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3 Likelihood and Censored (or Truncated) Survival Data

Review of Parametric Likelihood Inference

Suppose we have a random sample (i.i.d.) X1, X2, ..., Xn from distribution f(x; θ) (here

f(x; θ) is either the density function if the random variable X is continuous or probability mass

function is X is discrete; θ can be a scalar parameter or a vector of parameters). The distribution

f(x; θ) is totally determined by the parameter θ. For example, if Xi is known from a log-normal

distribution, then

f(x; θ) =
1√

2πxσ
e−(logx−µ)2/(2σ2), (3.1)

and θ = (µ, σ) are the parameters of interest. Any quantity w.r.t. X can be determined by θ.

For example, E(X) = eµ+σ2/2. The likelihood function of θ (given data X) is

L(θ; X) =
n∏

i=1

1√
2πXiσ

e−(logXi−µ)2/(2σ2) (3.2)

= (
√

2πσ)−n
n∏

i=1

e−(logXi−µ)2/(2σ2)

Xi

. (3.3)

In general, the likelihood function of θ (given data X) is given by

L(θ; X) =
n∏

i=1

f(Xi; θ) (3.4)

and the log- likelihood function θ is

`(θ; X) = log{L(θ; X)} =
n∑

i=1

log{f(Xi; θ)}. (3.5)

Note that the (log) likelihood function of θ is viewed more as a function of θ than of data X. We

are interested in making inference on θ: estimating θ, constructing confidence interval (region)

for θ, and performing hypothesis testing for (part) of θ.

In the likelihood inference for a regression problem, the function f(.) in the above likelihood

function is the conditional density of Xi given covariates. For example, suppose Xi is from the

following model

logXi = β0 + ziβ1 + εi, (3.6)
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where β0 is an intercept and regression coefficient β1 characterizes the effect of z on X. If we

assume εi ∼ N(0, σ2), then the likelihood of θ = (β0, β1, σ
2) is

L(θ; X) =
n∏

i=1

f(Xi|zi, β0, θ1, σ
2) =

n∏
i=1

1√
2πXiσ

e−(logXi−β0−ziβ1)2/(2σ2). (3.7)

The maximum likelihood estimate (MLE) θ̂ of θ is defined as the maximizer of `(θ; X), which

can be usually obtained by solving the following likelihood equation (or score equation)

U(θ; X) =
∂`(θ; X)

∂θ
=

n∑
i=1

∂log{f(Xi; θ)}
∂θ

= 0,

and U(θ; X) is often referred to as the score. Usually θ̂ does not have a closed form, in which

case an iterative algorithm such as Newton-Raphson algorithm can be used to find θ̂.

Obviously, the MLE of θ, denoted by θ̂, is a function of data X = (X1, X2, ..., Xn), and hence

a statistic that has a sampling distribution. Asymptotically (i.e., for large sample size n) , θ̂ will

have the following distribution

θ̂
a∼ N(θ, C),

where C = J−1 or C = J−1
0 and

J = −E

[
∂2`(θ; X)

∂θ∂θT

]
= −

n∑
i=1

E

[
∂2log{f(Xi; θ)}

∂θ∂θT

]

is often referred to as the Fisher information matrix and

J0 = − ∂2`(θ; X)

∂θ∂θT

∣∣∣∣∣
θ=θ̂

= −
n∑

i=1

∂2log{f(Xi; θ)}
∂θ∂θT

∣∣∣∣∣
θ=θ̂

is often referred to as the observed information matrix. Asymptotically J and J0 are the same. So

we usually just use J to mean either information matrix. These results can be used to construct

confidence interval (region) for θ.

Suppose θ = (θ1, θ2) and we are interested in testing H0 : θ1 = θ10 v.s. HA : θ1 6= θ10. Under

mild conditions, the following test procedures can be used to test H0.

Wald test: Suppose the corresponding decompositions of θ̂ and C are

θ̂ =

 θ̂1

θ̂2

 and C =

 C11 C12

C21 C22

 .
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Then under H0,

χ2
obs = (θ̂1 − θ10)

T C−1
11 (θ̂1 − θ10)

a∼ χ2
k,

where k is the dimension of θ1. Therefore, we reject H0 if χ2
obs > χ2

1−α, where χ2
1−α is the (1−α)th

percentile of χ2
k.

Score test: The score test is based on the fact that the score U(θ; X) has the following

asymptotic distribution

U(θ; X)
a∼ N(0, J).

Decompose U(θ; X) as U(θ; X) = (U1(θ; X), U2(θ; X)) and let θ̃2 be the MLE of θ2 under H0 :

θ1 = θ10, i.e., θ̃2 maximizes `(θ10, θ2; X). Then under H0 : θ1 = θ10,

χ2
obs = UT

1 C11U1 ∼ χ2
k,

where U1(θ; X) and C11 are evaluated under H0. We reject H0 if χ2
obs > χ2

1−α.

Likelihood ratio test: Under H0 : θ1 = θ10,

χ2
obs = −2 ∗ (`(θ10, θ̃2; X) − `(θ̂; X)) ∼ χ2

k.

Therefore, we reject H0 if χ2
obs > χ2

1−α.

An example of score tests: Suppose the sample x1, x2, ..., xn is from a Weibull distribution

with survival function s(x) = e−λxα
. We want to construct a score test for testing H0 : α = 1,

i.e., the data is from an exponential distribution.

The likelihood function of (α, λ) is

L(α, λ; x) =
n∏

i=1

[
λαxα−1

i e−λxα
i

]
= λnαne−λ

∑n

i=1
xα

i +(α−1)
∑n

i=1
log(xi).

Therefore, the log-likelihood function of (α, λ) is

`(α, λ; x) = nlog(λ) + nlog(α) − λ
n∑

i=1

xα
i + (α − 1)

n∑
i=1

log(xi).
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So the components of the score are:

∂`(α, λ; x)

∂α
=

n

α
− λ

n∑
i=1

xα
i log(xi) +

n∑
i=1

log(xi)

∂`(α, λ; x)

∂λ
=

n

λ
−

n∑
i=1

xα
i ,

and the components of the information matrix is

∂2`(α, λ; x)

∂α2
= − n

α2
− λ

n∑
i=1

xα
i (log(xi))

2

∂2`(α, λ; x)

∂α∂λ
= −

n∑
i=1

xα
i log(xi)

∂2`(α, λ; x)

∂λ2
= − n

λ2
.

For a given data, calculate the above quantities under H0 : α = 1 and construct a score test.

For example, for the complete data in home work 2, we have n = 25,
∑

xi = 6940,
∑

log(xi) =

132.24836,
∑

xilog(xi) = 40870.268,
∑

xi(log(xi))
2 = 243502.91, λ̂ = 1/x̄ = 0.0036023 so the

score U = 25 − 0.0036023 ∗ 40870.268 + 132.24836 = 10, the information matrix and its inverse

are

J =

 902.17186 40870.268

40870.268 1926544

 , C = J−1 =

 0.0284592 −0.000604

−0.000604 0.0000133

 ,

so the score statistic is χ2 = 10 ∗ 0.0284592 ∗ 10 = 2.8 and the p-value is 0.09.

Back to Censored Data

Suppose we have a random sample of individuals of size n from a specific population whose

true survival times are T1, T2, ..., Tn. However, due to right censoring such as staggered entry,

loss to follow-up, competing risks (death from other causes) or any combination of these, we

don’t always have the opportunity of observing these survival times. Denote by C the censoring

process and by C1, C2, ..., Cn the (potential) censoring times. Thus if a subject is not censored

we have observed his/her survival time (in this case, we may not observe the censoring time for

this individual), otherwise we have observed his/her censoring time (survival time is larger than
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the censoring time). In other words, the observed data are the minimum of the survival time

and censoring time for each subject in the sample and the indication whether or not the subject

is censored. Statistically, we have observed data (Xi, ∆i), i = 1, 2, ..., n, where

Xi = min(Ti, Ci),

∆i = I(Ti ≤ Ci) =


1 if Ti ≤ Ci (observed failure)

0 if Ti > Ci (observed censoring)

Namely, the potential data are {(T1, C1), (T2, C2), ..., (Tn, Cn)}, but the actual observed data

are {(X1, ∆1), (X2, ∆2), ..., (Xn, ∆n)}.

Of course we are interested in making inference on the random variable T , i.e., any one of

following functions

f(t) = density function

F (t) = distribution function

S(t) = survival function

λ(t) = hazard function

Since we need to work with our data: {(X1, ∆1), (X2, ∆2), ..., (Xn, ∆n)}, we define the fol-

lowing corresponding functions for the censoring time C:

g(t) = density function

G(t) = distribution function = P [C ≤ t]

H(t) = survival function = P [C ≥ t] = 1 − G(t)

µ(t) = hazard function =
g(t)

H(t)

Usually, the density function f(t) of T may be governed by some parameters θ and g(t) by

some other parameters φ. In these cases, we are interested in making inference on θ.

In order to derive the density of (X, ∆), we assume independent censoring, i.e., random
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variables T and C are independent. The density function of (X, ∆) is defined as

f(x, δ) = lim
h→0

P [x ≤ X < x + h, ∆ = δ]

h
, x ≥ 0, δ = {0, 1}.

Note: Do not mix up the density f(t) of T and f(x, δ) of (X, ∆). If we want to be more

specific, we will use fT (t) for T and fX,∆(x, δ) for (X, ∆). But when there is no ambiguity, we

will suppress the subscripts.

1. Case 1: δ = 1, i.e., T ≤ C, X = min(T,C) = T , we have

P [x ≤ X < x + h, ∆ = 1]

= P [x ≤ T < x + h,C ≥ T ]

≈ P [x ≤ T < x + h,C ≥ x] (Note: x is a fixed number)

= P [x ≤ T < x + h] ∗ P [C ≥ x] (by independence of T and C)

= f(ξ)h ∗ H(x), ξ ∈ [x, x + h), (Note: H(x) is the survival function of C).

Therefore

f(x, δ = 1) = lim
h→0

P [x ≤ X < x + h, ∆ = 1]

h

= lim
h→0

f(ξ)h ∗ H(x)

h

= fT (x)HC(x).

2. Case 2: δ = 0, i.e., T > C, X = min(T,C) = C, we have

P [x ≤ X < x + h, ∆ = 0]

= P [x ≤ C < x + h, T > C]

≈ P [x ≤ C < x + h, T ≥ x] (Note: x is a fixed number)

= P [x ≤ C < x + h] ∗ P [T ≥ x] (by independence of T and C)

= gC(ξ)h ∗ S(x), ξ ∈ [x, x + h).
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Therefore

f(x, δ = 0) = lim
h→0

P [x ≤ X < x + h, ∆ = 0]

h

= lim
h→0

gC(ξ)h ∗ S(x)

h

= gC(x)S(x).

Combining these two cases, we have the density function of (X, ∆):

f(x, δ) = [fT (x)HC(x)]δ[gC(x)S(x)]1−δ

= {[fT (x)]δ[S(x)]1−δ}{[gC(x)]1−δ[HC(x)]δ}.

Sometimes it may be useful to use hazard functions. Recalling that the hazard function

λT (x) =
fT (x)

ST (x)
, or fT (x) = λT (x) ∗ ST (x),

we can write [fT (x)]δ[S(x)]1−δ as

[fT (x)]δ ∗ [S(x)]1−δ = [λT (x) ∗ ST (x)]δ ∗ [S(x)]1−δ = [λT (x)]δ ∗ [S(x)].

Another useful way of defining the distribution of the random variable (X, ∆) is through the

cause-specific hazard function.

Definition: The cause-specific hazard function is defined as

λ(x, δ) = lim
h→0

P [x ≤ X < x + h, ∆ = δ|X ≥ x]

h
.

For example, λ(x, δ = 1) corresponds to the probability rate of observing a failure at time x

given an individual is at risk at time x (i.e., neither failed nor was censored prior to time x).

If T and C are statistically independent, then through the following calculations, we obtain

P [x ≤ X < x + h, ∆ = δ|X ≥ x] =
P [(x ≤ X < x + h, ∆ = δ) ∩ (X ≥ x)]

P [X ≥ x]

=
P [x ≤ X < x + h, ∆ = δ]

P [X ≥ x]
.
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Hence

λ(x, δ = 1) =
limh→0

P [x≤X<x+h,∆=1]
h

P [X ≥ x]

=
f(x, δ = 1)

P [X ≥ x]
.

Since f(x, δ = 1) = fT (x)HC(x) and

P [X ≥ x] = P [min(T,C) ≥ x]

= P [(T ≥ x) ∩ (C ≥ x)]

= P [T ≥ x] ∗ P [C ≥ x] (by independence of T and C)

= ST (x)HC(x).

Therefore,

λ(x, δ = 1) =
fT (x)HC(x)

ST (x)HC(x)

=
fT (x)

ST (x)
= λT (x).

Remark:

1. This last statement is very important. It says that if T and C are independent then

the cause-specific hazard for failing (of the observed data) is the same as the underlying

hazard of failing for the variable T we are interested in. This result was used implicitly

when constructing the life-table, Kaplan-Meier and Nelson-Aalen estimators.

2. If the cause-specific hazard of failing is equal to the hazard of underlying failure time, the

censoring process is said to be non-informative. Except for some pathological examples,

non-informative censoring is “equivalent to” independent censoring.

3. We assumed independent censoring when we derive the density function for (X, ∆) and

the cause-specific hazard. All results depend on this assumption. If this assumption is

violated, all the inferential methods will yield biased results.
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4. To make matters more complex, we cannot tell whether or not T and C are independent

based on the observed data (Xi, ∆i), i = 1, 2, ..., n. This is an inherent non-identifiability

problem; See Tsiatis (1975) in Proceeding of the National Academy of Science.

5. To complete, if T and C are independent, then

λ(x, δ = 0) = µC(x).

Now we are in a position to write down the likelihood function for a parametric model given

our observed data (xi, δi) (under independence of T and C): i = 1, 2, ..., n.

L(θ, φ; x, δ) =
n∏

i=1

{[f(xi; θ)]
δi [S(xi; θ)]

1−δi}{[g(xi; φ)]1−δi [H(xi; φ)]δi}.

Keep in mind that we are mainly interested in making inference on the parameters θ char-

acterizing the distribution of T . So if θ and φ have no common parameters, we can use the

following likelihood function to make inference on θ:

L(θ; x, δ) =
n∏

i=1

[f(xi; θ)]
δi [S(xi; θ)]

1−δi . (3.8)

Or equivalently,

L(θ; x, δ) =
n∏

i=1

[λ(xi; θ)]
δi [S(xi; θ)]. (3.9)

Note: Even if θ and φ may have common parameters, we can still use (3.8) or (3.9) to draw

valid inference on θ. Of course, we may lose some efficiency in this case.

Likelihood for general censoring case

The likelihood function (3.8) has the following form

L(θ; x, δ) =
∏
d∈D

f(xd)
∏
r∈R

S(xr), (3.10)

where D is the set of death times, R is the set of right censored times. For a death time xd,

f(xd) is proportional to the probability of observing a death at time xd. For a right censored
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observed xr, the only thing we know is that the real survival time Tr is greater than xr. Hence

we have P [Tr > xr] = S(xr), the probability that the real survival time Tr is greater than xr, for

a right censored observation.

The above likelihood can be generalized to the case where there might be any kind of cen-

soring:

L(θ; x, δ) =
∏
d∈D

f(xd)
∏
r∈R

S(xr)
∏
l∈L

[1 − S(xl)]
∏
i∈I

[S(Ui) − S(Vi)], (3.11)

where L is the set of left censored observations, I is the set of interval censored observations

with the only knowledge that the real survival time Ti is in the interval [Ui, Vi]. Note that

S(Ui) − S(Vi) = P [Ui ≤ Ti ≤ Vi] is the probability that the real survival time Ti is in [Ui, Vi].

Likelihood for left truncated observations

Suppose now that the real survival time Ti is left truncated at Yi. Then we have to consider

the conditional distribution of Ti given that Ti ≥ Yi:

g(t|Ti ≥ Yi) =
f(t)

P [Ti ≥ Yi]
=

f(t)

S(Yi)
. (3.12)

Therefore, the probability to observe a death at xd is proportional to

g(xd|Td ≥ Yd) = f(xd)/S(Yd).

The probability that the real survival time Tr is right censored at xr is

P [Tr ≥ xr|Tr ≥ Yr] = S(xr)/S(Yr).

The probability that the real survival time Tl is left censored at xl is

P [Tl ≤ xl|Tl ≥ Yl] = [S(Yl) − S(xl)]/S(Yl).

And the probability that the real survival time Ti is in [Ui, Vi] (Ui ≥ Yi) is

P (Ui ≤ Ti ≤ Vi|Ti ≥ Yi) = P (Ti ≥ Ui|Ti ≥ Yi) − P (Ti ≥ Vi|Ti ≥ Yi) = [S(Ui) − S(Vi)]/S(Yi).
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In this case, the likelihood function is given by

L(θ; x, δ) =
∏
d∈D

f(xd)

S(Yd)

∏
r∈R

S(xr)

S(Yr)

∏
l∈L

[S(Yl) − S(xl)]

S(Yl)

∏
i∈I

[S(Ui) − S(Vi)]

S(Yi)
(3.13)

=

 ∏
d∈D

f(xd)
∏
r∈R

S(xr)
∏
l∈L

(S(Yl) − S(xl))
∏
i∈I

(S(Ui) − S(Vi))

/
n∏

i=1

S(Yi) (3.14)

Likelihood for right truncated observations

We consider the special case of right truncation, that is, only deaths are observed. In this

case the probability to observe a death at Yi conditional on the survival time Ti is less than or

equal to Yi is proportional to

f(Yi)/(1 − S(Yi)).

So the likelihood function is

L(θ; x, δ) =
n∏

i=1

f(Yi)

1 − S(Yi)
. (3.15)

An Example of right censored data: Suppose the underlying survival time T is from an

exponential distribution with parameter λ (here the parameter θ is λ) and we have observed

data: (xi, δi), i = 1, 2, ..., n. Since λ(t; θ) = λ and S(t; θ) = e−λt, we get the likelihood function

of λ:

L(λ; x, δ) =
n∏

i=1

λδie−λxi

= λ
∑n

i=1
δi ∗ e−λ

∑n

i=1
xi .

So the log-likelihood of λ is

`(λ; x, δ) = log(λ)
n∑

i=1

δi − λ
n∑

i=1

xi.

Obviously, the likelihood equation is

U(λ; x, δ) =
d`(λ; X, ∆)

dλ
=

∑n
i=1 δi

λ
−

n∑
i=1

xi = 0.
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So the MLE of λ is given by

λ̂ =

∑n
i=1 δi∑n
i=1 xi

=
# of failures

person time at risk

=
D

PT
,

where D is the number of observed deaths and PT is the total patient time. Since

d2`(λ; X, ∆)

dλ2
= −

∑n
i=1 δi

λ2
,

so the estimated variance for λ̂ is

V̂ar(λ̂) = −
[

d2`(λ; X, ∆)

dλ2

∣∣∣∣∣
λ=λ̂

]−1

=

∑n
i=1 δi

[
∑n

i=1 xi]
2

=
λ̂2

D
,

and asymptotically, we have

λ̂
a∼ N

(
λ,

∑n
i=1 δi

[
∑n

i=1 xi]
2

)
= N

(
λ,

λ̂2

D

)
.

This result can be used to construct confidence interval for λ or perform hypothesis testing on

λ. For example, a (1 − α) confidence interval for λ is given by

λ̂ ± zα/2 ∗ λ̂√
D

.

Note:

1. Sometimes the exponential distribution is parameterized in terms of the mean parameter

θ = 1/λ. In this case the MLE of θ is given by

θ̂ =

∑n
i=1 xi∑n
i=1 δi

=
total person time at risk

# of failures

=
PT

D
,
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and asymptotically,

θ̂
a∼ N

(
θ,

θ̂2

D

)
.

(The estimated variance of θ̂ can be obtained by inverting the observed information or

using delta-method.)

2. If we ignored censoring and treated the data x1, x2, ...xn from the exponential distribution,

then the “MLE” of θ would be

θ̃ =

∑n
i=1 xi

n
,

which, depending on the percentage of censoring, would severely underestimate the true

mean (note that the sample size n is always larger than D, the number of deaths).

A Data Example: The data below show survival times (in months) of patients with certain

disease

3, 5, 6∗, 8, 10∗, 11∗, 15, 20∗, 22, 23, 27∗, 29, 32, 35, 40, 26, 28, 33∗, 21, 24∗,

where ∗ indicates right censored data. If we fit exponential model to this data set, we have

D = 13 and PT =
∑

xi = 418, so

λ̂ =
D

PT
=

13

418
= 0.0311/month,

and the estimated standard error of λ̂ is

se(λ̂) =
λ̂√
D

=
0.0311√

13
= 0.0086,

and a 95% confidence interval of λ is

λ̂ ± z0.025 ∗ se(λ̂) = 0.0311 ± 1.96 ∗ 0.0086 = [0.0142, 0.0480].

To see how well the exponential model fits the data, the fitted exponential survival function

is superimposed to the Kaplan-Meier estimate as shown in Figure 3.1 using the following R

functions:
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Figure 3.1: Three fits to the survival data
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> example <- read.table(file="tempsurv.dat", header=T)

> fit <- survfit(Surv(survtime, status), conf.type=c("plain"), example)
> plot(0,0, xlim=c(0,40), ylim=c(0,1),
xlab="Patient time (months)", ylab="survival probability", pch=" ")
> lines(fit, lty=1)
> x <- seq(0,40, by=0.5)
> sx <- exp(-0.0311*x)
> lines(x, sx, lty=2)

where the data file tempsurv.dat looks like the following

survtime status
3 1
5 1
6 0
8 1
10 0
11 0
15 1
20 0
22 1
23 1
27 0
29 1
32 1
35 1
40 1
26 1
28 1
33 0
21 1
24 0
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Obviously, the exponential distribution is a poor fit. In this case, we can choose one of the

following options

1. Choose a more flexible model, such as the Weibull model.

2. Be content with the Kaplan-Meier estimator which makes no assumption regarding the

shape of the distribution. In most biomedical applications, the default is to go with the

Kaplan-Meier estimator.

To complete, we fit a Weibull model to the data set. Recall that Weibull model has the

following survival function

S(t) = e−λtα

and the following hazard function

λ(t) = αλtα−1.

So the likelihood function of θ = (λ, α) is given by

L(λ, α; x, δ) =
n∏

i=1

[
αλxα−1

i

]δi

e−λxα
i .

However, there is no closed form for the MLEs of θ = (λ, α). So we used Proc Lifereg in

SAS to fit Weibull model implemented using the following SAS program

options ls=80 ps=200;

Data tempsurv;
infile "tempsurv.dat" firstobs=2;
input survtime status;

run;

Proc lifereg data=tempsurv;
model survtime*status(0)= / dist=weibull;

run;

The above program produced the following output:
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10:41 Friday, January 28, 2005

The LIFEREG Procedure

Model Information

Data Set WORK.TEMPSURV
Dependent Variable Log(survtime)
Censoring Variable status
Censoring Value(s) 0
Number of Observations 20
Noncensored Values 13
Right Censored Values 7
Left Censored Values 0
Interval Censored Values 0
Name of Distribution Weibull
Log Likelihood -16.67769141

Algorithm converged.

Analysis of Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 3.3672 0.1291 3.1141 3.6203 679.81 <.0001
Scale 1 0.4653 0.1087 0.2943 0.7355
Weibull Scale 1 28.9964 3.7447 22.5121 37.3483
Weibull Shape 1 2.1494 0.5023 1.3596 3.3979

This SAS program fits a Weibull model with two parameters: intercept β0 and a scale param-

eter σ. Two parameters we use λ and α are related to β0 and σ by (the detail will be discussed

in Chapter 5)

λ = e−β0/σ

α =
1

σ
.

Since the MLE of β0 and σ are β̂0 = 3.36717004 and σ̂ = 0.46525153, the MLEs λ̂ and α̂ are

λ̂ = e−β̂0/σ̂ = e−3.36717004/0.46525153 = 0.00072,

α̂ =
1

σ̂
=

1

0.46525153
= 2.149.

So α̂ is the Weibull Shape parameter in the SAS output. However, SAS uses the parame-
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terization S(t) = e−(t/τ)α
for Weibull distribution so that τ is the Weibull scale parameter.

Comparing this to our parameterization, we see that

(
1

τ

)α

= λ, =⇒ τ =
(

1

λ

)1/α

.

The estimate of this Weibull scale parameter is

τ̂ =
(

1

0.00072

)1/2.149

= 28.99.

The fitted Weibull survival function was superimposed to the Kaplan-Meier estimator in

Figure 3.1 using the the following R functions

> alpha <- 1/0.46525153
> lambda <- exp(-3.36717004/0.46525153)
> sx <- exp(-lambda * x^alpha)
# the object "x" was created before
> lines(x, sx, lty=4)
> legend(25,1, c("KM estimate", "Exponential fit", "Weibull fit"),
lty=c(1,2,4), cex=0.8)

Compared to the exponential fit, the Weibull model fits the data much better (since its

estimated survival function tracks the Kaplan-Meier estimator much better than the estimated

exponential survival function). In fact, since the exponential model is a special case of the

Weibull model (when α = 1), we can test H0 : α = 1 using the Weibull fit. Note that H0 : α = 1

is equivalent to H0 : σ = 1. Since(
σ̂ − 1

se(σ̂)

)2

=
(

0.46525153 − 1

0.108717

)2

= 24.194,

and P [χ2 > 24.194] = 0.0000, we reject H0 : α = 1, i.e., we reject the exponential model. Note

also that α̂ = 2.149 > 1, so the estimated Weibull model has an increasing hazard function.

The inadequacy of the exponential fit is also demonstrated in the first plot of Figure 3.2. If

the exponential model were a good fit to the data, we would see a straight line. On the other

hand, plot 2 in Figure 3.2 shows the adequacy of the Weibull model, since a straight line of the

plot of log{-log(ŝ(t))} vs. log(t) indicates a Weibull model. Here ŝ(t) is the KM estimate.

This graph was plotted using the following R codes:
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Figure 3.2: Two empirical plots
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postscript(file="fig4.2.ps", horizontal = F,
height=6, width=8.5, font=3, pointsize=14)
par(mfrow=c(1,2), pty="s")

example <- read.table(file="tempsurv.dat", header=T)

fit <- survfit(Surv(survtime, status), conf.type=c("plain"), example)

plot(fit$time, -log(fit$surv), type="s", xlab=c("Patient time (months)"),
ylab=c("-Log(S(t))"))

plot(log(fit$time), log(-log(fit$surv)), type="s", ylim=c(-4,1),
xlab=c("Log of patient time (months)"),
ylab=c("Log of cumulative hazard"))
dev.off()

PAGE 61


