
 
Understanding the 'Phasing Method' of Single 
Sideband Demodulation 
by Richard Lyons 
 
There are four ways to demodulate a transmitted single sideband (SSB) signal. 
Those four methods are: 
 
   • synchronous detection, 
   • phasing method,  
   • Weaver method, and 
   • filtering method.  
 
Here we review synchronous detection in preparation for explaining, in 
detail, how the phasing method works. This blog contains lots of preliminary 
information, so if you're already familiar with SSB signals you might want to 
scroll down to the 'SSB DEMODULATION BY SYNCHRONOUS DETECTION' section. 
 
BACKGROUND 
I was recently involved in trying to understand the operation of a discrete 
SSB demodulation system that was being proposed to replace an older analog 
SSB demodulation system. Having never built an SSB system, I wanted to 
understand how the "phasing method" of SSB demodulation works. 
 
However, in searching the Internet for tutorial SSB demodulation information 
I was shocked at how little information was available. The web's wikipedia 
'single-sideband modulation' gives the mathematical details of SSB generation 
[1]. But SSB demodulation information at that web site was terribly sparse. 
In my Internet searching, I found the SSB information available on the net to 
be either badly confusing in its notation or downright ambiguous. That web-
based material showed SSB demodulation block diagrams, but they didn't show 
spectra at various stages in the diagrams to help me understand the details 
of the processing. 
 
A typical example of what was frustrating me about the web-based SSB 
information is given in the analog SSB generation network shown in Figure 1. 
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                                 Figure 1 
 
In reading the text associated with that figure, the left 90o rectangle was 
meant to represent a Hilbert transform. Well, in that case, the "90o" label 
should more correctly be "-90o because in the time domain a Hilbert 
transformer shifts a sinusoid by –90o." In Figure 1, assuming the rightmost 
90o rectangle means some sort of 90o phase-delay element, then it's output 
would not be sin(ωct), it would be -sin(ωct). Ambiguous "90o" notation often 
occurs in the literature of SSB systems. (Reading Internet SSB material is 

Copyright Richard Lyons, August 2012 1 



like reading a medical billing statement; the information is confusing! So 
much of it doesn't "add up.") OK, enough of my ranting. 
 
TRANSMITTED SSB SIGNALS 
Before we illustrate SSB demodulation, it's useful to quickly review the 
nature of standard double-sideband amplitude modulation (AM) commercial 
broadcast transmissions that your car radio is designed to receive. In 
standard AM communication systems, an analog real-valued baseband input 
signal may have a spectral magnitude, for example, like that shown in Figure 
2(a). Such a signal might well be a 4 kHz-wide audio output of a microphone 
having no spectral energy at DC (zero Hz). This baseband audio signal is 
multiplied, in the time domain, by a pure-tone carrier to generate what's 
called the modulated signal whose spectral magnitude content is given in 
Figure 2(b). 
 
In this example the carrier frequency is 80 kHz, thus the transmitted AM 
signal contains pure-tone carrier spectral energy at ±80 kHz. The purpose of 
a remote AM receiver, then, is to demodulate that transmitted DSB AM signal 
and generate the baseband signal given in Figure 2(c). The analog demodulated 
audio signal could then be amplified and routed to a loudspeaker. We note at 
this point that the two transmitted sidebands, on either side of ±80 kHz, 
each contain the same audio information. 
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                                 Figure 2 
 
In an SSB communication system the baseband audio signal modulates a carrier, 
in what's called the "upper sideband" (USB) mode of transmission, such that 
the transmitted analog signal would have the spectrum shown in Figure 3(b). 
Notice in this scenario, the lower (upper) frequency edge of the baseband 
signal’s USB (LSB) has been translated in frequency so that it’s located at 
80 kHz (-80 kHz). (The phasing method of SSB radio frequency (RF) generation 
is given in Appendix A.) 
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                                 Figure 3 
 
The purpose of a remote SSB receiver is to demodulate that transmitted SSB 
signal, generating the baseband audio signal given in Figure 3(c). The analog 
demodulated baseband signal can then be amplified and drive a loudspeaker. 
 
In a "lower sideband" (LSB) mode of SSB transmission, the transmitted analog 
signal would have the spectrum shown in Figure 4(b). In this case, the upper 
(lower) frequency edge of the baseband signal’s LSB (USB) has been translated 
in frequency so that it’s located at 80 kHz (-80 kHz). The baseband signal in 
Figure 4(a) is real-valued, so the positive-frequency portion of its spectrum 
is the complex conjugate of the negative-frequency portion. Both sidebands 
contain the same information, and that's why LSB transmission and USB 
transmission communicate identical information. 
 
And again, in the LSB mode of transmission, the remote receiver must 
demodulate that transmitted LSB SSB signal and generate the baseband audio 
signal given in Figure 4(c). 
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                                 Figure 4 
 
WHY BOTHER USING SSB SYSTEMS? 
Standard broadcast AM signal transmission, Figure 2, wastes a lot of 
transmitter power. At a minimum, two thirds of an AM transmitter's power is 
used to transmit the 80 kHz carrier signal which contains no information. And 
half of the remaining one third of the transmitted power is wasted by 
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radiating a redundant sideband. So why are standard commercial AM broadcast 
systems used at all? It's because DSB AM broadcast receivers are simple and 
inexpensive. 
 
In SSB transmission systems, 100% of their transmitter power is used to 
transmit a single baseband sideband. Thus they exhibit no wasted transmitter 
power as do AM systems. In addition, due to their narrower bandwidth, SSB 
systems can have twice the number of transmitted signals over a given RF 
range than standard double-sideband AM signals. The disadvantage of SSB 
communications, however, is that the remote receiver's demodulation circuitry 
is more complicated than that needed by AM receivers. 
 
SSB DEMODULATION BY SYNCHRONOUS DETECTION 
One method, called "synchronous detection", to implement the demodulation 
process in Figure 3 is shown in Figure 5. This method is relatively simple. 
In Figure 5 the analog RF input USB SSB signal has a carrier frequency of 80 
kHz, so ωc = 2π·80000 radians/second. We multiply that input SSB signal by 
what’s called a “beat frequency oscillator” (BFO) signal, cos(ωct), to 
translate the SSB signal’s USB (LSB) down (up) in frequency toward zero Hz. 
That multiplication also produces spectral energy in the vicinity of ±160 
kHz. The analog lowpass filter (LPF), whose frequency magnitude response is 
shown at the upper right side of Figure 5, attenuates the high frequency 
spectral energy producing our desired baseband audio signal. 
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                                 Figure 5 
 
A DSP version of our simple Figure 5 USB demodulation process is shown in 
Figure 6 where, for example, we chose the A/D converter’s sample rate to be 
200 kHz. Notice the spectral wrap-around that occurs at half the sample rate, 
±100 kHz, in the multiplier’s output signal. The digital LPF, having a cutoff 
frequency of just a bit greater than 4 kHz, serves two purposes. It 
attenuates any unwanted out-of-baseband spectral energy in the down-converted 
signal, and eliminates any spectral aliasing caused by decimation. The 
decimation-by-10 process reduces the baseband signal’s sample rate to 20 kHz. 
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                                 Figure 6 
 
The analog LPF in Figure 6 attenuates the unwanted high-frequency analog 
spectral images that are produced, at multiples of 20 kHz, by the D/A 
conversion process. 
 
Returning to the analog demod process in Figure 5, had the incoming SSB 
signal been a lower sideband (LSB) transmission our analog processing would 
be that shown in Figure 7. The processing performed in Figure 7 is identical 
to that shown in Figure 5. So, happily, our simple ‘down-convert and lowpass 
filter’ synchronous detection demodulation process works for both USB and LSB 
transmitted signals. 
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THERE'S TROUBLE IN PARADISE 
The simple demodulation process in Figure 7 has one unpleasant shortcoming 
that renders it impractical in real-world SSB communications. Here’s the 
story. 
 
In the United States commercial AM radio broadcasting is carefully restricted 
in that radio stations are assigned a specific RF carrier frequency at which 
they can transmit their radio programs. Those carrier frequencies are always 
at multiples of 10 kHz. So it’s possible for us the receive one AM radio 
signal at a carrier frequency of, say, 1200 kHz while another AM radio 
station is transmitting its program at a carrier frequency of 1210 kHz. 
(Other parts of the world use a 9 kHz carrier spacing for their commercial 
radio broadcasts.) 
 
[In the States, those commercial AM broadcast carrier frequencies are 
monitored with excruciating rigor. Many years ago while attending college I 
worked part time at a commercial radio station in Ohio. One of my 
responsibilities was to monitor the station’s transmitter’s output power 

Copyright Richard Lyons, August 2012 5 



level and carrier frequency, and record those values in a log book. Those 
power and frequency measurements, by law, had to be performed every 15 
minutes, 24 hours a day!] 
 
That careful control of transmitted signal carrier frequencies does not exist 
in today’s world of SSB communications. Think about the situation where two 
independent, unrelated, SSB Users are transmitting their signals as shown in 
Figure 8(a). User# 1 is transmitting a USB signal at a carrier frequency of 
80 kHz and User# 2 is transmitting an LSB signal at a carrier frequency of 80 
kHz. The operation of our simple ‘down-convert and lowpass filter’ demod 
process is given in Figure 8(b). There we see that spectral overlap prevents 
us from demodulating either of the two SSB signals. 
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This troublesome overlapped-spectra problem in Figure 8(b) can be solved by a 
clever quadrature processing scheme. Here's how. 
 
QUADRATURE PROCESSING TO THE RESCUE 
Our dual-User SSB problem has been solved by a quadrature processing 
technique, called the “phasing method, which makes use of the Hilbert 
transform. See Appendix B for brief explanation of the Hilbert transform. 
 
To explain the details of that process, let’s assume that a User#1 and a 
User# 2 have transmitted two sinusoidal signals whose baseband spectra are 
those shown in Figure 9(a). User# 1’s baseband signal is a sinewave tone 
whose frequency is ±3 kHz and it’s transmitted as an USB signal at a carrier 
frequency of 80 kHz, as shown in Figure 9(b). Let’s also assume that User# 
2’s baseband signal is a lower-amplitude cosine wave tone whose frequency is 
±1 kHz, and it’s transmitted as an LSB signal also at a carrier frequency of 
80 kHz.  
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                                 Figure 9 
 
To understand the phasing method of SSB demodulation, we must pay attention 
to the real and imaginary parts of our spectra, as is done in Figure 9(b).  
 
Figure 10 presents the block diagram of a “phasing method” demodulator.  
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                                 Figure 10 
 
What the Figure 10 quadrature processing does for us, to eliminate the 
overlapped-spectral component problem in Figure 8, is to generate two down-
converted signals (i(t) and q(t)) with appropriate phase relationships so 
that selected spectral components either reinforce or cancel each other at 
the final output addition and subtraction operations. Let's see how this all 
works. 
 
The real and imaginary parts of the transmitted RF spectra from the bottom of 
Figure 9 are shown at the lower left side of Figure 11.  
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                                 Figure 11 
 
In the phasing method of SSB demodulation, we perform a complex down-

conversion of the real-valued RF input, using a complex-valued BFO of e-j(ωct) 
= cos(ωct) -jsin(ωct), to generate a complex i(t) + jq(t) signal whose 
spectrum is shown at the upper right side of Figure 11. That spectrum of a 
complex-valued time sequence, is merely the demodulator's input spectrum 
shifted down in frequency by 80 kHz. 
 
Figure 12 shows the spectra at the output of the mixers, the output of the 
Hilbert transformer, and the final baseband spectra. There we see that the 
output of the upper signal path produces User# 1’s baseband signal, with no 
interference from User# 2. And the output of the lower signal path yields 
User# 2’s baseband signal with no interference from User# 1. That’s the 
phasing method of SSB demodulation. 
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A DSP SSB DEMODULATOR 
Figure 13 shows an example of a DSP SSB phasing method demodulator. Once the 

complex-valued BFO of e-j(ωcnts) = cos(ωcnts) - jsin(ωcnts) down-converts the RF 
SSB to zero Hz, it’s sensible to decimate the multipliers’ outputs to a lower 
fs sample rate to reduce the processing workload of the Hilbert transformer. 
We could have performed decimation by a factor greater than 10, but doing so 
would make the design of the post-D/A analog lowpass filter more complicated. 
The digital LPFs, whose positive-frequency cutoff frequency is slightly 
greater than 4 kHz, attenuate any unwanted out-of-baseband spectral energy in 
the down-converted signal and eliminate any spectral aliasing caused by 
decimation. 
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                                 Figure 13 
 
The Delay element in the upper path in Figure 13 is needed to maintain data 
synchronization with the time-delayed Hilbert transformer output sequence in 
the bottom path. For example, if a 21-tap digital Hilbert transformer is 
used, then the upper path’s Delay element would be a 10-stage delay line [2].  
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With DSP techniques enabling us to implement high performance, guaranteed 
linear-phase, Hilbert transformation, the phasing method of SSB demodulation 
has become popular in modern times. 
 
LISTENING TO DONALD DUCK 
You’ll notice that the phasing method of SSB demodulation assumes we have a 
BFO available in our receiver that’s identical in frequency and phase with 
the ωc oscillator in the SSB transmitter. If this not the case, then our 
demodulated baseband signals may have both frequency and phase errors. Those 
potential errors can be described as follows: 
 
Let's assume an SSB transmitter baseband signal contains a single sinusoid of 
cos(ωmt + φ). If the demodulator’s local BFO, the cos() and -sin() oscillator 
combination, has a frequency error of Δω radians/second and a phase error of 
θ radians, then the SSB demodulated baseband sinusoids will be 
 
     USB demod sinusoid = cos[(ωm - Δω)t + φ - θ],     
 
and an LSB mode demodulated baseband signal will be 
  
     LSB demod sinusoid = cos[(ωm + Δω)t + φ + θ]. 
 
The origin of those expressions is given in Appendix C. 
 
If Δω = 0, a constant phase error of θ radians over the demodulated baseband 
signal’s full frequency range is not a problem in voice communications. The 
human ear/brain combination can tolerate audio phase errors, so we can 
correctly interpret such demodulated speech signals. I’m not a digital 
communications guy but I imagine that a few degrees of BFO phase error would 
render any sort of digital phase-modulated baseband signal useless in an SSB 
receiver. 
 
When θ = 0, a BFO’s +Δω frequency error causes pitch shifting in that the 
demodulated baseband signal will be shifted in frequency. Figure 14(b) shows 
the situation where a BFO’s Δω frequency error causes the positive- and 
negative-frequency components of the baseband signal to overlap at zero Hz. 
In this situation a +Δω frequency error greater than roughly 75 Hz –to- 100 
Hz renders the demodulated voice baseband unintelligible.  
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                                 Figure 14 
 
Figure 14(c) shows the demodulated baseband spectrum when a BFO’s -Δω 
frequency error causes the positive- and negative-frequency components of the 
baseband signal to be shifted away from zero Hz. This distorts the harmonic 
relation between baseband voice spectral components. In this scenario a -Δω 
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frequency error greater than roughly 150 Hz –to- 200 Hz causes a demodulated 
voice baseband signal to sound like Donald Duck. 
 
Intelligibility tests indicate that a Figure 14(c) BFO -Δω frequency error of 
less than, say, 150 Hz can be tolerated. The bottom line here is that using 
modern day high-precision frequency synthesis techniques, the Δω error of 
receiver BFOs can be kept small making SSB systems, with their narrow RF 
bandwidth requirement and transmission power efficiency, quite useful for 
voice communications over radio links. 
 
CONCLUSION 
So now we know how the synchronous detection and phasing methods of SSB 
demodulation work. We'll leave the "Weaver method" of SSB demodulation, 
itself a form of quadrature processing, as a topic for another blog. The 
"filtering method", as far as I can tell, doesn't seem to be used in modern 
digital implementations of SSB communications systems. If you'd like to 
review the mathematics of SSB systems, I recommend you check out the Internet 
references [3] and [4]. 
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APPENDIX A – GENERATING SSB SIGNALS 
The phasing method of SSB generation is shown in Figure A-1(a), where m(t) is 
some generic baseband modulating signal. Some people call Figure A-1(a) a 
"Hartley modulator." A specific SSB generation example is given in Figure A-
1(b). In that figure the baseband input is a single low-frequency analog 
cosine wave whose frequency is ωm radians/second. The output carrier frequency 
is ωc = 2π80000 radians/second (80 kHz).  
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                                 Figure A-1 
 
A real-world example of a DSP version of this SSB generation method is shown 
in Figure A-2, where interpolation is needed so that multiplication by the 
high-frequency oscillator signals does not cause spectral wrap-around errors, 
as would happen if no interpolation was performed. 
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The baseband input sequence m(n) had a one-sided bandwidth of 3 kHz, and the 
final SSB output carrier frequency is 9 MHz. The interpolation by 3000 was 
performed by a cascade of three interpolation stages (interpolation factors 
15, 25, and 8), with each stage using CIC lowpass filters. The output sample 
rate was chosen to be 36 MHz so that the oscillators' cos() and sin() 
sequences were [1,0,-1,0,...] and [0,1,0,-1,...], which eliminated the need 
for high-frequency multiplication. 
 
APPENDIX B – THE HILBERT TRANSFORM AS A TRANSFER FUNCTION 
In the time domain, the Hilbert transform (HT) of a real-valued cosine wave 
is a real-valued sinewave of the same frequency. And the HT of a real-valued 
sinewave is a real-valued negative cosine wave of the same frequency. Stated 
in different words, in the time domain the HT of a real-valued sinusoid is 
another real-valued sinusoid of the same frequency whose phase has been 
shifted by -90o relative to the original sinusoid. We validate these 
statements as follows: 
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If we treat the HT as a frequency-domain H(ω) transfer function, its |H(ω)| 
magnitude response is unity as shown in Figure B-1(b). 
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                                 Figure B-1 
 
The phase response of H(ω) is that shown in Figure B-1(c), which we can 
describe using 
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where "arg" means the argument, or angle, of H(ω). This means that the HT of 
a real-valued cosine wave is 
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And the HT of a real-valued sinewave is 
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A detailed description of the HT and techniques for designing digital Hilbert 
transformers are given in reference [5]. 
 
I'll briefly mention that there are three reasonable ways to depict the HT in 
block diagrams. Those ways are shown in Figure B-2, where signal xH(t) 
represents the HT of input x(t) signal. 
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                                 Figure B-2 
 
Although I understand why an author might use it, I don't particularly like 
the Figure B-2(a) notation. I prefer the notation in Figure B-2(b). By the 
way, I encountered the interesting Figure B-2(c) depiction of the HT on a web 
page produced by a professor at the University of Maryland. (It shows the 
professor's inclination to describe things in strictly mathematical terms.) 
 
APPENDIX C – THE EFFECT OF LOCAL BFO FREQUENCY AND PHASE ERRORS 
Using the phrase "BFO" to represent our phasing method demodulator's cos() 
and -sin() oscillators, Figure C-1 shows the USB-mode demodulated output 
baseband signal under the conditions: 
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   • The transmitter's baseband signal is a single cos(ωmt + φ) sinusoid, 
   • The transmitted USB RF signal is a cos[(ωc + ωm)t + φ] sinusoid, 
   • The demodulator's BFO has a frequency error of Δω radians/second and a  
    phase error of θ radians. 
 

cos[(ωc+Δω)t+θ]

LPF

LPF HT

Demodulated
output+

+

+

–
cos[(ωc + ωm)t + φ]

0.5cos[(2ωc + ωm + Δω)t + φ + θ]
+ 0.5cos[(ωm –Δ)t + φ – θ]

–0.5sin[(2ωc + ωm + Δω)t + φ + θ]
+ 0.5sin[(ωm –Δω)t + φ – θ]

–sin[(ωc+Δω)t+θ]

0.5cos[(ωm –Δω)t + φ – θ]

cos[(ωm –Δω)t + φ – θ]

0.5sin[(ωm –Δω)t + φ – θ]

–0.5cos[(ωm –Δω)t + φ – θ]

USB demodulation with BFO frequency error
of Δω and phase offset = θ radians/second

 
                                 Figure C-1 
 
If Δω = 0 and θ = 0, then the demodulated output signal would be the original 
cos(ωmt + φ) baseband signal. 
 
Figure C-2 gives a graphical derivation of a demodulated LSB-mode output 
signal when frequency and phase errors exist in the local BFO. Notice in the 
LSB-mode case, if an LSB transmitter's baseband signal contains a single 
sinusoid of cos(ωmt + φ), the transmitted RF LSB signal will be cos(ωmt - φ) 
having a negative initial phase angle.  
 

LPF

LPF HT

+

+

+

–
cos[(ωc – ωm)t – φ]

Demodulated
output

LSB demodulation with BFO frequency error
of Δω and phase offset = θ radians/second

cos[(ωc+Δω)t+θ]

–sin[(ωc+Δω)t+θ]

0.5cos[(2ωc – ωm + Δω)t – φ + θ]
+ 0.5cos[(ωm + Δω)t + φ + θ] 0.5cos[(ωm + Δω)t + φ + θ]

–0.5sin[(2ωc  – ωm + Δω)t – φ + θ]
–0.5sin[(ωm + Δω)t + φ + θ]

–0.5sin[(ωm + Δω)t + φ + θ]

0.5cos[(ωm + Δω)t + φ + θ]

cos[(ωm + Δω)t + φ + θ]

 
                                 Figure C-2 
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