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(a) Prompt: A cute dog sitting on the green grass.

(b) Prompt: The rose swaying in the wind.

Camera Poses

Trajectory

Camera Poses (c) Prompt: The rose swaying in the wind.

Figure 1: Control Results of MotionCtrl. MotionCtrl is capable of controlling both camera motion and object motion in videos
produced by a video generation model. It can also simultaneously control both types of motion within the same video. We
highly encourage readers to check our project page for video results, which cannot be well demonstrated by still images.

∗Works done while as an intern in ARC Lab, Tencent PCG.
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ABSTRACT
Motions in a video primarily consist of camera motion, induced by
camera movement, and object motion, resulting from object move-
ment. Accurate control of both camera and objectmotion is essential
for video generation. However, existing works either mainly focus
on one type of motion or do not clearly distinguish between the two,
limiting their control capabilities and diversity. Therefore, this pa-
per presents MotionCtrl, a unified and flexible motion controller for
video generation designed to effectively and independently control
camera and object motion. The architecture and training strategy of
MotionCtrl are carefully devised, taking into account the inherent
properties of camera motion, object motion, and imperfect training
data. Compared to previous methods, MotionCtrl offers three main
advantages: 1) It effectively and independently controls camera mo-
tion and object motion, enabling more fine-grained motion control
and facilitating flexible and diverse combinations of both types of
motion. 2) Its motion conditions are determined by camera poses
and trajectories, which are appearance-free and minimally impact
the appearance or shape of objects in generated videos. 3) It is a
relatively generalizable model that can adapt to a wide array of
camera poses and trajectories once trained. Extensive qualitative
and quantitative experiments have been conducted to demonstrate
the superiority of MotionCtrl over existing methods. Project page:
https://wzhouxiff.github.io/projects/MotionCtrl/.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
AIGC, video generation, motion control

ACM Reference Format:
Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tianshui Chen,
Menghan Xia, Ping Luo, and Ying Shan. 2024. MotionCtrl: A Unified and
Flexible Motion Controller for Video Generation. In Special Interest Group on
Computer Graphics and Interactive Techniques Conference Conference Papers
’24 (SIGGRAPH Conference Papers ’24), July 27-August 1, 2024, Denver, CO,
USA. ACM, New York, NY, USA, 22 pages. https://doi.org/10.1145/3641519.
3657518

1 INTRODUCTION
Video generation, such as text-to-video (T2V) generation [Blattmann
et al. 2023b; Chen et al. 2023b; He et al. 2022; Ho et al. 2022; Singer
et al. 2022; Zhou et al. 2022] aims to produce diverse and high-
quality videos that conform to given text prompts. Unlike image
generation [Ding et al. 2021; Ramesh et al. 2022, 2021; Rombach
et al. 2022; Saharia et al. 2022; Zhou et al. 2021], which focuses
on generating a single image, video generation necessitates the
creation of consistent and fluent motion among a sequence of gen-
erated images. Consequently, motion control plays a significantly
crucial role in video generation, yet it has received limited attention
in recent research.

In a video, there are primarily two types of motion: global motion
induced by camera movements and local motion resulting from
object movements (examples are referred to the zoom out camera
poses and swaying rose in Fig. 1 (c)). It should be noted that these
two motions will be consistently referred to as cameramotion and

object motion throughout the paper, respectively. However, most
previous works related to motion control in video generation either
primarily focus on one of the motions or lack a clear distinction
between these two types of motion. For instance, AnimateDiff [Guo
et al. 2023], Gen-2 [Esser et al. 2023], and PikaLab [pik [n. d.]]
mainly execute or trigger camera motion control using indepen-
dent LoRA [Hu et al. 2021] models or extra camera parameters
(such as "-camera zoom in" in PikaLab [pik [n. d.]]). VideoCom-
poser [Wang et al. 2023] and DragNUWA [Yin et al. 2023a] im-
plement both camera motion and object motion using the same
conditions: motion vector in VideoComposer [Wang et al. 2023]
and trajectory in DragNUWA [Yin et al. 2023a]. The lack of clear
distinction between these two motions prevents these approaches
from achieving fine-grained and diverse motion control in video
generation.

In this paper, we introduce MotionCtrl, a unified and flexible
motion controller for video generation, designed to independently
control camera and object motion with a unified model. This ap-
proach enables fine-grained motion control in video generation and
facilitates flexible and diverse combinations of both motion types.
However, constructing such a unified motion controller presents
significant challenges due to the following two factors. First, cam-
era and object motions differ significantly in terms of movement
range and pattern. Camera motion refers to the global transfor-
mation of the whole scene across the temporal dimension, which
is typically represented through a sequence of camera poses over
time. In contrast, object motion involves the temporal movement of
specific objects within the scene, and it is usually represented as the
trajectory of a cluster of pixels associated with the objects. Second,
no existing dataset encompasses video clips that are accompanied
by a complete set of annotations, including captions, camera poses,
and object movement trajectories. Creating such a comprehensive
dataset requires a significant amount of effort and resources.

To address the aforementioned challenges, MotionCtrl deploys
a delicately designed architecture, training strategy, and curated
datasets. MotionCtrl consists of two modules: the Camera Motion
Control Module (CMCM) and the Object Motion Control Module
(OMCM), each tailored to handle camera motion and object mo-
tion characteristics, respectively. Both CMCM and OMCM function
as adapter-like modules integrated into existing video generation
models. Specifically, CMCM temporally integrates a sequence of
camera poses into the video generation model through its temporal
transformers, aligning the global motion of the generated video
with the provided camera poses. On the other hand, OMCM spa-
tially incorporates information regarding object movement into
the convolutional layers of the video generation model, indicating
the spatial positioning of objects in each generated frame. Noted
that in this study, we utilize VideoCrafter1 [Chen et al. 2023b],
an enhanced version of LVDM [He et al. 2022], as the underlying
video generation model, which we refer to as LVDM throughout
this paper.

Leveraging the delicately designed architecture reliant on a large-
scale pre-trained video diffusion model equipped with adapter-
like CMCM and OMCM, we can train these modules separately,
thereby mitigating the need for a comprehensive dataset contain-
ing videos with annotations of captions, camera poses, and object
movement trajectories. Consequently, we achieve MotionCtrl with

https://wzhouxiff.github.io/projects/MotionCtrl/
https://doi.org/10.1145/3641519.3657518
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two datasets: one contains annotations of captions and camera
poses, and another comprises annotations of captions and object
movement trajectories. Specifically, we introduce the augmented-
Realestate10k dataset, originally annotated with camera movement
information. We further enhance this dataset by generating cap-
tions using Blip2 [Li et al. 2023], rendering it suitable for training
camera motion control in video generation. Additionally, we aug-
ment videos sourced from WebVid [Bain et al. 2021] with object
movement trajectories synthesized using the motion segmentation
algorithm proposed in ParticleSfM [Zhao et al. 2022]. Alongside
their original annotated captions, the augmented-WebVid dataset
becomes conducive to learning object motion control in video
generation. By sequentially and respectively training CMCM and
OMCM with these two annotated datasets, our MotionCtrl frame-
work achieves the capability to independently or jointly control
camera and object motion within a unified video generation model.
This approach enables relatively fine-grained and flexible motion
control, empowering users with enhanced control over the gener-
ated videos.

Through these delicate designs, MotionCtrl demonstrates supe-
riority over previous methods in three aspects: 1) It independently
controls camera and object motion, enabling fine-grained adjust-
ments and a variety of motion combinations, as shown in Fig. 1. 2)
It uses camera poses and trajectories for motion conditions, which
do not affect the visual appearance, maintaining the objects’ natural
look in videos. For instance, our MotionCtrl generates a video with
a camera motion that closely reflects the reference video, offering
a realistic Eiffel Tower, as seen in Fig. 4 (b). In contrast, Video-
Composer [Wang et al. 2023] relies on dense motion vectors and
mistakenly captures a door’s shape of the reference video, resulting
in an unnatural Eiffel Tower. 3) MotionCtrl can control a variety
of camera movements and trajectories, without the need for fine-
tuning each individual camera or object motion.

The main contributions of this work can be summarized as fol-
lows: (1) We introduce MotionCtrl, a unified and flexible motion
controller for video generation, designed to independently or jointly
control camera motion and object motion in generated videos,
achieving more fine-grained and diverse motion control. (2) We
carefully tailor the architecture and training strategy of MotionCtrl
according to the inherent properties of camera motion, object mo-
tion, and imperfect training data, effectively achieving fine-grained
motion control in video generation. (3) We conduct extensive exper-
iments to demonstrate the superiority of MotionCtrl over previous
related methods, both qualitatively and quantitatively.

2 RELATEDWORKS
Early research in video generation primarily relied on Genera-
tive Adversarial Networks (GANs) or Variational Autoencoders
(VAEs) [Saito et al. 2017; Skorokhodov et al. 2022; Tulyakov et al.
2018; Vondrick et al. 2016; Wang et al. 2019,?]. However, in recent
years, with the remarkable capacity demonstrated by diffusion mod-
els [Ho et al. 2020; Rombach et al. 2022; Saharia et al. 2022] in image
generation, video generation research has shifted towards utilizing
diffusion models. By further incorporating with text [Blattmann
et al. 2023b; Chen et al. 2023b; Guo et al. 2023; He et al. 2022; Ho
et al. 2022; Singer et al. 2022; Wang et al. 2023; Zhou et al. 2022]

or image [Blattmann et al. 2023a; Yin et al. 2023b] guidance, dif-
fusion model can generate high-fidelity videos with specific con-
tents. Particularly, the deployment of diffusion models in latent
space [Blattmann et al. 2023b; He et al. 2022; Rombach et al. 2022]
has significantly enhanced the computational efficiency of video
generation, leading to a surge in downstream research centered
on diffusion models. MotionCtrl, for instance, aims to leverage
diffusion models for controlling motion in generated videos.

In the areas of motion control of generated videos, many exist-
ing approaches learn motion by referencing specific or a series of
template videos[Guo et al. 2023; Wu et al. 2023b,a; Zhao et al. 2023].
While effective at a specific motion control, these methods typically
require training a new model for different templates, which can
be limiting. Some efforts aim to achieve more generalized motion
control [Chen et al. 2023a; Wang et al. 2023; Yin et al. 2023a]. For
instance, VideoComposer [Wang et al. 2023] introduces motion con-
trol via extra provided motion vectors, and DragNUWA [Yin et al.
2023a] suggests video generation conditioned on an initial image,
provided trajectories, and text prompts. However, the motion con-
trol in these methods is relatively broad and fails to fine-grainedly
disentangle the camera and object motion within videos.

Different from these works, we propose MotionCtrl, a unified
and flexible motion controller that can use either the camera poses
and object trajectories or combine these two kinds of guidance
to control the motion of generated videos. It enables a more fine-
grained and flexible control for video generation.

3 METHODOLOGY
3.1 Preliminary
The Latent Video Diffusion Model (LVDM) [He et al. 2022] aims to
generate high-quality and diverse videos guided by text prompts.
It employs a denoising diffusion model (U-Net [Ronneberger et al.
2015]) in the latent space for space and time efficiency. Conse-
quently, it constructs a lightweight 3D autoencoder, comprising an
encoder E and a decoder D, to encode raw videos into the latent
space and reconstruct the denoised latent features back into videos,
respectively. Its denoising U-Net (denoted as 𝜖𝜃 ) is constructed with
a sequence of blocks that consist of convolutional layers, spatial
transformers, and temporal transformers (shown in Fig. 2). It is
optimized using a noise-prediction loss:

L = E𝑧0,𝑐,𝜖∼N(0,I ),𝑡
[
∥𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑐)∥2

2
]
, (1)

where 𝑐 represents the text prompt, 𝑧0 is the latent code obtained
using E, 𝑡 (𝑡 ∈ [0,𝑇 ]) denotes the time step, and 𝑧𝑡 is the noisy
latent features acquired by weighted addition of Gaussian noise 𝜖
to 𝑧0 using the following formula:

𝑧𝑡 =
√
𝛼𝑡𝑧0 +

√
1 − 𝛼𝑡𝜖, 𝛼𝑡 =

𝑡∏
𝑖=1

𝛼𝑡 , (2)

where 𝛼𝑡 is used for scheduling the noise strength based on time
step 𝑡 .

3.2 MotionCtrl
Fig. 2 illustrates the framework of MotionCtrl. To achieve disen-
tanglement between camera motion and object motion, and enable
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（a） （b）
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CLIP

𝑅𝑇 = {𝑅𝑇0 , 𝑅𝑇1 ,… , 𝑅𝑇𝐿−1}

Prompt: A man rises a 

horse in Mars.

z𝑇

𝑇𝑟𝑎𝑗𝑠

··· ··· ···

···

OMCM

𝑦𝑡: [𝐵, 𝐿, 𝐻,𝑊, 𝐶] 𝑅𝑇: [𝐵, 𝐿,12]

[𝐵 × 𝐻 ×𝑊, 𝐿, 12][𝐵 × 𝐻 ×𝑊, 𝐿, 𝐶]

[𝐵 × 𝐻 ×𝑊, 𝐿,𝐶 + 12]

FC

Attn2

Reshape Repeat

[𝐵 × 𝐻 ×𝑊, 𝐿, 𝐶]

Concat

CMCM

Conv Layers

Spatial Transformer

Temporal Transformer Trainable

Sum

Camera

CMCMConv Layers

Camera 

Pose

Denoising U-Net

Figure 2: MotionCtrl Framework. MotionCtrl extends the Denoising U-Net structure of LVDM with a Camera Motion Control
Module (CMCM) and an Object Motion Control Module (OMCM). As illustrated in (b), the CMCM integrates camera pose
sequences 𝑅𝑇 with LVDM’s temporal transformers by appending 𝑅𝑇 to the input of the second self-attention module and
applying a tailored and lightweight fully connected layer to extract the camera pose feature for subsequent processing.
The OMCM utilizes convolutional layers and downsamplings to derive multi-scale features from 𝑇𝑟𝑎 𝑗𝑠, which are spatially
incorporated into LVDM’s convolutional layers to direct object motion. Further given a text prompt, LVDM generates videos
from noise that correspond to the prompt, with background and object movements reflecting the specified camera poses and
trajectories. The resulting video demonstrates the horse moving along its trajectory and meanwhile, the background moves
left, consistent with the camera’s rightward motion.

independent control of these two types of motion, MotionCtrl com-
prises two main components: a Camera Motion Control Module
(CMCM) and an Object Motion Control Module (OMCM). Tak-
ing into account the global property of camera motion and the
local property of object motion, CMCM interacts with the temporal
transformers in LVDM, while OMCM spatially cooperates with the
convolutional layers in LVDM. Furthermore, we employ multiple
training steps to adapt MotionCtrl to the absence of training data
that contains high-quality video clips accompanied by captions,
camera poses, and object movement trajectories. In the following
subsections, we will provide a detailed description of CMCM and
OMCM along with their corresponding training datasets and train-
ing strategies.

3.2.1 Camera Motion Control Module (CMCM). The CMCM is
a lightweight module constructed with several fully connected
layers. Since the camera motions are global transformations be-
tween frames in a video, CMCM cooperates with LVDM [He et al.
2022] via its temporal transformers. Typically, the temporal trans-
formers in LVDM comprise two self-attention modules and facili-
tate temporal information fusion between video frames. To mini-
mize the impact on LVDM’s generative performance, CMCM only
involves the second self-attention module in the temporal trans-
formers. Specifically, CMCM takes a sequence of camera poses
𝑅𝑇 = {𝑅𝑇0, 𝑅𝑇1, . . . , 𝑅𝑇𝐿−1} as input. In this paper, the camera pose
is represented by its 3×3 rotationmatrix and 3×1 translationmatrix.

Consequently,𝑅𝑇 ∈ R𝐿×12, where 𝐿 denotes the length of the gener-
ated video. As depicted in Fig. 2 (b), 𝑅𝑇 is extended to𝐻 ×𝑊 ×𝐿×12
before being concatenated with the output of the first self-attention
module in the temporal transformer (𝑦𝑡 ∈ R𝐻×𝑊 ×𝐿×𝐶 ) along the
last dimension, where 𝐻 and𝑊 represent the latent spatial size
of the generated video, and 𝐶 is the number of channels in 𝑦𝑡 .
The concatenated results are then projected back to the size of
𝐻 ×𝑊 × 𝐿 ×𝐶 using a fully connected layer before being fed into
the second self-attention module in the temporal transformer.

3.2.2 ObjectMotion ControlModule (OMCM). As depicted in Fig. 2,
MotionCtrl controls the object motion of the generated video us-
ing trajectories (𝑇𝑟𝑎 𝑗𝑠). Typically, a trajectory is represented as a
sequence of spatial positions {(𝑥0, 𝑦0), (𝑥1, 𝑦1), . . . , (𝑥𝐿−1, 𝑦𝐿−1)},
where (𝑥𝑖 , 𝑦𝑖 ), 𝑖 ∈ [0, 𝐿 − 1] indicates that the trajectory passes
through the 𝑖𝑡ℎ frame at the spatial position (𝑥,𝑦). Particularly,
𝑥 ∈ [0,�̂� ) and 𝑦 ∈ [0, �̂� ), where �̂� and �̂� are the height and
width of 𝑧𝑇 , respectively. To explicitly expose the moving speed of
the object, we represent 𝑇𝑟𝑎 𝑗𝑠 as
{(0, 0), (𝑢 (𝑥1,𝑦1 ) , 𝑣 (𝑥1,𝑦1 ) ), . . . , (𝑢 (𝑥𝐿−1,𝑦𝐿−1 ) , 𝑣 (𝑥𝐿−1,𝑦𝐿−1 ) )}, where

𝑢 (𝑥𝑖 ,𝑦𝑖 ) = 𝑥𝑖 − 𝑥𝑖−1; 𝑣 (𝑥𝑖 ,𝑦𝑖 ) = 𝑦𝑖 − 𝑦𝑖−1; 0 < 𝑖 < 𝐿. (3)

Denoted that the first frame and the other spatial positions in the
subsequent frames that the trajectories do not pass are described
as (0, 0). Finally, 𝑇𝑟𝑎 𝑗𝑠 ∈ R𝐿×�̂�×�̂� ×2.

𝑇𝑟𝑎 𝑗𝑠 is injected into LVDMwithOMCM,which is highlighted in
the purple block of Fig. 2. OMCM consists of multiple convolutional



MotionCtrl: A Unified and Flexible Motion Controller for Video Generation SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

layers combined with downsampling operations. It extracts multi-
scale features from the 𝑇𝑟𝑎 𝑗𝑠 and correspondingly adds them to
the input of the LVDM’s convolutional layers. Drawing inspiration
from T2I-Adapter [Mou et al. 2024], the trajectories are only applied
to the encoder of the Denoising U-Net to balance the quanlity of
the generated video with the ability of object motion control.

3.2.3 Training Strategy and Data Construction. To achieve the con-
trol of camera and object motion while generating a video via text
prompts, video clips in a training dataset must contain annota-
tions of captions, camera poses, and object movement trajectories.
However, a dataset with such comprehensive details is currently
unavailable, and assembling one would require considerable effort
and resources. To address this challenge, we introduce a multi-step
training strategy and train our proposed camera motion control
module (CMCM) and object motion control module (OMCM) with
distinct augmented datasets tailored to their specific motion control
requirements.

Learning the cameramotion control module (CMCM). CMCMonly
requires a training dataset that contains video clips with annota-
tions of captions and camera poses. Considering that Realestate10K
[Zhou et al. 2018] contains over 60k videos with relatively clean
annotations of camera poses, we take it as our training dataset of
CMCM. However, employing Realestate10K in MotionCtrl presents
two potential challenges: 1) The diversity of scenes is limited in
Realestate10K, primarily from real estate videos, potentially com-
promising the quality of the generated video; and 2) it lacks captions
needed for T2V models.

Regarding the first challenge, we adopt an adapter-like control
module (CMCM), with only several new added MLP layers and
the second self-attention module of the temporal transformers in
LVDM are trainable, and reserving the generation quality of LVDM
by freezing most of its parameters. Since the temporal transformers
are mainly focus on the learning of global motions, the limited scene
diverisity of Realestate10K seldom affects the generation quality
of LVDM. This is substantiated by quantitative results presented
in Table 2, where the FID [Seitzer 2020] and FVD [Unterthiner
et al. 2018] metrics indicate that the video quality generated by our
MotionCtrl is on par with the LVDM outcomes.

To address the second challenge, we adopt Blip2 [Li et al. 2023],
an image captioning algorithm, to generate captions for each video
clip in Realestate10K. Details are in the supplementary materials.

Learning the object motion control module (OMCM). OMCM re-
quires a dataset comprising video clips with captions and object
movement trajectories, which is currently lacking in the commu-
nity. To meet the requirement, we utilize ParticleSfM [Zhao et al.
2022] to synthesize object movement trajectories in WebVid [Bain
et al. 2021]. WebVid a large-scale video dataset equipped with cap-
tions and commonly used in the T2V generation task. Although
ParticleSfM is a structure-from-motion system primarily, it incor-
porates a trajectory-based motion segmentation module utilized
for filtering out dynamic trajectories that affect the production of
camera trajectories in a dynamic scene. The dynamic trajectories
attained by the motion segmentation module exactly fulfill the
requirements of our MotionCtrl and we employ this module to
synthesize moving object trajectories for about 243,000 videos in

Extract object

movement trajectories

Randomly select

Gaussian Filter

(a) (b)

(c) (d)

Figure 3: Trajectories for Object Motion Control. Parti-
cleSfM [Zhao et al. 2022] is employed to extract object move-
ment trajectories from video clips, effectively disentangling
object motion from camera-induced movement. To circum-
vent the issues of dense trajectories, which can encode object
shapes and are challenging to design at inference, we train
the OMCM using sparse trajectories sampled from the dense
ones. These sparse trajectories, being too scattered for effec-
tive learning, are subsequently refined with a Gaussian filter.

WebVid. An example is illustrated in Fig. 3 (b), where the trajec-
tories predominantly correspond to a moving person. Synthesis
details are in the supplementary.

To circumvent the necessity for users to provide dense trajecto-
ries as depicted in Fig. 3 (b), which may not be user-friendly, Mo-
tionCtrl is required to control the moving objects based on sparse
(one or a few) trajectories provided by users. Consequently, our
OMCM is trained with 𝑛 ∈ [1, 𝑁 ] trajectories (where 𝑁 represents
the maximum number of trajectories for each video) randomly se-
lected from the synthesized dense trajectories (as shown in Fig. 3
(c)). Nevertheless, these selected sparse trajectories tend to be too
scattered for effective training. Drawing inspiration from Drag-
NUWA [Yin et al. 2023a], we mitigate this issue by applying a
Gaussian filter to the sparse trajectories (Fig. 3 (d)) and we initially
train the OMCM using dense trajectories before fine-tune it using
sparse trajectories.

In this training phase, both LVDM and CMCM are well-trained
and frozen, with only the OMCM is trained. This strategy guaran-
tees that OMCM adds the object motion control capabilities with
a limited dataset while minimally impacting LVDM and CMCM.
Upon the completion of this training phase, giving both camera
poses and object trajectories allows for flexible controlling the cam-
era and object motion in the generated video.

4 EXPERIMENTS
4.1 Experiment Settings
4.1.1 Implementation Details. MotionCtrl is built upon the LVDM
framework [He et al. 2022]/VideoCraft1 [Chen et al. 2023b], which
is trained on 16-frame sequences at a resolution of 256 × 256. It can
be readily adapted to other video generation models with similar
structures, such as AnimateDiff [Guo et al. 2023], adhering to the
settings specific to each model. Additionally, the maximum number
of trajectories𝑁 is fixed at 8. Both CMCM andOMCM are optimized
using the Adam optimizer [Kingma and Ba 2014] with a batch size
of 128 and a learning rate of 1𝑒−4 across 8 NVIDIA Tesla V100 GPUs.
The CMCM typically requires approximately 50,000 iterations to
converge. Meanwhile, OMCM undergoes an initial training phase
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(c) Object motion control.
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(a) Camera motion control on basic poses (b) Camera motion control on relatively complex poses

Figure 4: Qualitative Comparisons on Camera Motion Control. (a) Basic Poses: MotionCtrl and AnimateDiff[Guo et al. 2023]
effectively execute zooms, but MotionCtrl can adjust to varying camera moving speeds. (b) Relatively Complex Poses: Video-
Composer[Wang et al. 2023] uses Realestate10K’s raw video for motion vectors, capturing unintended shapes like doors, leading
to unnatural results (refer to frame 12). MotionCtrl, however, produces a relatively natural video with motion that closely
matches the camera poses.

on dense trajectories for 20,000 iterations, followed by fine-tuning
with sparse trajectories for an additional 20,000 iterations.

4.1.2 Evaluation Datasets. (1) Camera motion control evaluation
dataset encompasses two types of camera poses: basic camera poses
(pan left, pan right, pan up, pan down, zoom in, zoom out, anti-
clockwise rotation, and clockwise rotation) and relatively complex
camera poses1 obtained from the test set of Realestate10K [Zhou
et al. 2018] or synthesized using ParticleSfM [Zhao et al. 2022] on
videos fromWebVid [Bain et al. 2021] andHD-VILA [Xue et al. 2022].
(2) Object motion control evaluation dataset consists of 283 samples
constructed with diverse handcrafted trajectories and prompts. Fur-
ther details regarding the construction of the evaluation datasets
are provided in the supplementary materials.

4.1.3 Evaluation Metrics. (1) The quality of the generated videos
is evaluated using Fréchet Inception Distance (FID)[Seitzer 2020],
Fréchet Video Distance (FVD)[Unterthiner et al. 2018], and CLIP
Similarity (CLIPSIM) [Radford et al. 2021], which measure the vi-
sual quality, temporal coherence, and semantic similarity to the text,
respectively. Denoted that the reference videos of FID and FVD are
1000 videos from WebVid [Bain et al. 2021]. (2) The efficacy of the
camera and object motion control is quantified by computing the
Euclidean distance between the predicted and ground truth camera
poses and object trajectories, respectively. The camera poses and
object trajectories of the predicted videos are extracted using Parti-
cleSfM [Zhao et al. 2022]. We title these two metrics as CamMC
and ObjMC, respectively. 3) We also conduct a user study for sub-
jective quantitative evaluation, the details of which are provided in
the supplementary materials due to space limitations.

4.2 Comparisons with State-of-the-Art Methods
To validate the effectiveness of our MotionCtrl in controlling both
camera and object motion, we compare it with two leading methods:
AnimateDiff [Guo et al. 2023] and VideoComposer [Wang et al.
1"Complex camera poses" in this work denotes camera movement beyond the basic
camera poses.While basic camera poses involvemovement in a single straight direction,
complex camera poses contain movement in several directions.

2023]. AnimateDiff employs 8 separate LoRA [Hu et al. 2021]models
to control 8 basic camera motions in videos, such as panning and
zooming, while VideoComposer manipulates video motion using
motion vectors without differentiating between camera and object
movements. Although DragNUWA [Yin et al. 2023a] is relevant to
our research, its code is not publicly available, precluding a direct
comparison. Moreover, DragNUWA only learns motion control
with the trajectories extracted from optical flow, which cannot fine-
grainedly distinguish the movement between foreground objects
and background, limiting its ability to precisely control camera and
object motion.

We compare our MotionCtrl with these methods in terms of
camera motion and object motion control, and show the capability
of our MotionCtrl to flexibly combine the control of camera motion
and object motion in video generation. More comparisons and video
comparisons are provided in the supplementary materials.

4.2.1 CameraMotion Control. We assess cameramotion control us-
ing basic poses and relatively complex poses. AnimateDiff [Guo et al.
2023] is limited to basic camera poses, while VideoComposer [Wang
et al. 2023] handles complex poses by extracting motion vectors
from provided videos. The qualitative results are shown in Fig. 4.
For basic poses, both MotionCtrl and AnimateDiff can produce
videos with forward camera movement, but MotionCtrl can gen-
erate camera motion with varying speeds, while AnimateDiff is
nonadjustable. Regarding complex poses, where the camera first
moves left front and then forward, VideoComposer can mimic the
reference video’s camera motion using extracted motion vectors.
However, the dense motion vectors inadvertently capture object
shapes, the door’s outline in the reference video (frame 12), result-
ing in an unnatural-looking Eiffel Tower. MotionCtrl, guided by
rotation and translation matrices, generates more natural-looking
videos with camera motion close to the reference.

Quantitative results in Table 1 show MotionCtrl’s superiority
over AnimateDiff and VideoComposer for both basic and relatively
complex poses, as reflected by the CamMC score. Additionally,
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(a) Camera motion control on basic poses.

(b) Camera motion control on complex poses.
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Figure 5: Qualitative Comparisons on Object Motion Control. Both VideoComposer and MotionCtrl can generate an object
moving along a given trajectory (red curve), but MotionCtrl more precisely follows it in each frame, as indicated by green
points.

Table 1: Quantitative Comparisons with AnimateDiff [Guo
et al. 2023] and VideoComposer [Wang et al. 2023]. Our Mo-
tionCtrl outperforms competing approaches in both camera
and object motion control while also excelling at preserving
text similarity and the quality of the video generation.

Method AnimateDiff VideoComposer MotionCtrl

CamMC ↓ (Basic Poses) 0.0548 - 0.0289
CamMC ↓ (Complex Poses) - 0.0950 0.0735

ObjMC ↓ - 36.8351 28.877
CLIPSIM ↑ 0.2144 0.2214 0.2319

FID ↓ 157.73 130.97 124.09
FVD ↓ 1815.88 1004.99 852.15

MotionCtrl achieves better text similarity and quality metrics, as
measured by CLIPSIM, FID, and FVD.

4.2.2 Object Motion Control. We compare our MotionCtrl with
VideoComposer for object motion control, where VideoComposer
utilizes motion vectors extracted from trajectories. The qualitative
results are shown in Fig. 5. The red curve illustrates the given trajec-
tory, while the green points indicate the expected object locations
in the corresponding frame. The visual comparison reveals that
MotionCtrl can generate objects whose movements are closer to
the given trajectories, whereas VideoComposer’s results deviate in
certain frames, highlighting MotionCtrl’s superior object motion
control capability. The quantitative results in terms of ObjMC in
Table 1 also demonstrate that MotionCtrl achieves better object
motion control than VideoComposer.

4.2.3 Combination of Camera Motion and Object Motion. MotionC-
trl can not only control camera and object motion independently
within a single video but also perform integrated control of both.
As demonstrated in Fig. 1 (b) and (c), when MotionCtrl is applied
with only a trajectory, it primarily generates a swaying rose that
follows this path. By further introducing zoom-out camera poses,
both the rose and the background are animated in accordance with
the specified trajectory and camera movements.

More results of MotionCtrl can be found in Fig. 8, supplementary
materials, and the demo video.

4.3 Ablation Studies
4.3.1 Integrated Position of CameraMotion ControlModule (CMCM)..
We test implementing camera motion control by combining camera

Table 2: Ablation of Camera Motion Control. Our Camera
Motion Control Module (CMCM), incorporated with the tem-
poral transformers of LVDM [He et al. 2022], effectively con-
trols camera motion and maintains LVDM’s video quality.

Method CamMC ↓ CLIPSIM ↑ FID ↓ FVD ↓

LVDM [He et al. 2022] 0.9010 0.2359 130.62 1007.63
Time Embedding 0.0887 0.2361 132.74 1461.36

Spatial Cross-Attention 0.0857 0.2357 153.86 1306.78
Spatial Self-Attention 0.0902 0.2384 146.37 1303.58

Temporal Transformer 0.0289 0.2355 132.36 1005.24

poses with the time embedding, spatial cross-attention, or spatial
self-attention module in LVDM. Although such methods have suc-
ceeded in other types of controlling [Mou et al. 2024; Zhang et al.
2023], such as sketch and depth, they fail to endow camera control
capabilities to LVDM, as evidenced by the CamMC scores in Table 2
and visualized results in Fig. 6. Their CamMC scores are close to the
original LVDM. That is because these components primarily focus
on spatial content generation, which is insensitive to the camera
motion encoded in camera poses. Conversely, incorporating CMCM
with LVDM’s temporal transformers significantly improves camera
motion control, as indicated by a lower CamMC score of 0.0289 in
Table 2. Camera motion primarily causes global view transforma-
tions over time, and fusing camera poses into LVDM’s temporal
blocks aligns with this property, enabling effective camera motion
control during video generation.

4.3.2 Dense Trajectories v.s. Sparse Trajectories. OMCM is initially
trained with dense object movement trajectories extracted via Parti-
cleSfM [Zhao et al. 2022] and then fine-tune with sparse trajectories.
We evaluate the effectiveness of this approach by comparing it with
training OMCM solely on dense or sparse trajectories. Table 3 and
Fig. 7 indicate that training exclusivelywith dense trajectories yields
inferior outcomes, which is attributed to discrepancies between
the training and inference phases (sparse trajectories are provided
during inference). Though training solely with sparse trajectories
shows improvement over the dense-only approach, it still falls short
of the hybrid method, since sparse trajectories alone provide limited
information. In contrast, dense trajectories offer richer information
that accelerates learning, and subsequent fine-tuning with sparse



SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Z. Wang, Z. Yuan, X. Wang, Y. Li, T. Chen, M. Xia, P. Luo, and Y. Shan

Table 3: Ablation of Object Motion Control. The Object Mo-
tion Control Module (OMCM), when initially trained on
dense object movement trajectories and subsequently fine-
tuned with sparse trajectories, outperforms versions trained
exclusively on either dense or sparse trajectories.

Method ObjMC ↓ CLIPSIM ↑ FID ↓ FVD ↓

Dense 54.4114 0.2352 175.8622 2227.87
Sparse 34.6937 0.2365 158.5553 2385.39

Dense + Sparse 25.1198 0.2342 149.2754 2001.57

trajectories allows OMCM to adjust to the sparsity encountered
during inference.

4.3.3 Training Strategy. Given the limitations of the available train-
ing dataset, we propose a multi-step training strategy for MotionC-
trl, starting with the CMCM using Realestate10K [Zhou et al. 2018],
followed by the OMCMwith synthesized object movement trajecto-
ries. To thoroughly assess our approach, we experiment with revers-
ing the order and training OMCM before CMCM. This sequence
does not impact camera motion control, as OMCM components
do not participate in CMCM training. However, it leads to a de-
crease in object motion control performance since the subsequent
training of CMCM adjusts parts of LVDM’s temporal transformers,
disrupting the object motion control adaptation achieved during
OMCM’s initial training. Thus, our multi-step strategy, though a
compromise due to dataset constraints, is deliberately structured
to train CMCM before OMCM, ensuring enhanced performance in
both camera and object motion control.

4.4 Deploy MotionCtrl on AnimateDiff
We also deploy our MotionCtrl on AnimateDiff [Guo et al. 2023].
Therefore, we can control the motion of the video generated with
our adjusted AnimateDiff cooperating with various LoRA [Hu et al.
2021] models in the committee. Visualized results of complex cam-
era motion control and object motion control are in Fig. 9 and
Fig. 10. More results are in the supplementary materials.

5 LIMITATIONS
As an initial exploration into controlling camera and object motion
within a unified video generation model, MotionCtrl has demon-
strated promising and insightful results. However, controlling the
camera and object motion in the same video with both complex
camera and complex object trajectories requires a careful design
of these trajectories to achieve a natural and harmonious outcome,
and the success rate is relatively low. Further research is needed
to enhance the accuracy of simultaneously controlling camera and
object motion in generated videos.

6 CONCLUSION
This paper proposes MotionCtrl, a unified and flexible controller
that can independently or combinably control the camera and ob-
ject motion in a video attained with a video generation model.
To achieve this end, MotionCtrl carefully tailors a camera motion
control module and object motion control module to adapt to the
specific properties of camera motion and object motion and de-
ploys a multi-step training strategy to train these two modules

with delicately augmented datasets. Comprehensive experiments,
including qualitative and quantitative evaluations, showcase the
superiority of our proposed MotionCtrl in both camera and object
motion control.
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Prompt: A fish is swimming in the aquarium tank.

Figure 6: The qualitative results of ablation study regarding the integrated position of the Camera Motion Control Module
(CMCM) with LVDM [He et al. 2022]. Integrating CMCM of MotionCtrl with the temporal transformers in LVDM significantly
improves camera motion control compared to other setups.
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Prompt: A man is surfing.

Figure 7: The qualitative results of ablation study "Dense Trajectories v.s. Sparse Trajectories". The model trained with dense
trajectories fails to control the object motion in the generated video. Conversely, the model trained on dense trajectories,
followed by fine-tuning on sparse trajectories, exhibits superior precision in object motion control compared to the model
trained solely on sparse trajectories.
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Prompt: A human robot standing on Mars.

Prompt: Two zebras.

Prompt: Seagull, rocks, storm, wind, waves.

Prompt: A basketball in the air.

Figure 8: More results of MotionCtrl include those controlled by camera poses or object trajectories independently, as well as
those controlled with camera poses and object trajectories simultaneously.

Prompt: A girl.

Figure 9: Results of complex camera motion control deployed on AnimateDiff [Guo et al. 2023]

Prompt: : A teddy bear skateboarding.

Figure 10: Results of object motion control deployed on AnimateDiff [Guo et al. 2023].
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The supplementary materials provide additional results achieved
with our proposed MotionCtrl, along with in-depth analyses. For a
more visual understanding, we strongly recommend readers
visit our project page for the video results. The structure of the
supplementary materials is as follows:

• Details of training data construction. (Section A)
• Details of evaluation datasets. (Section B)
• More quantitative and qualitative results. (Section C)
• More Results of MotionCtrl when extended to AnimateD-
iff [Guo et al. 2023] framework. (Section D)

• More discussions about previous related works. (Section E)

A DETAILS OF TRAINING DATA
CONSTRUCTION

Augmented-RealEstate10K. The camera motion control mod-
ule (CMCM) in MotionCtrl is trained with data augmented from
RealEstate10K [Zhou et al. 2018]. RealEstate10K originally con-
tains videos with annotations of camera poses. To adapt it to our
MotionCtrl, we further synthesize captions for each video with
Blip2 [Li et al. 2023], an image captioning algorithm. Specifically,
we extract frames at specific intervals—the first, quarter, half, three-
quarters, and final frames of a video. We then use Blip2 to predict
their captions. These captions are concatenated to form a compre-
hensive description for each video clip. With these captions in place,
we train the CMCM on RealEstate10K, enabling effective camera
motion control in video generation models such as LVDM [He et al.
2022].

Augmented-WebVid.The objectmotion controlmodule (OMCM)
in MotionCtrl is trained with data augmented from WebVid [Bain
et al. 2021]. WebVid is a large-scale video dataset equipped with
captions and commonly used in the T2V generation task. To adapt
it to our MotionCtrl, we further synthesize the object movement
trajectories for the videos in WebVid with ParticleSfM [Zhao et al.
2022]. Although ParticleSfM is a structure-from-motion system
primarily, it incorporates a trajectory-based motion segmentation
module utilized for filtering out dynamic trajectories that affect
the production of camera trajectories in a dynamic scene. The dy-
namic trajectories attained by the motion segmentation module
exactly fulfill the requirements of our MotionCtrl and we employ
this module to synthesize moving object trajectories required by
our MotionCtrl. However, despite its effectiveness, ParticleSfM is
not time-efficient, requiring approximately 2 minutes to process
a 32-frame video. To mitigate the issue of time efficiency, we ran-
domly select 32 frames from each WebVid video, with a frame skip
interval 𝑠 ∈ [1, 16], to synthesize the object movement trajectories.
This approach yields a total of 243,000 video clips that fulfill the
training requirements for the OMCM.

B DETAILS OF EVALUATION DATASETS
In this paper, we construct two evaluation datasets to independently
evaluate the efficacy of our proposed MotionCtrl on camera and
object motion control, respectively.

Camera Motion Control Evaluation Dataset. This dataset
contains a total of 407 samples covering two types of camera poses:

(1) 80 (8 × 10) samples constructed with 8 basic camera pose
sequences (pan left, pan right, pan up, pan down, zoom in,

zoom out, anticlockwise rotation, and clockwise rotation)
and 10 prompts.

(2) 200 (20× 10) samples constructed with 20 relatively complex
camera pose sequences randomly selected from the test set
of RealEstate10K [Zhou et al. 2018] and 10 prompts.

(3) 100 samples constructed with 100 relatively complex camera
poses of WebVid [Bain et al. 2021] synthesized with Parti-
cleSfM [Zhao et al. 2022] and 100 prompts fromVBench [Huang
et al. 2024].

(4) 27 samples constructed with 27 relatively complex camera
poses of HD-VILA [Xue et al. 2022] synthesized with Parti-
cleSfM and 27 prompts from VBench [Huang et al. 2024].

To provide an intuitive perception of the camera movement,
we visualized the 8 basic camera poses and 20 relatively complex
camera poses from RealEstate10K [Zhou et al. 2018] in Fig. 11. As
described in the manuscript, the term "complex camera poses" as
used in this work denotes camera movements beyond the basic
camera poses list, encompassing camera turning and self-rotation
within the same camera pose.

Object Motion Control Evaluation Dataset. This evaluation
dataset contains a total of 283 samples constructed with 74 diverse
trajectories and 77 prompts. It should be noted that to verify the
effectiveness of MotionCtrl in object motion control, our evaluation
dataset pairs one trajectory with several different prompts or one
prompt with several different trajectories. To provide an intuitive
perception of the handcrafted trajectories, 19 trajectories adopted
in the evaluation dataset are depicted in Fig. 12.

These evaluation datasets will be released.
Please note that the evaluation datasetswehave constructed

are primarily used for quantitatively assessing the perfor-
mance of our proposed MotionCtrl in both camera and ob-
ject motion control in video generation. Our MotionCtrl is
capable of handling a wider variety of camera poses and
trajectories that are not included in the evaluation datasets.

C MORE QUANTITATIVE AND QUALITATIVE
RESULTS

C.1 More Quantitative Results
MoreQuantitative Comparisons onRelatively ComplexCam-
era Motion Control. In the manuscript, the quantitative results of
relatively complex camera poses are statistics from all the complex
camera poses sourced from RealEstate10K [Zhou et al. 2018], Web-
Vid [Bain et al. 2021], and HD-VILA [Xue et al. 2022]. The statistical
results for each dataset are presented in Table 4, demonstrating that
our MotionCtrl outperforms VideoComposer [Wang et al. 2023]
in both the camera poses extracted from RealEstate10K and those
synthesized with ParticleSfM [Zhao et al. 2022] (camera poses of
WebVid [Bain et al. 2021] and HD-VILA [Xue et al. 2022]) in terms
of camera motion control, text similarity, and generated quality.
User Study.For a more comprehensive evaluation, we conduct a
user study involving 34 participants to assess the results of Video-
Composer [Wang et al. 2023] and MotionCtrl. The results were
generated using object trajectories and relatively complex cam-
era poses covering datasets from RealEstate10K [Zhou et al. 2018],
WebVid [Bain et al. 2021], and HD-VILA [Xue et al. 2022]. The
assessment included criteria such as Video Quality, Text Similarity,
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Pan Left Pan Right Pan Up Pan Down

Zoom In Zoom Out ClockwiseAnticlockwise

(a) 8 Basic Camera Poses

Realestate10K(b) 20 Relatively Complex Camera Poses from RealEstate10K Testset

Figure 11: The Camera Motion Control Evaluation Dataset consists of 8 basic camera poses and 20 relatively complex camera
poses, with the relatively complex poses being derived from the test set of RealEstate10K. This dataset is utilized to quantitatively
assess the effectiveness of our proposed MotionCtrl in controlling a wide range of diverse camera motions in videos generated.

and Motion Similarity. Participants are also asked to express their
overall preference for each compared pair. The statistical results in
Table 5 demonstrate that over 90 percent of participants preferred

our results in all assessment aspects. Although VideoComposer ex-
hibited good performance in motion control conditioned on motion
vectors, its generated videos often appeared unnatural and strange
due to the object shapes captured by the motion vectors from the



SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Z. Wang, Z. Yuan, X. Wang, Y. Li, T. Chen, M. Xia, P. Luo, and Y. Shan

Figure 12: The Object Motion Control Evaluation Dataset encompasses 19 trajectories, where the green and blue points
respectively represent the starting and ending points of each trajectory. This dataset is used to quantitatively evaluate the
effectiveness of the proposed MotionCtrl in controlling object movements in videos generated.

Table 4: Quantitative Comparisons with VideoComposer [Wang et al. 2023]. Our MotionCtrl performs better in all three sets of
relatively complex camera poses from RealEstate10K [Zhou et al. 2018], WebVid [Bain et al. 2021], and HD-VILA [Xue et al.
2022].

RealEstate10K WebVid HD-VILA
Method VideoComposer MotionCtrl VideoComposer MotionCtrl VideoComposer MotionCtrl

CamMC ↓ 0.1073 0.0840 0.0702 0.0589 0.0953 0.0499
CLIPSIM ↑ 0.2219 0.2324 0.2147 0.2268 0.2429 0.2473

FID ↓ 134.97 130.29 106.89 102.13 190.54 159.52
FVD ↓ 1045.82 934.37 733.09 612.84 1709.59 1129.40

reference video. Consequently, users showed a stronger preference
for our relatively natural results.

Table 5: User Study. Compared to the results generated with
VideoComposer [Wang et al. 2023], our MotionCtrl achieved
more preference in all assessment aspect.

Method VideoComposer MotionCtrl

Quality ↑ 0.0628 0.9372
TextSimilarity ↑ 0.0772 0.9228

MotionSimilarity ↑ 0.086 0.9140
OverallPreference ↑ 0.0739 0.9261

C.2 More Qualitative Results
MoreQualitativeComparisonswithVideoComposer.Wepresent
additional qualitative results comparing VideoComposer [Wang
et al. 2023] and our proposed MotionCtrl on relatively complex
camera and object trajectories in Fig. 13 and Fig. 14, respectively.
These results suggest that MotionCtrl outperforms VideoComposer
in both camera and object motion control in generated videos. Fur-
thermore, MotionCtrl’s generated videos exhibit higher quality and
its generated content is better aligned with the prompts.
More of MotionCtrl. In this section, we present additional results
of MotionCtrl, focusing on camera motion control, object motion
control, and combined motion control. Notably, all results are
obtained using the same trained MotionCtrl model, without
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Figure 13: More Qualitative Comparisons with VideoComposer [Wang et al. 2023] on Camera Motion Control. The generated
videos of MotionCtrl can better follow the camera poses, whether from RealEstate10K [Zhou et al. 2018] or those synthesized
with ParticleSfM [Zhao et al. 2022] on videos of WebVid [Bain et al. 2021] and HD-VILA [Xue et al. 2022]. Moreover, the results
achieved with MotionCtrl exhibit higher quality.



SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Z. Wang, Z. Yuan, X. Wang, Y. Li, T. Chen, M. Xia, P. Luo, and Y. Shan

Prompt: A lizard on a bamboo.

Prompt: Cow in a field.

Prompt: A small steel ball rolling on the table.
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Figure 14: More Qualitative Comparisons with VideoComposer [Wang et al. 2023] on Object Motion Control. The generated
videos of MotionCtrl exhibit a superior ability to follow the trajectories in each frame and achieve higher overall quality.

the need for extra fine-tuning for different camera poses or
trajectories.

Specifically, Fig. 17 illustrates the outcomes of camera motion
control of MotionCtrl guided by 8 basic camera poses, including
pan up, pan down, pan left, pan right, zoom in, zoom out, anticlock-
wise rotation, and clockwise rotation. These poses are visualized
in Fig. 11 (a). This demonstrates the capability of our MotionC-
trl model to integrate multiple basic camera motion controls in a
unified model, contrasting with the AnimateDiff model [Guo et al.
2023] which requires a distinct LoRA model [Hu et al. 2021] for
each camera motion.

Fig. 15 showcases the results of camera motion control using
MotionCtrl, which is guided by relatively complex camera poses.
These complex camera poses are distinct from basic camera

poses, as they include elements of camera turning or self-
rotation within the same camera pose sequence. The results
demonstrate that, given a sequence of camera poses, our MotionCtrl
can generate natural videos. The content of these videos aligns
with the text prompts, and the camera motion corresponds to the
provided complex camera poses.

Fig. 18 presents the results of object motion control using Mo-
tionCtrl, guided by specific trajectories. When given the same tra-
jectories and different text prompts, MotionCtrl can generate videos
featuring different objects, but with identical object motion.

Fig. 16 provides the results of combining both the camera motion
control and object motion control. With the same trajectory but
different camera poses, the horse in the generated videos has a
different performance.
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Prompt: A cute cat lying on the floor.

Prompt: A temple on the mountain.

Prompt: A temple on the mountain.

Prompt: A human robot standing on Mars.

Figure 15: The results of our proposed MotionCtrl deployed on LVDM [He et al. 2022], guided by relatively complex camera
poses. Unlike basic camera poses, which only involve simple directional movements, these complex camera poses incorporate
elements of camera turning or self-rotation within the same camera pose sequence. The camera motion in the generated videos
closely follows the guided camera poses, while the generated content aligns with the text prompts.

Prompt: A horse running on the road.Pan Left

Zoom In

Figure 16: The result of combining camera motion and object motion control of MotionCtrl deployed on LVDM [He et al. 2022].
With the same trajectory but different camera poses, the horse in the generated videos has a different performance.

D MORE RESULTS OF MOTIONCTRL
DEPLOYED ON AIMATEDIFF [Guo et al.
2023]

We also deploy our MotionCtrl on AnimateDiff [Guo et al. 2023].
Therefore, we can control the motion of the video generated with
our fine-tuned AnimateDiff cooperating with various LoRA [Hu
et al. 2021] models in the committee. Results of relatively com-
plex camera motion control and object motion control are in the
manuscripts and we provide the results of basic camera motion
control here: Fig. 19 and Fig. 20. These results are generated with
our MontionCtrl cooperating with different LoRA models provided
by in CIVITAI [?]. They demonstrate that our the generalization
of MotionCtrl that can be adapted to different video generation
models.

E MORE DISCUSSIONS ABOUT THE RELATED
WORKS

To further illustrate the advantages of our proposed MotionC-
trl, we’ve conducted a comparative analysis with previous related
works. The comparisons are detailed in Table 6. Models such as
AnimateDiff[Guo et al. 2023] (refers to the motion control LoRA
models provided by AnimateDiff), Tune-a-video[Wu et al. 2023b],
LAMP[Wu et al. 2023a], and MotionDirector[Zhao et al. 2023] im-
plement motion control by extracting motion from one or multiple
template videos. This approach necessitates the training of distinct
models for each template video or template video set. Moreover,
the motions these methods learned are solely determined by the
template video(s), and they fail to differentiate between camera
motion and object motion. Similarly, MotionDirector[Zhao et al.
2023] and VideoComposer[Wang et al. 2023], despite achieving
motion control with a unified model guided by motion vectors and
trajectories respectively, do not distinguish between camera motion
and object motion. In contrast, our proposed MotionCtrl, utilizing
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Table 6: Differences between our proposed MotionCtrl and related works. Unlike AnimateDiff [Guo et al. 2023] (which refers
to the motion control LoRA model provided by AnimateDiff), Tune-a-video [Wu et al. 2023b], LAMP [Wu et al. 2023a], and
MotionDirector [Zhao et al. 2023] that implement motion control by extracting motion from one or a series of template videos
and require different models for different template videos, our proposed MotionCtrl uses a unified model. Besides, the motions
learned by these methods are determined by the template video(s) and they do not distinguish between camera motion and
object motion. On the other hand, although MotionDirector [Zhao et al. 2023] and VideoComposer [Wang et al. 2023] achieve
motion control with a unified model guided by motion vectors and trajectories, respectively, they also do not distinguish
between camera motion and object motion. In contrast, our proposed MotionCtrl, with a unified model, can independently
and flexibly control the camera motion and object motion of the generated video, guided by camera poses and trajectories,
respectively.

Method Require Fine-tuning Motion sources Distinguish Camera & Object Motion

AnimateDiff [Guo et al. 2023] ! template videos %

Tune-a-video [Wu et al. 2023b] ! template video %

LAMP [Wu et al. 2023a] ! template videos %

MotionDirector [Zhao et al. 2023] ! template videos %

VideoComposer [Wang et al. 2023] % motion vectors %

DragNUWA [Yin et al. 2023a] % trajectories %

MotionCtrl (Ours) % camera poses & trajectories !

a unified model, can independently and flexibly control a wide
range of camera and object motions in the generated videos. This is
achieved by guiding the model with camera poses and trajectories

respectively, offering a more fine-grained control over the video
generation process.
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Prompt: A landscape with mountains and lake at sunrise.

Figure 17: The results of our proposed MotionCtrl deployed on LVDM [He et al. 2022], guided by 8 basic camera poses: pan up,
pan down, pan left, pan right, zoom in, zoom out, anticlockwise rotation, and clockwise rotation (The visualization of these
camera poses can be seen in Fig. 11 (a)). It’s important to note that all results are achieved using the same MotionCtrl model,
without the need for extra fine-tuning for different camera poses.
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Prompt: A chime in the wind.

Prompt: A sunflower in the wind.

Prompt: A paper plane floating in the sky.

Prompt: A leaf floating in the sky.

Prompt: Two zebras.

Prompt: Two cats.

Figure 18: The result of our proposed MotionCtrl deployed on LVDM [He et al. 2022], guided with trajectories. The green
points in the trajectories indicate the starting points. Given the same trajectories, our model can generate different objects in
accordance with the text prompts, maintaining the same object motion. When multiple trajectories are present in the same
video, our model is capable of simultaneously controlling the motion of different objects within the same generated video.
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Prompt: A teddy bear in the supermarket.

Figure 19: The camera motion control results of MotionCtrl deployed on AnimateDiff [Guo et al. 2023]. They are guided with 8
basic camera poses.
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Figure 20: The camera motion control results of MotionCtrl deployed on AnimateDiff [Guo et al. 2023]. Our MotionCtrl can not
only control the camera motion of the generated videos but also their motion speed.
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