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ABSTRACT

The Meltdown and Spectre hardware vulnerabilities shocked hard-
ware manufacturers and system users upon discovery. Numerous
attack vectors and mitigations have been developed and deployed.
However, due to the deep entanglement in core CPU components
they will be an important topic for years. Although the performance
overhead of software mitigations has been examined closely, the
energy overhead has experienced little attention—even though the
energy demand is a critical cost factor in data centres.

This work contributes a fine-grained energy-overhead analysis of
Meltdown/Spectre software mitigations, which reveals application-
specific energy overheads of up to 72 %. We further compare energy
overheads to execution time overheads. Additionally, we examine
subsystem-specific effects (i.e., CPU, memory, I/O, network/inter-
process communication) and develop a model that predicts energy
overheads for applications.
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1 INTRODUCTION

The discovery and publication of the Meltdown [13] and Spec-
tre [11] hardware vulnerabilities in 2018 shocked both hardware
manufacturers as well as computer system users. Since then, nu-
merous new attack vectors have been found, and mitigations at
hardware, firmware, and software level have been developed and
deployed at a large scale [7, 11, 13]. As these vulnerabilities lie
within the heart of modern CPU’s security features, they will nev-
ertheless keep haunting us. Similar attacks and mitigations [3, 4]
are likely an important topic for the years to come.
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Since the inception of (software-level) mitigations, their perfor-
mance impact aroused great interest [7]. Due to the deep entangle-
ment within core CPU components (e.g., branch prediction units,
speculative execution), the performance hit has often been severe.
Over time, noticeable research has been done to analyse and po-
tentially reduce these overheads [1, 17, 18]. However, only little
research has been done to analyse the energy demand overhead
of these mitigations. Especially for cloud service providers, their
systems’ energy demand is one of the most critical cost factors—on
the one hand for the operation of their systems themselves and, on
the other hand, for the cooling efforts to lead away thermal dissi-
pation [6]. In addition, the energy demand of computing systems
has become a crucial non-functional property for mobile devices
(e.g., laptop computers) and in times of Green IT. Although the
energy demand and execution time of software correlate often,
previous research has shown that this is not always the case [2].

The goal of this work is to put a price tag on the Meltdown/Spectre
mitigations in terms of their energy overhead. Ideally, this allows
system operators and users to reason about the associated over-
heads and weigh up the reduced attack vector against increased
operational and environmental costs. For example, in scenarios with
only trustworthy software or relaxed security requirements, no or
at least not all software-level mitigations are required. This princi-
ple to not burden users (and the environment nowadays) with un-
needed features was already described by Parnas in 1979 [16]. This
work provides the necessary information basis for this assessment
process. Furthermore, professional operators often have in-depth
knowledge about their application, for example, the amount of
disk I/O or communication an application usually performs. As the
mitigations affect individual subsystems to different extents, this
knowledge can help to estimate the impact of selectively activating
or deactivating Meltdown/Spectre mitigations.

One difficulty, however, is the determination of energy over-
heads. Measuring energy (or power) is a tedious task requiring
measurement interfaces or measurement devices and human re-
sources to conduct measurements. Furthermore, the energy demand
depends on various factors such as background noise, temperature,
and specific hardware. To relieve providers and users from actual
measurements, energy models have been proven suitable to predict
software’s energy demand with low effort [9, 15, 20] and, impor-
tantly, ahead of execution. Hence, a model to predict the energy

1“Some users may require only a subset of the services or features that other users
need. These less demanding users may demand that they are not be forced to pay for
the resources consumed by the unneeded features.” [16]
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overhead for an application can help service providers to reduce
their costs and allows an easier trade-off between security level
and operational costs for users.

To provide operators and users with the required knowledge,
this papers examines the following four research questions:

Q1 How much energy overhead for applications is introduced
by Meltdown/Spectre mitigations?

Q2 Is the energy overhead of Meltdown/Spectre mitigations re-
lated to the extensive use of specific subsystems (i.e., CPU,
memory, block I/O, operating system interactivity, and com-
munication)?

Q3 Is the energy overhead correlated with the execution time
overhead?

Q4 Is the energy overhead predictable for a given application?

In order to answer these questions, this paper is structured as
follows. Section 2 gives a short summary of the Meltdown and
Spectre vulnerabilities. In Section 3 our measurement methodology
and the implementation of our prediction model is described. The
analysis of the mitigations’ energy demand footprint is presented in
Section 4, thereby questions Q1, Q2, and Q3 are examined. Section 5
evaluates our prediction model and thereby considers Q4. Finally,
Section 6 presents related work and Section 7 concludes this paper.

2 MELTDOWN AND SPECTRE

The Meltdown and Spectre vulnerabilities introduced an entirely
new class of attacks on modern CPU architectures. Both exploit side
channels at hardware level to reconstruct memory contents without
the required access permissions. As these vulnerabilities relate to
hardware, new processor revisions can provide full mitigation. For
existing vulnerable CPUs, software mitigations hinder or avoid
specific variants, but do so only partly or with high overheads [1, 17,
18]. This section shortly describes the vulnerabilities and deployed
mitigations.

Meltdown. The Meltdown [13] attack utilises a race condition
between the execution of a CPU instruction and the corresponding
privilege check. If an instruction has already been executed despite
not having the required privileges, the CPU voids all functional
instruction effects. Although functional effects are thereby reversed,
non-functional effects, for example, caching effects of accessed
memory, still may be observable. These caching effects can be used
to reconstruct the original memory contents and thus bypass the
privilege check. This attack is applicable for all mapped virtual
memory irrespective of the applied memory access protections.
Therefore, it allows a malicious process to read arbitrary kernel
memory and data structures. Usually, modern kernels (e.g., Linux)
map all physical memory for easy access and thus allow attackers
to access all installed memory.

The Linux kernel mitigates Meltdown attacks by use of Kernel
Page Table Isolation (KPTI). Thereby, the kernel manages two page
table versions per process. One only used in kernel mode, where all
memory is mapped, and one used while in user mode, where only
the user-space memory and a minimal kernel memory region for
system calls and interrupts is mapped. This introduces additional
overhead for privilege level switches between user and kernel mode
for changing the page table version and potential (selective) flushes
of the Translation Lookaside Buffer (TLB).
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Spectre. The Spectre [11] attacks use a similar technique as Melt-
down attacks, but do not rely on a race condition between privilege
check and memory access, but utilise the speculative execution and
branch prediction of modern CPUs. If a branch is executed specula-
tively and the CPU detects that the taken branch was mispredicted,
the CPU voids all functional effects. However, comparable to Melt-
down, non-functional effects still can be observable and used to
reconstruct data used during the speculative execution. Because
the branch prediction unit of a CPU is a per-core entity, a malicious
process can pre-train the branch prediction unit to dependably mis-
predict the branch on a target process. Afterwards, the malicious
process can use the timing behaviour of memory accessed by the
mispredicted branch to reconstruct the target process’s memory
contents. Hence, malicious processes can reconstruct the memory
of arbitrary processes (including kernel threads) running on the
same CPU core.

As Spectre describes a new class of attacks rather than a single
attack or vulnerability, there is no single mitigation against Spectre.
Instead, there is a collection of mitigations against specific variants
of Spectre attacks deployed. Examples relevant for this paper are
swapgs barriers, retpolines, Indirect Branch Restricted Speculation
(IBRS), Return Stack Buffer (RSB) refilling. All of these mitigations
introduce—to different extents—overhead, whereby the specific
overhead depends on the application.

3 IMPLEMENTATION

In order to quantify the mitigations’ overheads, we conduct execu-
tion time and energy measurements for different sets of benchmarks
and mitigation activation states. Furthermore, we develop a pre-
diction model, based on linear regression, for energy overhead
estimations.

3.1 Measurement Methodology

We conducted our time and energy measurements on an off-the-
shelf desktop computer. It utilises an Intel Core i5-8400 CPU run-
ning at 2.8 GHz (Turbo boost 4.0 GHz), which is vulnerable to Melt-
down and Spectre attacks. The computer is equipped with 8 GB
of RAM, a 2 TB hard disk drive, and a standard 1 Gbit ethernet in-
terface. The system software is the Ubuntu 18.04 LTS distribution
built upon the Linux kernel version 4.15.

For energy measurements, we utilise Intel’s Running Average
Power Limit (RAPL) mechanism. It allows continuous energy mea-
surements of CPU components with high accuracy at a sampling
rate of 1 ms (as documented by Intel) or even faster (as documented
by Lipp et al. [12]). We measure the energy demand at the package
level, which includes the whole CPU package (including all cores,
the uncore, and internal GPU). During measurements, the Linux
powersave governor is active.

As RAPL measures the CPU’s energy demand, it allows an accu-
rate analysis of the mitigations’ effects on the CPU. Furthermore,
RAPL is available on a wide variety of Intel CPUs and thus allows
an easy repetition and comparison of our analysis on different Intel
hardware platforms. Usually, higher CPU activity (and thus energy
demand) also leads to higher system energy demand. However, the
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correlation between CPU’s and system’s energy demand is not al-
ways linear. Hence, in this work we focus mainly on the mitigations’
effects on the CPU’s energy demand.

Both energy and time measurements are conducted using the
perf tool. For each measurement, we conduct ten iterations to min-
imise the impact of outliers and noise. As the energy behaviour for
benchmarks including block I/O and network communication are
more unstable, we ran an additional 40 iterations for benchmarks in
the I/O and Communication group (cf. Figure 1). To reduce caching
effects, all benchmarks are executed intermingled rather than in a
loop. Additionally, we clean kernel caches before the execution of
benchmarks in the I/O and Communication group?.

We analyse the energy overheads of Meltdown/Spectre miti-
gations employing 28 benchmarks in total. Our benchmark set
consists of four benchmarks from the sysbench benchmark suite?
and 24 benchmarks from the stress-ng benchmark suite*. To evalu-
ate the quality of the overhead prediction model we use a separate
set of ten benchmarks from the Phoronix test suite °. The bench-
marks’ execution times lie between 20 s and 300 s for the training
benchmarks with one exception®. This constitutes a good trade-off
between reproducible results, low measurement overhead, and mod-
erate measurement efforts. The execution times for the evaluation
benchmarks lie between 2 min-15 min.

3.2 Linux Mitigations

As described in Section 2, Linux implements several mitigations
against Meltdown and Spectre. The mitigations can be enabled and
disabled at boot time via the kernel command line interface. In this
paper, we consider the nopti, nospectre_v1, and nospectre_v2
command line options. The nopti option disables KPTI used to
mitigate Meltdown attacks. The nospectre_v1 option disables
swapgs and usercopy barriers and disables pointer sanitisation. The
nospectre_v2 option disables retpolines, IBRS, and RSB filling.

3.3 Prediction Model

To predict the energy overhead for Meltdown/Spectre mitigations,
we have developed a linear model, using supervised learning. The
model is trained on the data of the 28 benchmarks (cf. Section 3.1)
and evaluated on the ten benchmarks of the Phoronix test suite.

Features and Labels. We selected four performance counters
(PMCs) as inputs for the prediction model. This small number of
PMCs ensures that all their values can be obtained in a single mea-
surement iteration with the perf tool.

(1) instructions per cycle (IPC)

(2) branches per cycle (BPC)

(3) system calls per million cycles (SCPMC)

(4) process context switches per million cycles (CSPMC)

The goal of our selection is to model the degree of system inter-
activity of an application and to cover relevant areas of the Melt-
down/Spectre attacks (e.g., KPTI and the branch prediction unit).
The output of the model is the energy overhead. Previous work

2echo 1 > /proc/sys/vm/drop_caches
3https://github.com/akopytov/sysbench (v.1.0.11)
“https://kernel.ubuntu.com/~cking/stress-ng/ (v.0.09.25)
Shttps://www.phoronix-test-suite.com/ (v.9.6.1)

5The maximum configurable execution time for the branch benchmark is 1s-2s
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showed that PMCs are subject to variations between several mea-
surements runs due to non-determinism of, for example, operating
system activity and execution environment (e.g., memory pres-
sure) [5]. However, this non-deterministic effects also affect the
energy demand and thus it is important to include these in our
model. We account for this by conducting several measurement
runs and using the mean for the collected PMCs.

Model Training. After the collection of all energy demand and
PMC data, we have trained a linear model to predict the energy
overhead from the collected PMCs. For modelling, we utilised the
linear regression implementation of the sklearn framework’.

4 ENERGY OVERHEAD ANALYSIS

This section analyses the measurement data for our benchmark
set consisting of 28 benchmarks in total. First, we examine the
energy overheads for different combinations of mitigations (cf. Sec-
tion 4.1, Q1). Second, we analyse the impact of different subsystems
(cf. Section 4.2, Q2). Third, we investigate whether the energy and
execution time overheads are correlated (cf. Section 4.3, Q3).

4.1 Energy Footprint of Mitigations

Figure 1 gives an overview of the mitigations’ respective overhead
compared to the execution with all mitigations disabled. We anal-
yse the energy overhead for four cases: all mitigations enabled
(all-enabled) and all but one mitigation enabled (no kpti, no
spectre-v1, and no spectre-v2). Hence, we can quantify the to-
tal overhead, and also identify the mitigation(s) introducing the
overhead. We calculate the respective overheads using the geomet-
ric mean energy demand normalised to the geometric mean energy
demand with all mitigations disabled. The error bars indicate the
positive and negative 95 % confidence intervals of this overhead
to assess the variability. In addition, we visualise the positive and
negative 95 % confidence intervals of the measurements with all
disabled mitigations as grey background boxes.

Figure 1 shows mixed results for the energy overheads. On the
one hand, many benchmarks have only minor overheads. In total,
11 out of 28 benchmarks have an overhead below 5 %. On the other
hand, we observe significant overheads of up to 72 %. In total, eight
benchmarks that have an overhead greater than 25 %. This leaves
nine benchmarks with a medium overhead between 5 % and 25 %.

One interesting finding is that KPTI often has the greatest in-
fluence on the overhead. For example, the icache benchmark has
only a small overhead (3 %) if KPTI is disabled. If KPTI is enabled,
the overhead rises to 49 %. Similar behaviour can be seen for other
benchmarks (e.g., aio, threads, context) as well.

In some cases, however, not only KPTI, but also Spectre v2 miti-
gations introduce noticeable overhead. For example, for the switch
and pipe benchmarks disabling the Spectre v2 mitigations signifi-
cantly reduces the overhead. Disabling the Spectre v1 mitigations,
however, only slightly reduces the overhead in most cases.

In summary, our analysis shows that it depends on the appli-
cation, whether the Meltdown/Spectre mitigations have a signifi-
cant impact on the energy demand. We observed both, almost no
overhead at all as well as substantial overheads of up to 72 %. For

https://scikit-learn.org
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Figure 1: Energy overhead for Meltdown/Spectre mitigations. The baseline is measured with all mitigations disabled. The grey
boxes indicate the 95 % confidence intervals for the baseline to assess the benchmarks’ variance. The bars represent the energy
overhead normalised to the baseline in percent. The error bars indicate the positive and negative 95 % confidence intervals.

applications with an overhead, disabling KPTI often reduces this
overhead greatly or even completely. In some cases, the overhead
is introduced by both KPTI and mitigations against Spectre v2. Dis-
abling Spectre v1 mitigations yields only minor overhead savings
in most cases.

4.2 Subsystem-specific Energy Footprint

This section further analyses the subsystem-specific overheads in-
troduced by Meltdown/Spectre mitigations. We categorised the
benchmark set in groups depending on how heavily a specific
subsystem is used. Our categories are CPU, memory (i.e., inten-
sity of memory accesses), system (i.e., context switches), block I/O,
and communication (i.e., network and inter-process communica-
tion). However, this is not a sharp categorisation as one benchmark
may fit into several categories but nonetheless allows identifying
subsystem-specific effects.

Our first finding is that for our CPU-, memory-, and I/O-heavy
benchmarks the Meltdown/Spectre mitigations have no to a rela-
tively small overhead with only one exception—the icache bench-
mark shows over 40 % overhead if KPTI is enabled.

In general, we attribute the overhead for KPTI to the fact that
switching from user to kernel mode is significantly more expen-
sive if KPTI is enabled [18]. The CPU and memory benchmarks
mainly stress the specific subsystem and do not interact much with
the operating system. Thus, these groups are less affected by the
overhead of KPTI. As an exception, the icache benchmark con-
tinuously flushes the instruction cache and therefore issues many
system calls. The high system call rate is the reason why it is highly
affected by KPTI. The I/O benchmarks also trigger system calls for
I/O actions, however, only need a small number of actions to trigger
1/0O activity and the I/O costs dominate the system call costs. Hence,
the mitigations introduce only a relatively small overhead.

As expected, with more operating system interactivity in the
system and communication category, more benchmarks have higher
overheads. Often the main overheads result from KPTI (e.g., fork,
exec, threads, context). However, there are some benchmarks
where the mitigations against Spectre v2 also introduce overheads,
for example, switch, sleep, and futex. In these cases, the over-
head results from the combination of mitigations. We plan further
to investigate the negative overheads for dccp and io. However,
both benchmarks show a great variance even if all mitigations are
disabled due to the network benchmarks’ dynamic behaviour and
the effect may be measurement noise.

In summary, our analysis shows that mitigations can introduce
a significant overhead for applications that interact with the oper-
ating system frequently, especially KPTI and, to a smaller extent,
Spectre v2. However, the Meltdown/Spectre mitigations often have
no significant impact on the energy demand for applications with
little system interactivity, like CPU- or memory-heavy applications.
Similarly, for applications performing many block I/O operations,
the I/O costs usually dominate the costs for mitigations.

4.3 Time and Energy Correlation

In many cases, the energy demand, especially the CPU’s energy
demand, and execution time of an application are correlated [8].
However, previous research has shown that this correlation not
always applies [10]. Hence, this section analyses the correlation be-
tween energy and execution time overhead if all Meltdown/Spectre
mitigations are enabled.

Figure 2 visualises the energy and time overheads for our bench-
mark set with all mitigations enabled using the geometric mean of
all measurements (cf. Section 4.1). The figure shows that the execu-
tion time overhead for most benchmarks is highly correlated with
the energy overhead, especially for benchmarks with small energy
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Figure 2: Energy and execution time overhead if all Melt-
down/Spectre mitigations are active.

overhead. In total, we observe a Spearman correlation coefficient
of 0.88 (i.e., a strong positive correlation). However, there are some
noticeable exceptions—the aio, io (s-ng), sleep, sctp, and sock
benchmarks. For these benchmarks, the execution time overhead is
not related to the energy overhead. As the benchmarks’ execution
times (20 s-300 s) are significantly higher than RAPL’s sampling
rate (less than 1ms) and the results are reproducible, these find-
ings are no measurement artefacts. Additionally, these exceptional
benchmarks stem from different subsystem categories, that is, from
the memory, I/O, system, and communication category. Hence, the
reason for these exceptions lies not within a specific subsystem, but
within the benchmarks. However, using the PMC data we could
not identify the underlying reason for these increased energy over-
heads. Hence, a further analysis of these benchmarks, for example
at instruction level, is necessary.

In summary, the execution time overhead is, in general, cor-
related with the energy overhead and can give helpful hints on
the energy overhead introduced by Meltdown/Spectre mitigations.
However, there are noticeable exceptions (five out of 28) where
the energy overhead does not match the execution time overhead.
Additionally, as described in Section 3.1, our energy measurements
only cover the CPU package energy demand. Therefore, energy
overhead for peripheral devices (e.g., hard disk drives or network
interfaces) can occur, especially for the I/O and communication cat-
egories. We plan to analyse energy overheads of peripheral devices
in future work.

5 ENERGY OVERHEAD PREDICTION

The evaluation of our prediction model of energy overheads consists
of two parts: (1) an analysis of whether our model input features are
correlated with the energy overhead and (2) a comparison between
predicted and measured overheads for a set of applications, which
were not used for model training, to evaluate the model prediction
quality and thus answer Q4.

Table 1 shows the Spearman correlation coefficients between
the energy overhead and the four performance counters (PMCs)
for the sysbench and stress-ng benchmark suite. Additionally, the
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Figure 3: Energy overheads for the Phoronix benchmarks
as measured (red) and as predicted by the linear model
(green). Additionally, the measured execution time over-
head is shown (blue).

Performance Counters
Overhead IPC BPC SCPMC CSPMC

-0.06 -0.02 0.64 0.41
-0.02  -0.03 0.64 0.33

Energy
Execution Time

Table 1: Spearman correlation coefficient between perfor-
mance counters and energy/execution time overhead with
all mitigations active for the sysbench and stress-ng bench-
mark suite.

coefficients between execution time overhead and the PMCs are
depicted. For this correlation analysis, we compare the all enabled
setting to all disabled.

On the one side, the IPC and BPC performance counters are
uncorrelated with both the energy and the execution time overhead.
Thus, in future models, the IPC and BPC could be replaced by other
features with more influence. On the other side, system calls and
context switches correlate with both the energy and execution time
overhead. Thereby, the correlation for SCPMC is stronger than for
CSPMC. The correlation coefficients for energy and execution time
overhead are similar, which confirms our finding in Section 4.3 that
the overheads correlate and have similar magnitudes.

Figure 3 illustrates the measured and predicted energy overheads
for the Phoronix benchmarks if all mitigations are enabled. Addi-
tionally, the measured execution time overheads are shown. The
measured energy and execution time overheads confirm the pre-
vious section’s findings that the overheads are highly application-
specific (between no up to ~30 % energy overhead). Especially in-
teresting is the nw-loopback benchmark, where we measure a
significant energy overhead (~15 %) but no execution time overhead.
In general, it can be noted that the Phoronix benchmarks have
fewer energy overheads than the more synthetic benchmarks used
in Section 4. As the benchmarks in Section 4 are selected to trigger
extreme cases and identify sources of overheads and the Phoronix
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benchmarks in this section are more real-world benchmarks, this
is in line with our expectations.

Our linear model overestimates the energy overhead by around
5 %. We attribute this behaviour to the training data (i.e., the bench-
marks in Section 4), which are more synthetic and trigger extreme
cases (e.g., purely making system calls), and the simplicity of lin-
ear models. Nevertheless, the linear model is able to identify both
benchmarks with increased energy overhead (nw-loopback and
ipc), regardless of their execution time overheads (ipc has execu-
tion time overhead but nw-1loopback has none).

We assume that a more evenly distributed training data set over-
comes the constant offset we observe and allows operators and
users to conveniently identify applications particularly affected by
Meltdown/Spectre mitigations. Hence, for applications with low
overhead the mitigations can be enabled without disadvantages
and for applications with moderate or high overheads the operators
and users can decide on a per-application basis whether the higher
security level or lower costs are more important.

Of course, the (relatively simple) linear model could be further
refined to achieve better accuracy results. However, we argue that
more complex models need (a) more training data and (b) more
input features. This leads to increased efforts for training data col-
lection and model training and thus it takes longer to compensate
these efforts by applying the model and identify applications where
mitigations can be disabled. At the moment, we can collect all four
input features for the model with a single perf run and thus with
low effort and train our model with a relatively small benchmark
set. Hence, it is easy to break even with the costs of model creation
quickly. Furthermore, the costs for re-training with new and up-
dated software mitigations and other hardware platforms remain
low. Therefore, more complex models’ potentially better accuracy
may not compensate for the increased creation efforts.

6 RELATED WORK

To the best of our knowledge, little research has been conducted
on the energy overhead of Meltdown/Spectre mitigations. Loukeris
briefly analysed the energy and execution overheads of Meltdown
and Spectre mitigations [14]. He conducted energy measurements
with a relatively low maximum sampling rate of 1 Hz. His results
show that the energy overheads depend on the application proper-
ties and for the paper’s benchmark set range from no noticeable
overhead to up to 26 %. This finding is confirmed by our measure-
ments. Although the paper allows a general assessment, whether
energy overheads exist in general, it does not execute a fine-grained
analysis, as done in this work, and its results have only limited pre-
cision due to the low sampling rate.

The performance impacts in terms of the execution time of
the Meltdown/Spectre mitigations have been examined by aca-
demic [1, 17, 18] and non-academic [7] communities. Prout et
al. [17] analyse the impact of Meltdown/Spectre mitigations on
the performance of high-performance computing (HPC) workloads.
They observe significant overheads for software mitigations and
CPU microcode updates throughout their set of real-world applica-
tions, especially for network and I/O-intensive applications. This
allows the assumption that our results can be transferred to HPC
applications and vice versa. Microcode updates are not considered
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in this paper. However, the energy overheads for microcode updates
are an interesting topic for future work.

Ren et al. [18] perform a study on the performance evolution of
basic Linux kernel operations in terms of latency. Meltdown/Spectre
mitigations are included in this study, but the study is not limited
to these and a long-term overview for kernel versions between 3.0
and 4.20 is given. This study identifies KPTI and the retpoline patch
as main factors for an increase in system call latency.

The work in [7] examines the impact of KPTI only. It identifies
the system call and page fault rate as most important factors for
performance regressions and confirms the previous results that the
application behaviour significantly influences to which extent over-
heads can be observed. It proposes that overheads can be anything
between 1 % and 800 %.

Alhubaiti et al. [1] examine the impact of Meltdown/Spectre
mitigations on cryptographic algorithms. They observe small per-
formance overheads, which align with our expectations as crypto-
graphic algorithms usually do not require much operating system
activity but are CPU and memory intensive.

Modelling software and applications’ power demand is a well-
established field of research nowadays [9, 20]. Even in the security
community, the need for fine-grained power models has been iden-
tified [15]. Nacci et al. argue that (security) applications need to
run with adaptive energy goals referred to as green security. For
the development of such applications, accurate and precise power
models are required. This becomes even more important as in re-
cent years power side-channel attacks have been developed [12, 19].
Precise power models can help to identify and avoid power side
channels during software development. For example, deployed in a
continuous-integration toolchain, power side channels over differ-
ent software versions and different workloads can be identified.

7 CONCLUSION

In this work, we provide a detailed energy overhead analysis of
Meltdown and Spectre software mitigations. We show that energy
overheads are highly application-specific and range between no to
72 % overhead. Thereby, the overheads differ depending on the used
subsystems. Especially, subsystems including a lot of interactivity
with the operating systems (i.e., system calls and context switches)
show higher overheads. Furthermore, we investigate the correlation
between energy and execution time overhead and show that both
are often correlated. However, for some applications there are no
execution time overheads, but large energy overheads. Finally, we
combine the gathered information in an energy model in order
to predict the energy overhead for an application. The model is
capable of identifying applications with high energy overheads at
low creation and execution costs.
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