WriteDiskPages: Used to read and write data fields of the pages of afile, and to extend the file if
needed.

DeleteDiskPages: Used to delete pages from the end of afile.

CreateDiskFile: Used to create a new disk file, and to build the leader page correctly.
AssignDiskPage: Used to find afree disk page and return its virtual disk address.
ReleaseDiskPage: Used to release avirtual disk address no longer needed.

Virtual DiskDA: Converts area disk addressinto avirtual disk address.

For Xerox Internal Use Only -- December 15, 1980
Disks & Bfs August 10, 1980

RealDiskDA: Converts avirtual disk addressinto areal disk address.
InitializeDiskCBZ: Initializes a Command Buffer Zone (CBZ) for managing disk transfers.
DoDiskCommand: Queues a Command Buffer (CB) to initiate a one-page transfer.
GetDiskCh: Obtains another CB, possibly waiting for an earlier transfer to complete.
CloseDisk: Destroys the disk object.

In addition, there are several standard data entriesin the DSK object:

fpSysDir: Pointer to the FP for the directory on the disk. (This always has a constant format --
discussion above.)

fpDiskDescriptor: Pointer to the FP for the file "DiskDescriptor” on the disk.

fpWorkingDir: Pointer to the FP to use as the "working directory" on thisdisk. Thisisusualy
same as fpSysDir.

nameWorkingDir: Pointer to a Bepl string that contains the name of the working directory.
InPageSize: Thisisthelog (base 2) of the number of words in a data page on this disk.
driveNumber: This entry identifies the drive number that this DSK structure describes.

retryCount: This value gives the number of times the disk routines should retry an operation
declaring it an error.

totalErrors. This value gives a cumulative count of the number of disk errors encountered.

diskKd: This entry pointsto a copy of the DiskDescriptor in memory. Because the bit table can
quite large, only the header needs to be in memory. This header can be used, for example, to

the capacity of the disk.

lengthCBZ, lengthCB: The fixed overhead for a CBZ and the number of additional words required
CB.

In addition to this standard information, a particular implementation of a disk class may include
information in the structure.

4. Data Structures

The following data structures are part of the interface between the user and the disk class routines:
pageNumber: as defined in the previous section. The page number is represented by an integer.

DAs: avector indexed by page number in which the ith entry contains the virtual disk address of pagei
the file, or one of two special values (which are declared as manifest constants in Disks.D):

eof DA: this page is beyond the current end of thefile;
fillinDA: the address of this page is not known.

Note that a particular call on the file system will only reference certain elements of this vector, and
others do not haveto exist. Thus, reading pagei will cause references only to DAs!i and DAS!(i+1), so
user can have atwo-word vector v to hold these quantities, and pass v-i to the file system as DAs.

55

the

before

get
compute

per

other

of

the
the

For Xerox Internal Use Only -- December 15, 1980

Disks & Bfs August 10, 1980 56
CAs: avector indexed by page number in which the ith entry contains the core address to or from which
pagei should betransfered. The note for DAs applies here also.
fp (or filePtr): file pointer, described above. In most cases, the leader page addressis not used.
action: amagic number which specifies what the disk should do. Possible values are declared as manifest
constantsin Disks.D:

DCreadD: check the header and label, read the data;

DCreadLD: check the header, read the label and data;

DCreadHLD: read the header, label, and data;

DCwriteD: check the header and label, write the data;

DCwritel D: check the header, write the label and data;

DCwriteHLD: write the header, label, and data;

DCseekOnly: just seek to the specified track

DCdoNothing:
A particular implementation of the disk class may also make other operations available by defining
additional magic numbers.
5. Higher-level Subroutines
There are two high-level calls on the basic file system:
pageNumber = ActOnDiskPages(disk, CAs, DAS, filePtr, firstPage, lastPage, action, IvNumChars,

lastAction, fixedCA, cleanupRoutine, IVErrorRoutine, returnOnCheckError, hintL astPage).
Parameters beyond "action” are optional and may be defaulted by omitting them or making them 0.
Here firstPage and lastPage are the page numbers of the first and last pages to be acted on (i.e. read or
written, in normal use). This routine does the specified action on each page and returns the page number
of the last page successfully acted on. This may be less than lastPage it the file turns out to have fewer
pages. DAS!firstPage must contain a disk address, but any of DAS! (firstPage+1) through
DAS! (lastPage+1) may befilllnDA, in which case it will be replaced with the actual disk address, as
determined from the chain when the labels are read. Note that the routine will fill in DAs!(lastPage+1),
so thisword must exist.
The value of the numCharsfield in the label of the last page acted on will be left in rv IVNumChars. If
lastAction is supplied, it will be used as the action for lastPage instead of action. If CAseq 0, fixedCA is
used as the core address for all the datatransfers. If cleanupRoutine is supplied, it is called after the
successful completion of each disk command, as described below under "Lower-level disk access'. (Note:
providing a cleanup routine defeats the automatic filling in of disk addressesin DAS).
Disk transfers that generate errors are retried several times and then the error routine is called with

rv IvErrorRoutine(lvErrorRoutine, cb, errorCode)

In other words, IVErrorRoutine is the address of aword which contains the (address of the) routine to be
called when thereis an error. The errorCode tells what kind of error it was; the standard error codes are
tabulated in alater section. The cb isthe control block which caused the error; its format depends on the
particular implementation of the drivers (Bfs: the structure CB in Bfs.D).
Theintended use of IvErrorRoutineisthis. A disk stream containsacell A, in aknown place in the stream
structure, which contains the address of aroutine which fields disk errors. The address of A is passed as
IvErrorRoutine. When the error routineis called, it gets the address of A as a parameter, and by
subtracting the known position of A in the disk stream structure, it can obtain the address of the stream

structure, and thus determine which stream caused the error.

For Xerox Internal Use Only -- December 15, 1980

Disks & Bfs August 10, 1980 57
The default value of returnOnCheckError isfalse. If returnOnCheckError istrue and an error is
encountered, ActOnDiskPages will not retry a check error and then report an error. Instead, it will return

-(#100+i), wherei is the page number of the last page successfully transferred. This feature alows
ActOnDiskPages to be used when the user it not sure whether the disk address he hasis correct. Itis used

by the disk stream and directory routines which take hints; they try to read from the page addressed by the
hint with returnOnCheckError true, and if they get anormal return they know that the hint was good. On
the other hand, if it was not good, they will get the abnormal return just described, and can proceed to try
again in amore conservative way.

The hintLastPage argument, if supplied, indicates the page number of what the caller believes to be the last
page of the file (presumably obtained from the hint in the leader page). If the hint is correct,

ActOnDiskPages will ensure that the disk controller does not chain past the end of the file and seek to
cylinder zero (as described earlier under "Oversights"). If the hint isincorrect, the operation will still be
performed correctly, but perhaps with alossin performance. Note that the label is not rewritten by
DCwriteD, so that the number of characters per page will not change. If you need to change the label, you

should use WriteDiskPages unless you know what you are doing.

ActOnDiskPages can be used to both read and write a file as long as the length of the file does not have to
change. If it does, you must use WriteDiskPages.

pageNumber = WriteDiskPages(disk, CAs, DAS, filePtr, firstPage, lastPage, lastAction, [IvNumChars,
lastNumChars, fixedCA, nil, IvErrorRoutine, nil, hintL astPage).

Arguments beyond lastPage are optional and may be defaulted by omitting them or making them O (but
lastNumChars is not defaulted if it is 0).

This routine writes the specified pages from CAs (or from fixedCA if CAsis 0, asfor ActOnDiskPages). It
fillsin DAs entriesin the same way as ActOnDiskPages, and also allocates enough new pages to complete
the specified write. The numCharsfield in the label of the last page will be set to lastNumChars (which
defaultsto 512 [Trident]: 2048). It isgenerally necessary that DAS!firstPage contain a disk address. The
only situation in which it is permissible for DAS!firstPage to contain fillInDA is when firstPage is zero and
no pages of the file yet exist on the disk (i.e., when creating page zero of anew file).

In most cases, DAS! (firstPage-1) should have the value which you want written into the backward chain
pointer for firstPage, since this value is needed whenever the label for firstPage needs to be rewritten. The
only casein which it doesn’t need to be rewritten is when the page is already allocated, the next pageis not

being allocated, and the numChars field is not changing.
If lastPage already exists:
1) the old value of the numCharsfield of itslabel isleft in rv IvNumChars.
2) if lastAction is supplied, it is applied to lastPage instead of DCwriteD. It defaultsto DCwriteD.

WriteDiskPages handles one special caseto help in "renaming"” files, i.e. in changing the FP (usually the

serial number) of all the pages of afile. To do this, use ActOnDiskPages to read a number of pages of the

fileinto memory and to build a DAs array of valid disk addresses. Then a call to WriteDiskPages with

lastAction=-1 will write labels and data for pages firstPage through lastPage (DAS! (firstPage-1) and

DAS! (lastPage+1) are of course used in thiswriting process). The numChars field of the label on the last

P?Ige is set to lastNumChars. To use thisfacility, the entire DAs array must be valid, i.e. no entries may be
illinDA.

In addition to these two routines, there are two others which provide more specialized services:

For Xerox Internal Use Only -- December 15, 1980
Disks & Bfs August 10, 1980 58

CreateDiskFile(disk, name, filePtr, dirFilePtr, wordl [0], useOldFp [false], pageBuf[Q])

Creates anew disk file and writesits leader page. It returns the serial number and leader disk address in
the FP structure filePtr. A newly created file has one data page (page 1) with numChars eq O.

The arguments beyond filePtr are optional, and have the following significance:

If dirFilePtr is supplied, it should be afile pointer to the directory which ownsthefile. This file
pointer is written into the leader page, and is used by the disk Scavenger to put the file back into the
directory if it becomeslost. It defaults to the root directory, SysDir.

The value of wordl is"or"ed into the filePtr>>FP.serial Number.word1 portion of the file pointer.
This allows the directory and random bitsto be set in thefileid.

If useOldFp istrue, then filePtr already points to alegal file; the purpose of calling CreateDiskFile is
to re-write all the labels of the existing file with the new serial number, and to re-initialize the leader
page. The data contents of the original file are lost. Note that this process effectively "deletes' the file
described by filePtr when CreateDiskFileis called, and makes a new file; the FP for the new file is

returned in filePtr.

If pageBuf is supplied, it iswritten on the leader page of the new file after setting the creation date and
directory FP hint (if supplied). If pageBuf is omitted, aminimal leader pageis created.

DeleteDiskPages(disk, CA, firstDA, filePtr, firstPage, newFp, hintL astPage)

Arguments beyond firstPage are optional. Deletes the pages of afile, starting with the page whose number
isfirstPage and whose disk addressisfirstDA. CA isapage-sized buffer which is clobbered by the routine.
hintLastPage is as described under ActOnDiskPages.

If newFp is supplied and nonzero, it (rather than freePageFp) isinstalled as the FP of the file, and the
pages are not deallocated.

6. Allocating Disk Space

The disk class also contains routines for allocating space and for converting between virtual and real disk
addresses. In most cases, users need not call these routines directly, as the four routines given above
(ActOnDiskPages, WriteDiskPages, Del eteDiskPages, CreateDiskFile) manage disk addresses and disk
space internally.

AssignDiskPage(disk, virtualDA, nil) returns the virtual disk address of the first free page following
virtualDA, according to the bit table, and sets the corresponding bit. It does not do any checking that the
pageis actually free (but WriteDiskPages does). If there are no free pagesit returns-1. If itiscalled with
three arguments, it returnstrueif (virtua DA+1) is available without assigning it.

If virtualDA is eof DA, AssignDiskPage makes a free-choice assignment. The disk object remembers the
virtual DA of the last page assigned and uses it as the first page to attempt to assign next time
AssignDiskPage is called with avirtua DA of eof DA. This meansthat you can force afileto be created

starting at a particular virtual address by means of the following strategy:

ReleaseDiskPage(disk, AssignDiskPage(disk, desiredV DA-1))
CreateDiskFile(disk, ...) // or whatever (e.g., OpenfFile)

ReleaseDiskPage(disk, virtual DA) marks the page as free in the bit table. It does not write anything on the
disk (but DeleteDiskPages does).

Virtual DiskDA (disk, IvReal DA) returns the virtual disk address, given areal disk addressin rv IVReal DA.

For Xerox Internal Use Only -- December 15, 1980

Disks & Bfs August 10, 1980 59
(The address, IVRea DA, is passed because areal disk address may occupy more than 1 word.) This
procedure returns eof DA if the real disk addressis zero (end-of-file), and fillInDA if the real disk address
does not correspond to alegal virtual disk addressin thisfile system.

Real DiskDA (disk, virtual DA, IvReal DA) computes the real disk address and storesit in rv IvRealDA. The
function returnstrue if the virtual disk addressislegal, i.e. within the bounds of disk addresses for the

given "disk." Otherwise, it returns false.

7. Lower-level Disk Access

The transfer routines described previously have the property that all disk activity occurs during callsto the
routines; the routines wait for the requested disk transfers to complete before returning. Consequently,

disk transfers cannot conveniently be overlapped with computation, and the number of pages transferred

consecutively at full disk speed is generally limited by the number of buffersthat acaller isable to supply
inasinglecall.

Itisalso possible to use the disk routines at alower level in order to overlap transfers with computation

and to transfer pages at the full speed of the disk (assuming the fileis consecutively allocated on the disk
and the amount of computation per page is kept relatively small). The necessary generic disk operations
and other information are available to permit callers to operate the low-level disk routinesin a device-
independent fashion for most applications.

Thislevel makes used of a Command Block Zone (CBZ), part of whose structure is public and defined in
Disks.d, and the rest of which is private to the implementation. The general ideaisthat a CBZ is set up
with empty disk command blocksinit. A free block is obtained from the CBZ with GetDiskCb and sent to
the disk with DoDiskCommand. When it is sent to the disk, it isalso put on the queue which GetDiskCb

uses, but GetDiskCb waits until the disk is done with the command before returning it, and also checks for
errors.

If you plan to use these routines, read the code for ActOnDiskPages to find out how they are intended to
be called. An example of use of these routines in a disk-independent fashion (i.e., using only the public
definitions in Disks.d) may be found in the DiskStreamsScan module of the Operating System. Only in
unusual applications should it be necessary to make use of the implementation-dependent information in
Bfs.d or Tfs.d.

InitializeDiskCBZ(disk, cbz, firstPage, length, retry, IvErrorRoutine). CBZ isthe address of a block of
length words which can be used to store CBs. It takes at least three CBsto run the disk at full speed; the
disk object contains the values DSK.lengthCBZ (fixed overhead) and DSK .lengthCB (size of each
command block) which may be used to compute the required length (that is, length should be at least
lengthCBZ+3*lengthCB). FirstPageis used to initialize the currentPage field of the cbz. Retry isa |abel
used for an error return, as described below. IvErrorRoutine is an error routine for unrecoverable errors,
described below; it defaults to aroutine that simply invokes SyskErr. The arguments after firstPage can be
omitted if an existing CBZ is being reinitialized, and they will remain unchanged from the previous
initialization.

cb = GetDiskCh(disk, cbz, dontClear[false], returnlfNoCB[false]) returns the next CB for the CBZ. If the
next CB is empty (i.e., it has never been passed to DoDiskCommand), GetDiskCb simply zeroes it and
returnsit. However, if the next CB is till on the disk command queue, GetDiskCb waits until the disk has
finished with it. Before returning a CB, GetDiskCh checks for errors, and handles them as described

below. If thereisno error, GetDiskCb updates the nextDA and currentNumChars cellsin the CBZ, then
calls cbz>>CBZ.cleanupRoutine(disk, cb, cbz). Next, unless dontClear istrue, the CB is zeroed. Finaly,

the CB isreturned as the value of GetDiskCh. If returnlfNoCB istrue, GetDiskCb returns zero if there

are no CBsin the CBZ or the next CB is till on the disk command queue.

If the next CB has suffered an error, then GetDiskCb instead takes the following actions. First it
increments cbz>>CBZ.errorCount. If this number is ge the value disk>>DSK .retryCount, GetDiskCh cals

For Xerox Internal Use Only -- December 15, 1980

Disks & Bfs August 10, 1980 60
the error routine which was passed to InitializeDiskCBZ; the way thisis doneis explained in the
description of ActOnDiskPages above. (If the error routine returns, GetDiskCb will proceed asif an error
hadn’t occurred.) Otherwise, after doing arestore on the disk if errorCount ge disk>>DSK .retryCount/2, it
reinitializes the CBZ with firstPage equal to the page with the error, and returns to cbz>>CBZ .retry (which
was initialized by InitializeDiskCBZ) instead of returning normally. Theideais that the code following the
retry label will retry al the incomplete commands, starting with the one whose page number is
cbz>>CBZ.currentPage and whose disk addressis chz>>CBZ.errorDA.
DoDiskCommand(disk, cb, CA, DA, filePtr, pageNumber, action, nextCb) Constructs a disk command in
cb with data address CA, virtua disk address DA, seria and version number taken from the virtual file id
in filePtr, page number taken from pageNumber, and disk command specified by action. The nextCh
argument is optional; if supplied and nonzero, DoDiskCommand will "chain" the current CB’s label
address to nextCh, in such away that the DL.next word will fall into nextCbh>>CB.diskAddress.
DoDiskCommand expects the cb to be zeroed, except that the following fields may be preset; if they are
zero the indicated default is supplied:
label Address Iv cb>>CB.|abel
numChars 0
If DA eq filllnDA, the real disk addressin the command is not set (the caller should have either set it
Iexpal\li citly or passed the CB as the nextCh argument for a previous command). Actions are checked for
egality.

The public cellsin the CBZ most likely to be of interest are the following:

client: information of the caller’s choosing (e.g., a pointer to arelated higher-level data structure such

as astream.)

cleanupRoutine: the cleanup routine called by GetDiskCh (defaulted to Noop by InitializeDiskCBZ).

currentPage: set to the firstPage argument of InitializeDiskCBZ and not touched by the other routines.
(Note, however, that GetDiskCb calls InitializeDiskCBZ when aretry is about to occur, so when
control arrives at the retry label, currentPage will be set to the page number of the command that

suffered the error.)

errorDA: set by GetDiskCb to the virtual disk address of the command that suffered an error.

nextDA: set by GetDiskCb to the virtual disk address of the page following the one whose CB is being
returned. (Thisinformation is obtained from the next pointer in the current page’slabel. Note that
errorDA and nextDA are actually the same cell, but they are used in non-conflicting circumstances.)
currentNumChars: set by GetDiskCb to the numChars of the page whose CB is being returned.

head: pointsto the first CB on GetDiskCh's queue; contains zero if the queue is empty.

8. Error Codes

The following errors are generated by the BFS. Similar errors are generated by other instances of a disk
object.

1101 unrecoverable disk error

1102 disk full

1103 bad disk action

1104 control block queues fouled up

1105 attempt to create a file without creation ability

For Xerox Internal Use Only -- December 15, 1980
Disks & Bfs August 10, 1980 61

1106 can't create an essential file during NewDisk
1107 bit table problem during NewDisk
1108 attempt to access nonexistant bit table page

9. Implementation -- Bfs

The implementation expects a structure BFSDSK to be passed as the "disk" argument to the routines. The
initial portion of this structure is the standard DSK structure followed by a copy of the DiskDescriptor
header and finally some private instance datafor the disk in use. (Note: The Alto operating system
maintains a static sysDisk that points to such a structure for disk drive 0.)
Bfs ("Basic File System") is the name for a package of routines that implement the disk class for the
standard Alto disks (either Diablo Model 31 drives or asingle Diablo Model 44 drive). The definitions (in
addition to those in AltoFileSys.D and Disks.D) are contained in Bfs.D. The code comesin two "levels:” a
"base" for reading and writing existing files (implements ActOnDiskPages, Real DiskDA and
VirtualDiskDA only); and a"write" level for creating, deleting, lengthening and shortening files
(implements WriteDiskPages, CreateDiskFile, DeleteDiskPages, AssignDiskPage, Rel easeDiskPage). The
source files BfsBase.Bcpl, Dvec.Bcpl and BfsMI.Asm comprise the base level; files Bfswrite.Bcpl
BfsCreate.bcpl, BfsClose.bcpl, and BfsDDMgr.bepl implement the write level.
afbse'z\lﬂlakermeLabd (fp, 18) constructs avirtual fileid in the file pointer fp from thereal fileid in the
a
disk = BFSInit(diskZone, allocate[false], driveNumber[Q], ddMgr[0], freshDisk[falsq],
tempZone[diskZone]) returns a disk object for driveNumber or zero. The permanent data structures for
the disk are allocated from diskZone; temporary free storage needed during the initialization process is
allocated from tempZone. If allocate istrue, the machinery for allocating and deallocating disk space is
enabled. If itisenabled, asmall DDMgr object and a 256 word buffer will be extracted from diskZone in
order to buffer the bit table. A single DDMgr, created by calling’ddMgr = CreateDDMgr(zone)’, can
manage both disks. If freshDisk istrue, BFSInit does not attempt to open and read the DiskDescriptor
file. Thisoperationisessential for creating avirgin file system.
success = BFSNewDisk(zone, driveNum([0], nDisks[number spinning], nTracks] physical size],
dirLen[3000], nSectorgphysical size]) creates avirgin Alto file system on the specified drive and returns
true if successful. The zone must be capable of supplying about 1000 words of storage. The logical size of
the file system may be different from the physical size of driveNum: it may span both disks (a "double-disk
file system’), or it may occupy fewer tracks (a model 44 used asamodel 31). The length in words of
SysDir, the master directory, Is specified by dirLen. Some machines that emulate Altos implement 14
sectors per track.
BFSExtendDisk(zone, disk, nDisks, nTracks) extends (i.e. adds pages to) the filesystem on "disk’.
Presumably 'nDisks or 'nTracks or both isbigger than the corresponding parameters currently in disk. A
single model 31 may be extended to a double model 31 or asingle model 44 or a double model 44, and a
single model 44 may be extended to a double model 44. The zone must be capable of supplying about 750
words of storage.
0 = BFSClose(disk, dontFreef[false]) destroys the disk object in an orderly way. If dontFreeistrue, the
ddMgr for the disk is not destroyed; presumably it is still in use by the other disk. (Note that this
procedure is the one invoked by the CloseDisk generic operation.)
SI;SWriteDiskDescriptor(disk) insures that any important state saved in memory is correctly written on the
isk.
virtual DA = BFSFindHole(disk, nPages) attempts to find a contiguous hole nPages long in disk. It

returns the virtual disk address of the first page of a hole if successful, else -1.

For Xerox Internal Use Only -- December 15, 1980

Disks & Bfs August 10, 1980 62
BFSTryDisk(drive, track, sector[0]) returns true if a seek command to the specified track on the specified
driveis successful. Note that the drive argument can contain an imbedded partition number. Seeks to
track zero will fail if thedriveisnot online. Seeksto track BFS31NTracks+1 will fail if thedriveis a
model 31.

10. Implementation -- Tfs

Operation and implementation of the Trident T80 disksis described in separate documentation under the
heading "TFS/TFU" in Alto Subsystems documentation.

11. BFSTest

BFSTest is used to test the Basic File System (BFS) and Disk Streams software packages. It creates,
deletes, reads, writes and positions files the same way that normal programs do, and checks the results
which normal programs do not do. These high-level operations cause patterns of disk commands which
are quite different from those generated by lower-level tests such as DiEx.

When started, BFSTest asks you which disks to test, whether to erase them first, and how many passes to
run. You can use adisk with other fileson it, and BFSTest will not disturb them if you prohibit erasing.

The duration and throughness of a pass depends on the amount of free space on the disks.

BFSTest creates as many test files (named Test.001, Test.002, ...) aswill fit on the disk, filling each file with
acarefully chosen test pattern. When it isdone, it deletes al of thefiles. One’pass consists of stepping
through the test files, performing arandomly chosen operation on the file, and checking the results. It
looks for commands from the keyboard after each file. The current commands are:

Q Quit Delete al test files and stop.
S StopOnEtrror Wait until a character is typed.
All test files are 100 pages long. Each page of afile has the page number in itsfirst and last words and a
data pattern in the middle 254 words. The data pattern is constant throughout a file, consisting of a single
one-bit in aword of zeros or a single zero-bit in aword of ones. Files are read and written with ReadBlock
and WriteBlock using buffers whose lengths are not multiples of the page size. The operations are:
Write Write the entire file with the data pattern.
Read Read the entire file checking the data pattern.
Delete Delete thefile, create it again and then writeiit.
Copy Copy the file to some other randomly chosen file. If both disks are being tested,
one third of the time pick a destination file on the other disk.
Position Position to twenty randomly chosen pagesin thefile. Check that the first word
of the page isindeed the page number. One third of the time dirty the stream by

writing the page number in the last word of the page.

INDEX

#176777

abort
ActOnDiskPages
AddToZone
Alloc

Allocate

Alto disks
AltoFileSys.D
AltoVersion
AppendVersion
AssignDiskPage

Basic File System
Bcpl abort

Bcpl finish

Bepl frames

Bepl stack

Bfs

Bfs.D

BFSClose
BFSExtendDisk
BFSFindHole

BFSInit

BfsM akeFpFromL abel
BFSNewDisk
BFSTryDisk
BFSWriteDiskDescriptor
BitBIt

Bldr

BootFrom

cdlo

CdlersFrame
CdlFrame
CallSubsys
CdlSwat

CAs

charltem
CharWidth
CheckZone
CleanupDiskStream
ClockSecond
Closes

CoCall

Com.Cm

complete file address
CoReturn
CounterJunta
CreateDiskFile
CreateDiskStream
CreateDisplayStream
CurrentPos

DAs

DCB
DCdoNothing
DCreadD
DCreadHLD
DCreadLD

For Xerox Internal Use Only -- December 15, 1980

December 15, 1980

63

For Xerox Internal Use Only -- December 15, 1980

INDEX December 15, 1980
DCseekOnly . 56
DCwriteD 56
DCwriteHLD .. 56
DCwriteLD 56
Default arguments 3,14
DefaultArgs 14
DeleteDiskPages 58
DeleteFdEntry .. 11
DeleteFile . 10
Directory e 38
Directory Access . . e 9
Directory Files o 53
Dirty e 44
Disablelnterrupts o L 15
diskaddresses ... 51
Disk Descriptor .. 53
Diskfile 5
Diskfiles 22
diskname 27
diskobject L 54
Disk Pack . 5
Diskstream L 5
Diskstreams .. 5,38
DiskDescriptor ... 12, 24, 29
Disks e 51
DisksD 54
Display 38
Display streampackage 45
Display streams 7
DoDiskCommand 60
DoubleAdd ... 15
DScompactleft ..o 45
DScompactright ... 45
DSnone L 45
DSstopbottom ... 45
DSstopright . 45
Dvec 14
dvTypeFile 53
dvTypeFree 53
Enablelnterrupts oo 15
EndCode @ .. 12,32
Endofs 5,41
EnumerateFp ..o 15
eof DA 55
EraseBits L 7,46
ErrorLogAddress ... 24
Errors 4,5
Events 20
EventVector .. 20
EVM 20
Executive L 27
ExecutiveRun ..o 24,29
FasePredicate ... 14
Fast Streams . 8, 38, 39, 43
fileaddress L 40
Filedirectory ... 5
FileHints . 24

Filenames .. 9, 28

For Xerox Internal Use Only -- December 15, 1980

INDEX December 15, 1980
filepointer L 15, 39, 53
filepointers L. L 52
filepositon L 40
FileSyssem . 51
fileversonnumber L L. 9
FileLength . 6, 41
FilePos 6,41
filllnlDA 55
FindFdEntry .o 11
Finish 17
finish+1 L. 26
FinishScanStreem 43
FixedLeft 12
font 29
fontformat .. 22

o 53, 56
fpComCm 24
fpDiskDescriptor ... 24
fpExecutive L 24
fpRemCm 24
fpSysBoot 24
fpSysDir 24
fpSysFont L 24
fpUserCm 24
FramesCaller 15
FrameSize . 15
Free 12, 48
FreeFixed 12
GetBitPos . 7, 46
GetCompleteFa 6, 42
GetCurrentFa .. 6, 41
GetDiskCb 59
GetFixed 12
GetFont 7,46
GetLinePos L 7,46
GetLmarg 7,47
GetRmarg 7,47
Gets e 541
GetScanStreamBuffer L Lo L L. 43
GotoFrame L. 16
GotoLabel 16
ide 15
Initidization ... 4
InitidlizeDiskCBZ 59
InitializeFstream o o 43
InitidizeZone ... 12, 48
InitScanStream 43
In,d 21
Install 27
InvertLine L 7,46
ItemSize 44
JumpToFa . 6, 42
Junta 18
KBKEY 8
KBTRANS 8

kbTransitionTable 8

For Xerox Internal Use Only -- December 15, 1980

INDEX December 15, 1980
Keyboard . 38
Keyboard Buffer 24
Keyboard Streems L. 8
keys 8
KsBufferAddress 42
KsGetDisk .. 42
KsHintLastPageFao 42
KsSetBufferAddress 42
ksTypeReadOnly 41
ksTypeReadWrite 41
ksTypeWriteOnly L 41
LastMemLoc ... 32
leaderpage .. 6, 40, 52
Legd AltoFiles . ..o oo 51
levAlloc 18
levBasic L 18
levBepl 18
levBFSbase @ .. 18
levBFSwrite L 18
levBuffer 18
levDirectory 18
levDisplay . 18
levFilePointers .. 18
levKeyboard ... 18
levMain 18
levScan 18
levStatics L 18
levStreams L 18
LnPageSize ... 6, 41
Loading 4
IvVAbortFlag . . 25
IvCursorLink . 8
vide 15
IvParityPhantomEnable 23
IvParitySweepCount 23
IvSwatContextProc 25
IvSysErr 23
IvSysZone L 22
IvUserFinishProc 17
MakeNewFdENntry 11
Max e 14
Memory management L. 12
Min 14
MoveBlock ... 14
MyFrame L 15
newdisk L 27
Noop 14
Objects 13
OpenFile 10,41
OpenFileFromFp oo 10
Operating Procedures 27
OsBuffer 24
OsFinish 17
OsVersion e 23
OsVersonCompatible 23

OutLd 21

For Xerox Internal Use Only -- December 15, 1980

INDEX December 15, 1980
pages L 5
ParseFileNameo 11
Password L 38
PositionPage .. 6,42
PositionPtr 6, 42
Putbacks 5
Pus 541
ReadBlock .. 6, 41
ReadCdlendar 15
ReadDiskDescriptor 12
ReadLeaderPage ™ 6, 42
rea diskaddress L. 58
RealDiskDA 59
ReleaseDiskPage oL 58
ReleaseKs 42
RemCm 24
ResetLine L 7,46
Resets 5,41
RetryCal 16
ReturnFrom oo 16
ReturnTo o 16
Runfiles 16, 26
Scrolling L 46
SerialNumber L 23
SetBitPos 7,46
SetBlock 14
SetCaendar .. 15
SetDirty 44
SetEndCode .. 12
SetEof 44
SetFilePos 6, 42
SetFont . 7, 46
SetKeyboardProc 8
SetLinePos 7,46
SetLmarg 47
SetRmarg 47
SetupFstream L 43
SetWorkingDir .. 10
ShowDisplayStream 7,46
stack frames L 26
StackEnd 12,32
StartCodeArea .. 32
StarttlO . 15
Stateofs 5
Streems 4
StripVersion L 11
Swat e 4,17,21, 29
Swatabort 17
Swatee e 29
SysBk 4,29
SysBoot 29
SysErrors L 4,29
SysBoot 24
SysDir 24,29
sysDisk 5 23
SysErr 4
SysFont Al 24, 29

SYSZONE e e 12,22

INDEX

Terminating Execution

Tfs

Timer

Transfer rates
Trident
TruePredicate
TruncateDiskStream

Umax

Umin

Usc

user name
User.Cm
UserFinishProc
UserName
UserPassword
Utilities

verLatest

verL atestCreate
verNew
verNewAlways
verOldest

version number
virtual disk address
Virtua DiskDA

Wi

Wns

Wo

wordltem

Wos

WriteBlock
WriteDiskDescriptor
WriteDiskPages
WriteleaderPage
Ws

Wss

Zero
zones

For Xerox Internal Use Only -- December 15, 1980

December 15, 1980

.................. 14

