
Statistica Sinica: Supplement

OPTIMAL PRIORS FOR THE DISCOUNTING PARAMETER

OF THE NORMALIZED POWER PRIOR

Yueqi Shen1, Luiz M. Carvalho2, Matthew A. Psioda3 and Joseph G. Ibrahim1

1University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A.

2School of Applied Mathematics, Getulio Vargas Foundation, Rio de Janeiro, Brazil

3GSK, Philadelphia, Pennsylvania, U.S.A

Supplementary Material

S1 Proofs from Section 2

S1.1 Technical conditions for the limit theorems

We start our presentation by stating technical conditions under which the

limiting theorems presented in Section 2 hold. Then, we state an impor-

tant result below (Bayes Central Limit Theorem (Chen (1985))) which gives

support to many of the proofs herein. In what follows, we will follow Chen

(1985) in establishing the necessary conditions for the limiting posterior

density to be normal. Let the parameter space of interest be Θ and a

p-dimensional Euclidean space and let Br(a) = {θ ∈ Θ : |θ − a| ≤ r}
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be a neighbourhood of size r of the point a ∈ Θ. Also, write Ln(θ) :=∑n
i=1 log f(x | θ).

Theorem S1 (Bayes Central Limit Theorem (Chen (1985))). Suppose that

for each n > N with N > 0, Ln attains a strict local maximum θ̂n such that

L′n(θ̂n) := ∂
∂θ
Ln(θ̂n) = 0 and the Hessian L′′n(θ) := ∂2

∂θ2
Ln(θ) is negative-

definite for all θ ∈ Θ.

Moreover, suppose θ̂n converges almost surely to θ0 ∈ Θ as n→∞ and

the prior density π(θ) is positive and continuous at θ0. Assume that the

following conditions hold:

C1 The largest eigenvalue of
[
−L′′n(θ̂n)

]−1

→ 0 a.s. as n→∞;

C2 For ε > 0 there exists (a.s.) Nε > 0 and r > 0 such that for all

n > max {N,Nε} and θ ∈ Br(θ̂n), L′′n(θ) is well-defined and

Ip − A(ε) ≤ L′′n(θ)
[
L′′n(θ̂n)

]−1

≤ Ip + A(ε),

where Ip is the p-dimensional identity matrix and A(ε) is a p×p positive

semidefinite matrix whose largest eigenvalue goes to zero as ε→ 0.

C3 The sequence of posterior distributions pn(θ | x) satisfies, as n→∞,∫
Θ\Br(θ̂n)

pn(t | x) dt→ 0, a.s.,
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for r > 0, i.e., the sequence of posteriors is consistent at θ̂n. Here we

have assumed that the support of the posterior distributions is Θ, but

this could be replaced by a sequence Θn.

Then we say that the posteriors converge in distribution to a normal with

parameters θ̂n and
[
−L′′n(θ̂n)

]−1

.

For notational convenience we will (somewhat informally) write

pn(θ|x)→ Np

(
θ̂n,
[
−L′′n(θ̂n)

]−1
)
,

as n → ∞. This should be understood as the posterior density becoming

highly peaked and behaving like a normal kernel around θ̂n) (Chen, 1985,

page 541). Since the probability outside Br(θ̂n) is negligible, one needs not

to concern oneself with what happens on Θ \Br(θ̂n) when taking posterior

expectations, for instance. See also Theorem 7.89 in Schervish (1995) (page

437).

S1.2 Proof of Theorem 2.1

Now we move on to present a proof for Theorem 2.1 in Section 2, which

discusses the concentration of the posterior of a0 at zero as the sample sizes

increase in the case when there is some discrepancy between the historical

and current data sets.
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Proof. We first employ the Bayes Central Limit Theorem presented above

to rewrite the limiting marginal posterior distribution of a0. Under the

regularity conditions as n→∞,

Ln(θ|D)→ N(θ̂n, vn), and

1

c(a0)
Ln0(θ|D0)a0π0(θ)→ N(θ̂0, v0(a0)),

where θ̂n = ḃ−1(ȳ), θ̂0 = ḃ−1(ȳ0), vn = (nb̈(θ̂n))−1, and v0(a0) = (a0n0b̈(θ̂0))−1.

For simplicity of notation, let v0 = v0(a0), b̈−1 = b̈−1(θ̂n) and b̈−1
0 = b̈−1(θ̂0).

Then the kernel of the marginal posterior of a0 becomes

π∗(a0|D0, D, α0, β0) ≡
∫
Ln(θ|D)

Ln0(θ|D0)a0π0(θ)

c(a0)
aα0−1

0 (1− a0)β0−1 dθ,

→aα0−1
0 (1− a0)β0−1

∫
N(θ̂n, vn)N(θ̂0, v0(a0))dθ,

∝aα0−1
0 (1− a0)β0−1v

− 1
2

0

∫
exp

{
− 1

2vn
(θ − θ̂n)2

}
exp

{
− 1

2v0

(θ − θ̂0)2

}
dθ,

∝aα0−1
0 (1− a0)β0−1

(
vn + v0

vn

)− 1
2

exp

{
−1

2

[
vnθ̂

2
0 − v0θ̂

2
n − 2vnθ̂nθ̂0

(v0 + vn)vn

]}
,

=aα0−1
0 (1− a0)β0−1

(
v + v0

vn

)− 1
2

exp

{
v0θ̂

2
n − vn(δ2 − θ̂2

n)

2(v0 + vn)vn

}
(since |θ̂n − θ̂0| = δ),

=aα0−1
0 (1− a0)β0−1

(
vn + v0

vn

)− 1
2

exp

{
θ̂2
n

2v
− δ2

2(v + v0)

}
,

=aα0−1
0 (1− a0)β0−1

(
vn + v0

vn

)− 1
2

exp

{
θ̂2
n

2vn
− na0rδ

2

2(b̈−1
0 + a0rb̈−1)

}
.
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Then the marginal posterior of a0 becomes

π(a0|D0, D, α0, β0) =
π∗(a0|D0, D, α0, β0)∫
π∗(a0|D0, D, α0, β0) da0

, (S1.1)

→
aα0−1

0 (1− a0)β0−1[b̈−1 + (a0rb̈0)−1]−
1
2 exp

{
− na0rδ2

2(b̈−1
0 +a0rb̈−1)

}
∫
aα0−1

0 (1− a0)β0−1[b̈−1 + (a0rb̈0)−1]−
1
2 exp

{
− na0rδ2

2(b̈−1
0 +a0rb̈−1)

}
da0

,

(S1.2)

=

aα0−1
0 (1− a0)β0−1

[
a0r

1+a0r
b̈−1

b̈−1
0

] 1
2

exp

− na0rδ2

2b̈−1
0

(
1+a0r

b̈−1

b̈−1
0

)


∫
aα0−1

0 (1− a0)β0−1

[
a0r

1+a0r
b̈−1

b̈−1
0

] 1
2

exp

− na0rδ2

2b̈−1
0

(
1+a0r

b̈−1

b̈−1
0

)
 da0

.

(S1.3)

Let h(a0) = a0rδ2

2b̈−1
0

(
1+a0r

b̈−1

b̈−1
0

) and f(a0) =

[
a0r

1+a0r
b̈−1

b̈−1
0

] 1
2

. Then the denom-

inator is

A =

∫ 1

0

aα0−1
0 (1− a0)β0−1f(a0) exp {−nh(a0)} da0.

Let A = A1 + A2 where

A1 =

∫ ε

0

aα0−1
0 (1− a0)β0−1f(a0) exp {−nh(a0)} da0

and

A2 =

∫ 1

ε

aα0−1
0 (1− a0)β0−1f(a0) exp {−nh(a0)} da0.

We want to show lim
n→∞

A2

A1
= 0.
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First, we can see that

h′(a0) =
rδ2

2b̈−1
0

 a0

1 + a0r
b̈−1

b̈−1
0

′ = rδ2

2b̈−1
0

1 + a0r
b̈−1

b̈−1
0

− a0r
b̈−1

b̈−1
0

(1 + a0r
b̈−1

b̈−1
0

)2

 =
rδ2

2b̈−1
0

(
1 + a0r

b̈−1

b̈−1
0

)−2

> 0.

Then infx∈[ε,1] h(x) = h(ε). We can also see that h′(a0) is continuous since

1 + a0r
b̈−1

b̈−1
0

is nonzero on (0, 1).

We then observe that

f ′(a0) =
1

2

 a0r

1 + a0r
b̈−1

b̈−1
0

− 1
2

r

(1 + a0r
b̈−1

b̈−1
0

)2
> 0.

Thus supx∈[ε,1] f(x) = f(1).

Now we are ready to find the upper bound of A2. Since, for any a0 ∈ [ε, 1],

f(a0) ≤ f(1) and exp(−nh(a0)) ≤ exp(−nh(ε)) , we have

A2 ≤ f(1) exp(−nh(ε))

∫ 1

ε

aα0−1
0 (1− a0)β0−1da0

≤ f(1) exp(−nh(ε))

∫ 1

0

aα0−1
0 (1− a0)β0−1da0,

= f(1) exp(−nh(ε))
Γ(α0)Γ(β0)

Γ(α0 + β0)
= C1 exp(−nh(ε)),

where C1 > 0 is an integration constant. Now we find the lower bound of

A1. We know that

A1 ≥
∫ ε

ε
2

aα0−1
0 (1− a0)β0−1f(a0) exp {−nh(a0)} da0.

Further, aα0−1
0 ≥ min(( ε

2
)α0−1, εα0−1), corresponding to α0 ≥ 1 and α0 <

1, respectively. Similarly, (1 − a0)β0−1 ≤ min((1 − ε)β0−1, (1 − ε
2
)β0−1),
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corresponding to β0 ≥ 1 and β0 < 1, respectively. Since h′′(a0) < 0,

supx∈[ ε
2
,ε] h

′(x) = h′( ε
2
). In addition, infx∈[ ε

2
,ε] f(x) = f( ε

2
). Then we have

A1 ≥
∫ ε

ε
2

aα0−1
0 (1− a0)β0−1f(a0)

1

h′(a0)
exp {−nh(a0)}h′(a0) da0,

=

∫ ε

ε
2

aα0−1
0 (1− a0)β0−1f(a0)

1

h′(a0)
exp {−nh(a0)} dh(a0),

≥ f(ε/2)×min((ε/2)α0−1, εα0−1)×min((1− ε)β0−1, (1− ε/2)β0−1)× (h′(ε/2))−1

×
∫ ε

ε
2

exp(−nh(a0)) dh(a0),

= C2

∫ ε

ε
2

exp(−nh(a0)) dh(a0),

= C2
1

n
[exp(−nh(ε/2))− exp(−nh(ε))],

where C2 > 0 is again an integration constant. Therefore,

0 ≤ A2

A1

≤ C1 exp(−nh(ε))

C2
1
n
[exp(−nh(ε/2))− exp(−nh(ε))]

=
C1n

C2[exp(−n[h(ε/2)− h(ε)])− 1]
.

Thus, lim
n→∞

A2

A1
= 0 by L’Hopital’s rule. Since A2

A1
≥ A2

A
, lim
n→∞

A2

A
= 0. Hence,

lim
n→∞

A1

A
= 1.

S1.3 Proof for Corollary 2.1

Proof. The result follows by setting δ = 0 and b̈−1 = b̈−1
0 into (S1.3).
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S1.4 Proof for Theorem 2.2

Proof. Let r = n0

n
. Since y1, . . . , yn and y01, . . . , yn0 are i.i.d. normal data,

the marginal posterior of a0 is

π(a0|D0, D) =

π(a0)

[
a0r

1+a0r
σ2

σ20

] 1
2

exp

{
− na0rd2

2σ2
0

(
1+a0r

σ2

σ20

)
}

∫
π(a0)

[
a0r

1+a0r
σ2

σ20

] 1
2

exp

{
− na0rd2

2σ2
0

(
1+a0r

σ2

σ20

)
}
da0

.

With

gd(a0) := π(a0)

[
a0r

1 + a0r
σ2

σ2
0

] 1
2

exp

− na0rd
2

2σ2
0

(
1 + a0r

σ2

σ2
0

)
 ,

we write

Fd(a0) :=

∫ a0
0
gd(x) dx∫ 1

0
gd(x) dx

=
Gd(a0)

Gd(1)
.

We want to show that

∂Fd(a0)

∂d
> 0, a0 ∈ (0, 1). (S1.4)

Using the quotient rule we conclude that (S1.4) holds if and only if:

∂

∂d
Gd(a0)Gd(1)− ∂

∂d
Gd(1)Gd(a0) > 0.

We note that

∂

∂d
Gd(a0) = −dnr

σ2
0

∫ a0

0

h(x)gd(x) dx, with

h(a0) =
a0

1 + a0r
σ2

σ2
0

.
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This in turn means that (S1.4) is equivalent to∫ 1

0

h(x)gd(x) dx

∫ a0

0

gd(x) dx−
∫ a0

0

h(x)gd(x) dx

∫ 1

0

gd(x) dx > 0,

i.e., ∫ a0
0
gd(x) dx∫ 1

0
gd(x) dx

>

∫ a0
0
h(x)gd(x) dx∫ 1

0
h(x)gd(x) dx

.

We first prove the following lemma.

Lemma 1 (Ratio of truncated expectations). Let X be a random variable

in (0, 1) with distribution function F . Take any positive increasing function

h. Then

E[h(X)I(X ≤ a)]

E[h(X)]
< F (a),

for a ∈ (0, 1).

Proof. Start by dividing through by F (a) to get

E[h(X) | X ≤ a]

E[h(X)]
< 1.

But by the law of total expectation, we have

E[h(X)] = E[h(X) | X ≤ a]F (a) + E[h(X) | X > a][1− F (a)],

thus the LHS is

E[h(X) | X ≤ a]

E[h(X) | X ≤ a]F (a) + E[h(X) | X > a][1− F (a)]
.
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If we let w = E[h(X) | X ≤ a] and u = E[h(X) | X > a], we have that

u = w + ε with ε > 0. Putting α = F (a), we have

w

αw + (1− α)u
=

w

α(w − u) + u
,

=
w

w + (1− α)ε
< 1,

which concludes the argument.

We may assume without loss of generality that gd is a normalised den-

sity. Since h(a0) is increasing, we apply Lemma 1, which completes the

proof.

S1.5 Proof for Theorem 2.3

Proof. By the Bayes Central Limit Theorem, we know that

Ln(β|D)→ N(β̂,Σ(β̂)),

where Σ(β) = −
[
∂2 log[Ln(β|D)]

∂βi∂βj

]−1

, and also

1

c∗(a0)
Ln0(β|D0)a0π0(β)→ N(β̂0,Σ0(a0, β̂)),

where Σ0(a0, β) = −
[
∂2 log[Ln0 (β|D0)a0π0(β)]

∂βi∂βj

]−1

. For simplicity of notation, let

Σ = Σ(β̂) and Σ0 = Σ0(a0, β̂). Then the marginal posterior of a0 becomes

π(a0|D0, D, α0, β0) ∝ π∗(a0|D0, D, α0, β0) ≡
∫
Ln(β|D)

Ln0(β|D0)a0π0(β)

c∗(a0)
aα0−1

0 (1− a0)β0−1dβ,
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and

π∗(a0|D0, D, α0, β0)→ aα0−1
0 (1− a0)β0−1

∫
N(β̂,Σ)N(β̂0,Σ0)dβ,

∝ aα0−1
0 (1− a0)β0−1

∫
exp

{
−1

2
(β − β̂)′Σ−1(β − β̂)

}
×

det(Σ0)−
1
2 exp

{
−1

2
(β − β̂0)′Σ−1

0 (β − β̂0)

}
dβ,

(Assuming that β̂ − β̂0 = δ)

∝ aα0−1
0 (1− a0)β0−1 det(Σ0)−

1
2 det(Σn)

1
2

exp

{
1

2

[
β̂′Σ−1β̂ − δ′(Σ−1

0 − Σ−1
0 ΣnΣ−1

0 )δ
]}

,

where Σn = (Σ−1 + Σ−1
0 )−1. Then

π(a0|D0, D, α0, β0) ∝
aα0−1

0 (1− a0)β0−1 det(Σ0)−
1
2 det(Σn)

1
2 exp

{
− 1

2
δ′(Σ−1

0 − Σ−1
0 ΣnΣ−1

0 )δ
}∫

aα0−1
0 (1− a0)β0−1 det(Σ0)−

1
2 det(Σn)

1
2 exp

{
− 1

2
δ′(Σ−1

0 − Σ−1
0 ΣnΣ−1

0 )δ
}
da0

.

(S1.5)

We want to show that, if Σ and Σ0 are p× p positive definite matrices,

lim
n→∞

∫ ε
0
aα0−1

0 (1− a0)β0−1 det(Σ0)−
1
2 det(Σn)

1
2 exp

{
− 1

2
δT (Σ−1

0 − Σ−1
0 ΣnΣ−1

0 )δ
}
da0∫ 1

0
aα0−1

0 (1− a0)β0−1 det(Σ0)−
1
2 det(Σn)

1
2 exp

{
− 1

2
δT (Σ−1

0 − Σ−1
0 ΣnΣ−1

0 )δ
}
da0

= 1,

for δ 6= 0 and ε > 0.

We can write Σ = n−1P and Σ0 = (nra0)−1P0 (Fahrmeir and Kaufmann,

1985), where P and P0 are positive definite and independent of a0 and n.

Then Σn = (Σ−1 + Σ−1
0 )−1 = n−1(P−1 + ra0P

−1
0 )−1.

Now,

I − ΣnΣ−1
0 = I − (Σ−1 + Σ−1

0 )−1Σ−1
0 = (Σ−1 + Σ−1

0 )−1Σ−1,
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and

Σ−1
0 (I − ΣnΣ−1

0 ) =Σ−1
0 ΣnΣ−1,

=nra0P
−1
0 n−1(P−1 + ra0P

−1
0 )−1nP−1,

=nra0P
−1
0 (P−1 + ra0P

−1
0 )−1P−1,

=nra0(P0 + a0rP )−1,

=nra0P
−1[P0P

−1 + a0rI]−1,

=na0P
−1[r−1P0P

−1 + a0I]−1.

In addition,

det(Σ0)−
1
2 det(Σn)

1
2 ,= det((nra0)−1P0)−

1
2 det(n−1(P−1 + ra0P

−1
0 )−1)

1
2 ,

= det((ra0)−1P0)−
1
2 det(P−1 + ra0P

−1
0 )−

1
2 ,

= det((ra0)−1P0(P−1 + ra0P
−1
0 ))−

1
2 ,

= det(a−1
0 (r−1P0P

−1 + a0I))−
1
2 ,

=a
p
2
0 det(a0I − (−r−1P0P

−1))−
1
2 .
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Let

h(a0) =
1

2n
δT (Σ−1

0 − Σ−1
0 ΣnΣ−1

0 )δ =
1

2
δTa0P

−1[r−1P0P
−1 + a0I]−1δ.

and

f(a0) = det(Σ0)−
1
2 det(Σn)

1
2 = a

p
2
0 det(a0I − (−r−1P0P

−1))−
1
2 .

Then the denominator is

A =

∫ 1

0

aα0−1
0 (1− a0)β0−1f(a0) exp

{
− nh(a0)

}
da0.

First, we show h(a0) is differentiable.

Lemma 2. Let A and B be positive definite matrices of the same dimension.

Then, the eigenvalues of AB are positive.

Proof. By the spectral decomposition, A = PΛP T where Λ = diag(λ1, . . . , λp)

and λ1, . . . , λp are the eigenvalues of A. Then A
1
2 = PΛ

1
2P T is symmetric

⇒ vTA
1
2BA

1
2v = (A

1
2v)TB(A

1
2v) > 0. So A

1
2BA

1
2 is positive definite. Since

A
1
2 (A

1
2BA

1
2 )A−

1
2 = AB, A

1
2BA

1
2 and AB are similar. Then they have the

same eigenvalues and the eigenvalues of AB are positive.

Let B = a0I − (−r−1P0P
−1). Then

h(a0) =
1

2
a0δ

TP−1B−1δ =
1
2
a0δ

TP−1adj(B)δ

det(B)
,
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where adj(B) is the cofactor matrix of B. The entries of adj(B) are poly-

nomials in a0, so 1
2
δTa0P

−1adj(B)δ is a polynomial in a0 and thus differen-

tiable. Then we show that det(B)−1 is differentiable on (0, 1). Since det(B)

is a polynomial of a0, it suffices to show that it is nonzero on (0, 1). Note

that det(B) is the characteristic polynomial of −r−1P0P
−1. Since P0 and

P−1 are positive definite, −r−1P0P
−1 has negative eigenvalues by Lemma 2.

So det(B) is nonzero on (0, 1). Thus, we have shown h(a0) is differentiable.

We then proceed to show that h′(a) > 0.

Let E = P0 + a0rP . Then h(a0) = 1
2
a0rδ

TE−1δ. Therefore,

h′(a0) =
1

2
rδTE−1δ + a0r

1

2
δT (E−1)′δ.

We know that (E−1)′ = E−1E ′E−1 = E−1PE−1. Since P is positive definite

and E is symmetric, vTE−1PE−1v = (E−1v)TPE−1v > 0. Thus, E−1PE−1

is positive definite. Then a0r
1
2
δT (E−1)′δ > 0. Since E−1 is positive definite,

1
2
rδTE−1δ > 0. So h′(a0) > 0.

We also show h′(a0) is continuous. It suffices to show that det(E) is nonzero

on [0, 1]. Since E = rBP where P is full rank, det(E) = c det(B) where

c 6= 0. Since det(B) is nonzero, det(E) is also nonzero.

Next, we will show that f(a0) = a
p
2
0 det(a0I−(−r−1P0P

−1))−
1
2 = a

p
2
0 det(B)−

1
2

is continuous on [0, 1]. We have previously proven that det(B) is nonzero
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on [0, 1]. Then f(a0) is continuous on [0, 1], and it will attain its min-

ima and maxima on the closed interval. Let t1 = max[ε,1](f(a0)) and

t2 = min[ ε
2
,ε](f(a0)). Since aα0−1

0 (1 − a0)β0−1 is continuous on [ ε
2
, ε], de-

note its minimum by t3.

We write A = A1 + A2 where

A1 =

∫ ε

0

aα0−1
0 (1− a0)β0−1f(a0) exp(−nh(a0))da0 and

A2 =

∫ 1

ε

aα0−1
0 (1− a0)β0−1f(a0) exp(−nh(a0))da0.

Now we want to show that limn→∞
A2

A1
= 0.

First, we find the upper bound of A2. Since h(a0) is monotone increasing,

exp(−nh(a0)) ≤ exp(−nh(ε)). Since f(a0) ≤ t1, we have

A2 ≤ t1 exp(−nh(ε))

∫ 1

ε

aα0−1
0 (1− a0)β0−1da0,

≤ t1 exp(−nh(ε))

∫ 1

0

aα0−1
0 (1− a0)β0−1da0,

= t1 exp(−nh(ε))
Γ(α0)Γ(β0)

Γ(α0 + β0)
,

= C1 exp(−nh(ε)).

Next, we find the lower bound of A1. We have previously shown that h′(a0)

is continuous on (0, 1). Then h′(a0) attains its maximum on [ ε
2
, ε]. Let
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t4 = max[ ε
2
,ε](h

′(a0)). We can write

A1 ≥
∫ ε

ε
2

aα0−1
0 (1− a0)β0−1f(a0) exp(−nh(a0))da0,

≥
∫ ε

ε
2

aα0−1
0 (1− a0)β0−1 f(a0)

h′(a0)
exp(−nh(a0))h′(a0)da0,

=

∫ ε

ε
2

aα0−1
0 (1− a0)β0−1 f(a0)

h′(a0)
exp(−nh(a0))dh(a0),

≥ t2t3
t4

∫ ε

ε
2

exp(−nh(a0))dh(a0),

=
t2t3
t4

1

n
[exp(−nh(ε/2)− exp(−nh(ε))],

= C2
1

n
[exp(−nh(ε/2)− exp(−nh(ε))].

Therefore,

0 ≤ A2

A1

≤ C1 exp(−nh(ε))

C2
1
n
[exp(−nh(ε/2))− exp(−nh(ε))]

=
C1n

C2[exp(−n[h(ε/2)− h(ε)])− 1]
,

and lim
n→∞

A2

A1
→ 0 by L’Hopital’s rule. Since A2

A1
≥ A2

A
, lim
n→∞

A2

A
→ 0. Then

lim
n→∞

A1

A
→ 1.

S1.6 Proof of Corollary 2.3

Proof. Based on the assumptions, we have Σ = a0Σ0. The result follows if

we plug δ = 0 into (S1.5).
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S1.7 Proof for Theorem 2.4

Proof. The Laplace approximation for multiple parameters has the form∫
exp(−nf(β))dβ ≈ exp(−nf(β̂))

(
2π

n

)p/2
|Σ̂|1/2,

where β̂ is maximizes −f(β), and Σ̂p×p =
[
∂2f(β̂)
∂βj∂βk

]−1

.

When X ′Y = X ′0Y0 and X 6= X0,

π(a0|D,D0) ∝
∫
Ln(D|β)

Ln0(D0|β)a0π0(β)

c(a0)
π(a0)dβ,

=

∫
Ln(D|β)

exp (a0 [
∑n

i=1 yix
′
iβ −

∑n
i=1 b(x

′
0iβ)])∫

exp (a0 [
∑n

i=1 yix
′
iβ −

∑n
i=1 b(x

′
0iβ)]) dβ

π(a0)dβ,

= π(a0)

∫
Ln(D|β)L∗n0

(D0|β, a0)dβ∫
L∗n0

(D0|β, a0)dβ
,

= π(a0)
c1(a0)

c2(a0)
.

Define

gn(β) = − 1

n
[Ln(D|β) + a0L

∗
n0

(D0|β, a0)]

= − 1

n
{log(Q(Y )) +

n∑
i=1

yix
′
iβ −

n∑
i=1

b(x′iβ) + a0[
n∑
i=1

yix
′
iβ −

n∑
i=1

b(x′0iβ)]}

= − 1

n
{log(Q(Y )) + (a0 + 1)

n∑
i=1

yix
′
iβ −

n∑
i=1

b(x′iβ)− a0

n∑
i=1

b(x′0iβ)}.

Then we have

c1(a0) ≈ exp(−ngn(β̂))

(
2π

n

)p/2
|Σ̂g|1/2,
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where β̂ maximizes −gn(β). Similarly, define

kn(β) = − 1

n
a0l
∗(y|x0, β),

= − 1

n

{
a0

n∑
i=1

yix
′
iβ − a0

n∑
i=1

b(x′0iβ)

}
.

Then we have

c2(a0) ≈ exp(−nkn(β̃))

(
2π

n

)p/2
|Σ̃g|1/2,

where β̃ maximizes −kn(β).

We compute the gradients of gn(β) and kn(β) and get

∇gn(β) = − 1

n
{(a0 + 1)

n∑
i=1

yixi −
n∑
i=1

ḃ(x′iβ)xi − a0

n∑
i=1

ḃ(x′0iβ)x0i},

∇kn(β) = − 1

n
{a0

n∑
i=1

yixi − a0

n∑
i=1

ḃ(x′0iβ)x0i},

∇gn(β) = 0⇒
n∑
i=1

ḃ(x′iβ̂)xi + a0

n∑
i=1

ḃ(x′0iβ̂)x0i = (a0 + 1)
n∑
i=1

yixi,

∇kn(β) = 0⇒
n∑
i=1

ḃ(x′0iβ̃)x0i =
n∑
i=1

yixi.

We can see that asymptotically, β̂ 6= β̃. Then we have

c1(a0)

c2(a0)
=
|Σ̂g|1/2

|Σ̃k|1/2
exp{−n[gn(β̂)− kn(β̃)]}, (S1.6)
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where

Σ̂g =

[
1

n

n∑
i=1

b̈(x′iβ̂)xix
′
i +

a0

n

n0∑
i=1

b̈(x′0iβ̂)x0ix
′
0i

]−1

,

Σ̃k =

[
a0

n

n0∑
i=1

b̈(x′0iβ̃)x0ix
′
0i

]−1

,

|Σ̂g|1/2

|Σ̃k|1/2
=

|a0

∑n0

i=1 b̈(x
′
0iβ̃)x0ix

′
0i|1/2

|
∑n

i=1 b̈(x
′
iβ̂)xix′i + a0

∑n0

i=1 b̈(x
′
0iβ̂)x0ix′0i|1/2

.

The marginal posterior of a0 is then proportional to S1.6 multiplied by

π(a0).
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S2 Additional Figures for Section 2

Posterior Samples, i.i.d. Case
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Figure 1: The plot on the left shows the histogram of the posterior of a0 for i.i.d.

Bernoulli data with current and historical mean equal to 0.7, n = 100, n0 = 200 and the

prior on a0 is beta(2, 2). The plot on the right shows the histogram of the posterior of a0

for Bernoulli data with one covariate where the historical and current data are identical.

The prior on a0 is beta(2, 2). The histograms of the posterior samples are produced

using R package BayesPPD. The curve represents the theoretical density. We observe

that for both i.i.d. and GLM cases, the histograms of posterior samples agree with the

theoretical density functions.
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Figure 2: Marginal posterior of a0 for i.i.d. normal data where n = n0 increases from

30 to 200, the historical data mean is 1.5, the current data mean is 2 and the standard

deviations are 1. We observe that when there is some difference between the sufficient

statistics of the historical and current data, the marginal posterior of a0 converge to a

point mass at zero quickly.
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S3 Numerical Stability of the Optimization Process

We conduct a simple experiment to reproduce the optimal priors derived in

Figure 1 when we fix one of α0 or β0 and optimize for the other parameter.

We can see in Table 1 below that the optimization is stable and reliable.

Table 1: Optimization with one of the hyperparameters fixed

optimal priors

in Fig. 1

optimal priors

with fixed α0

optimal priors

with fixed β0

dMTD = 0.5 beta(2.2, 2.3) beta(2.2, 2.3) beta(2.2, 2.3)

dMTD = 1 beta(1, 0.4) beta(1, 0.5) beta(0.9, 0.4)

dMTD = 1.5 beta(2.6, 0.5) beta(2.6, 0.5) beta(2.6, 0.5)
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S4 Bias and Variance Decomposition for the MSE

Criterion

Table 2: Bias and variance decomposition for different prior choices

Optimal Prior Beta(1, 1) Beta(2, 2)

Bias2

dMTD = 0.5 0.011 0.015 0.018

dMTD = 1 0.005 0.012 0.025

dMTD = 1.5 0.003 0.006 0.015

Variance

dMTD = 0.5 0.043 0.042 0.039

dMTD = 1 0.058 0.057 0.054

dMTD = 1.5 0.049 0.053 0.052

S5 Comparisons with Other Priors

In Figure 3, we generate i.i.d. normal data and compute the MSE based

on the posterior mean of the point estimator using three different prior

choices, the NPP with the optimal beta prior on a0 (optimal in the sense

of minimizing MSE as defined in the main paper), the NPP with a mixture

of two beta priors on a0, and the robust mixture prior, which is a special

case of the robust meta-analytic-predictive prior introduced in Schmidli
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et al. (2014). The robust mixture prior we use places equal weights on a

non-informative normal component and an informative normal component

using the historical data. For the NPP with a mixture of beta priors, we use

a mixture of beta(1, c) and beta(c, 1) with equal weights, where c ranges

from 100 to 1000. As c approaches infinity, the mixture of beta priors on

a0 converges to a mixture of a point mass at zero and a point mass at one,

which is equivalent to the robust mixture prior. We vary the difference

between the observed current data mean and the historical data mean, i.e.,

dobs = ȳobs− ȳ0. We can see that when the data are compatible (dobs = 0.5),

the posterior mean based on the NPP with the optimal beta prior produces

lower MSE than the estimator based on the robust mixture prior. When

the conflict between the data increases, i.e., dobs = 1 and dobs = 1.5, the

NPP with a mixture of beta priors outperforms the robust mixture prior.
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Figure 3: MSE using three different prior choices, the NPP with the optimal beta prior

on a0, the NPP with the mixture of beta priors on a0 and the robust mixture prior

S6 Additional Simulations for MSE Criterion

Figures 4 and 5 show the MSE as a function of the prior mean of a0 for

increasing ratios of n/n0 when the total sample size is fixed. We observe

that as n/n0 increases, the model will increasingly benefit, i.e. the MSE is

reduced, from borrowing more, but this trend is less prominent when the
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total sample size is larger.

The total sample size of the PLUTO trials in section 4.1 is about twice

the total sample size of the melanoma trials in section 4.2. The total sample

size of the melanoma trials is not large enough for the model to criticize the

maximal tolerable difference that we chose. Therefore, the optimal prior

derived using the MSE criterion encourages borrowing for the melanoma

trial.
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Figure 4: MSE as a function of prior mean of a0 for increasing ratios of n/n0 when the

total sample size is fixed for the normal i.i.d. case.
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Figure 5: MSE as a function of prior mean of a0 for increasing ratios of n/n0 when the

total sample size is double the total sample size in Figure 4 for the normal i.i.d. case.
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S7 Design Application for the Pediatric Lupus Trial

Now we demonstrate using the proposed optimal priors in a clinical trial

design application. Suppose we want to design a pediatric trial using data

from the adult trials BLISS-52 and BLISS-76. We choose a few sample

sizes ranging from 50 to 100 (the actual trial had a sample size of 92)

and derive the optimal prior for each sample size using both the KL and

MSE criteria. We compute power using the R Package BayesPPD which

performs Bayesian sample size determination with a simulation-based pro-

cedure (Shen et al., 2023). We use the posterior samples given only the

historical data as the discrete approximation to the sampling prior (Psioda

and Ibrahim, 2019). For the fitting prior, we use a normalized power prior

with optimal priors derived for a0. Figure 6 shows the power curves for

three choices of priors on a0, the optimal prior using the KL criterion, the

optimal prior using the MSE criterion, and the uniform prior. Note the op-

timal prior is derived for each sample size. In this case, the optimal priors

do not vary much for different sample sizes due to the small sizes of the

current trial relative to the adult trials. We can see that power is the high-

est when we optimize to minimize KL. Since the optimal prior on a0 based

on the KL criterion is beta(5.5, 5.5) (when n = 100), the most amount of

historical information is borrowed. Power is the lowest when we optimize
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to minimize MSE, since the least amount of historical information is bor-

rowed. The two criteria address the problem of how much to borrow from

different angles. The KL criterion focuses on how much information one

is willing to borrow under two markedly different assumptions about the

difference between the prior information and the data generation process

for the future study. The KL criterion does not explicitly focus on estima-

tion performance metric. On the other hand, the MSE criterion attempts

to ensure that the point estimate of the parameter of interest behaves well

in terms of the trade-off between bias and variance. Also note that the two

target distributions for the KL criteria used in this application are beta(1,

10) and beta(10, 1). These target distributions should be carefully chosen

so that they reflect the desired posterior distributions of a0 relative to the

sample sizes of the historical and current data. For example, by considering

c = 10 one is targeting borrowing approximately 10% of the prior informa-

tion when the prior-data conflict is substantial (i.e., in line with dMTD). If

10% of the historical data sample size is large relative to the new study

sample size being considered, this choice for c may not be desirable (i.e., a

larger c would be warranted).
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Figure 6: Power curves using three choices of priors on a0, optimal prior using the KL

criterion, optimal prior using the MSE criterion, and the uniform prior. A different

optimal prior is derived for each sample size.
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