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ABSTRACT
We study the problem of representation learning in heterogeneous

networks. Its unique challenges come from the existence of mul-

tiple types of nodes and links, which limit the feasibility of the

conventional network embedding techniques. We develop two

scalable representation learning models, namely metapath2vec and

metapath2vec++. �e metapath2vec model formalizes meta-path-

based random walks to construct the heterogeneous neighborhood

of a node and then leverages a heterogeneous skip-gram model

to perform node embeddings. �e metapath2vec++ model further

enables the simultaneous modeling of structural and semantic cor-

relations in heterogeneous networks. Extensive experiments show

that metapath2vec and metapath2vec++ are able to not only outper-

form state-of-the-art embedding models in various heterogeneous

network mining tasks, such as node classi�cation, clustering, and

similarity search, but also discern the structural and semantic cor-

relations between diverse network objects.

CCS CONCEPTS
•Information systems→Social networks; •Computingmethod-
ologies →Unsupervised learning; Learning latent represen-
tations; Knowledge representation and reasoning;

KEYWORDS
Network Embedding; Heterogeneous Representation Learning; La-

tent Representations; Feature Learning; Heterogeneous Information

Networks

ACM Reference format:
Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. 2017. metap-

ath2vec: Scalable Representation Learning for Heterogeneous Networks. In

Proceedings of KDD ’17, August 13-17, 2017, Halifax, NS, Canada, , 10 pages.

DOI: h�p://dx.doi.org/10.1145/3097983.3098036

1 INTRODUCTION
Neural network-based learning models can represent latent embed-

dings that capture the internal relations of rich, complex data across

various modalities, such as image, audio, and language [15]. Social
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(a) DeepWalk / node2vec
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(c) metapath2vec
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(d) metapath2vec++

Figure 1: 2D PCA projections of the 128D embeddings of 16
top CS conferences and corresponding high-pro�le authors.

and information networks are similarly rich and complex data that

encode the dynamics and types of human interactions, and are sim-

ilarly amenable to representation learning using neural networks.

In particular, by mapping the way that people choose friends and

maintain connections as a “social language,” recent advances in

natural language processing (NLP) [3] can be naturally applied to

network representation learning, most notably the group of NLP

models known as word2vec [17, 18]. A number of recent research

publications have proposed word2vec-based network representa-

tion learning frameworks, such as DeepWalk [22], LINE [30], and

node2vec [8]. Instead of handcra�ed network feature design, these

representation learning methods enable the automatic discovery of

useful and meaningful (latent) features from the “raw networks.”

However, these work has thus far focused on representation

learning for homogeneous networks—representative of singular

type of nodes and relationships. Yet a large number of social and

information networks are heterogeneous in nature, involving diver-

sity of node types and/or relationships between nodes [25]. �ese

heterogeneous networks present unique challenges that cannot

be handled by representation learning models that are speci�cally

designed for homogeneous networks. Take, for example, a het-

erogeneous academic network: How do we e�ectively preserve

the concept of “word-context” among multiple types of nodes, e.g.,

authors, papers, venues, organizations, etc.? Can random walks,

such those used in DeepWalk and node2vec, be applied to networks



Table 1: Case study of similarity search in the heterogeneous DBIS data used in [26].

Method PathSim [26] DeepWalk / node2vec [8, 22] LINE (1st+2nd) [30] PTE [29] metapath2vec metapath2vec++

Input meta-paths heterogeneous random walk paths heterogeneous edges heterogeneous edges probabilistic meta-paths probabilistic meta-paths

�ery PKDD C. Faloutsos PKDD C. Faloutsos PKDD C. Faloutsos PKDD C. Faloutsos PKDD C. Faloutsos PKDD C. Faloutsos

1 ICDM J. Han R. S. J. Pan W. K. C. Aggarwal KDD C. Aggarwal A. S. C. Aggarwal KDD R. Agrawal

2 SDM R. Agrawal M. N. H. Tong S. A. P. Yu ICDM P. Yu M. B. J. Pei PAKDD J. Han

3 PAKDD J. Pei R. P. H. Yang A. B. D. Gunopulos SDM Y. Tao P. B. P. Yu ICDM J. Pei

4 KDD C. Aggarwal G. G. R. Filho M. S. N. Koudas DMKD N. Koudas M. S. H. Cheng DMKD C. Aggarwal

5 DMKD H. Jagadish F. J. R. Chan S. A. M. Vlachos PAKDD R. Rastogi M. K. V. Ganti SDM P. Yu

of multiple types of nodes? Can we directly apply homogeneous

network-oriented embedding architectures (e.g., skip-gram) to het-

erogeneous networks?

By solving these challenges, the latent heterogeneous network

embeddings can be further applied to various network mining tasks,

such as node classi�cation [13], clustering [27, 28], and similarity

search [26, 35]. In contrast to conventional meta-path-based meth-

ods [25], the advantage of latent-space representation learning lies

in its ability to model similarities between nodes without connected

meta-paths. For example, if authors have never published papers in

the same venue—imagine one publishes 10 papers all in NIPS and

the other has 10 publications all in ICML; their “APCPA”-based Path-

Sim similarity [26] would be zero—this will be naturally overcome

by network representation learning.

Contributions. We formalize the heterogeneous network repre-

sentation learning problem, where the objective is to simultane-

ously learn the low-dimensional and latent embeddings for multiple

types of nodes. We present themetapath2vec and its extensionmeta-
path2vec++ frameworks. �e goal of metapath2vec is to maximize

the likelihood of preserving both the structures and semantics of a

given heterogeneous network. In metapath2vec, we �rst propose

meta-path [25] based random walks in heterogeneous networks

to generate heterogeneous neighborhoods with network seman-

tics for various types of nodes. Second, we extend the skip-gram

model [18] to facilitate the modeling of geographically and seman-

tically close nodes. Finally, we develop a heterogeneous negative

sampling-based method, referred to as metapath2vec++, that en-

ables the accurate and e�cient prediction of a node’s heterogeneous

neighborhood.

�e proposed metapath2vec and metapath2vec++ models are dif-

ferent from conventional network embedding models, which focus

on homogeneous networks [8, 22, 30]. Speci�cally, conventional

models su�er from the identical treatment of di�erent types of

nodes and relations, leading to the production of indistinguishable

representations for heterogeneous nodes—as evident through our

evaluation. Further, the metapath2vec and metapath2vec++ models

also di�er from the Predictive Text Embedding (PTE) model [29]

in several ways. First, PTE is a semi-supervised learning model

that incorporates label information for text data. Second, the het-

erogeneity in PTE comes from the text network wherein a link

connects two words, a word and its document, and a word and its

label. Essentially, the raw input of PTE is words and its output is

the embedding of each word, rather than multiple types of objects.

We summarize the di�erences of these methods in Table 1, which

lists their input to learning algorithms, as well as the top-�ve simi-

larity search results in the DBIS network for the same two queries

used in [26] (see Section 4 for details). By modeling the hetero-

geneous neighborhood and further leveraging the heterogeneous

negative sampling technique, metapath2vec++ is able to achieve the

best top-�ve similar results for both types of queries. Figure 1 shows

the visualization of the 2D projections of the learned embeddings

for 16 CS conferences and corresponding high-pro�le researchers

in each �eld. Remarkably, we �nd that metapath2vec++ is capable

of automatically organizing these two types of nodes and implicitly

learning the internal relationships between them, suggested by the

similar directions and distances of the arrows connecting each pair.

For example, it learns J. Dean→ OSDI and C. D. Manning→ ACL.

metapath2vec is also able to group each author-conference pair

closely, such as R. E. Tarjan and FOCS. All of these properties are

not discoverable from conventional network embedding models.

To summarize, our work makes the following contributions:

(1) Formalizes the problem of heterogeneous network represen-

tation learning and identi�es its unique challenges resulting

from network heterogeneity.

(2) Develops e�ective and e�cient network embedding frame-

works, metapath2vec & metapath2vec++, for preserving both

structural and semantic correlations of heterogeneous networks.

(3) �rough extensive experiments, demonstrates the e�cacy and

scalability of the presented methods in various heterogeneous

network mining tasks, such as node classi�cation (achieving

relative improvements of 35–319% over benchmarks) and node

clustering (achieving relative gains of 13–16% over baselines).

(4) Demonstrates the automatic discovery of internal semantic

relationships between di�erent types of nodes in heterogeneous

networks by metapath2vec & metapath2vec++, not discoverable

by existing work.

2 PROBLEM DEFINITION
We formalize the representation learning problem in heterogeneous

networks, which was �rst brie�y introduced in [21]. In speci�c, we

leverage the de�nition of heterogeneous networks in [25, 27] and

present the learning problem with its inputs and outputs.

De�nition 2.1. AHeterogeneousNetwork is de�ned as a graph

G = (V ,E,T ) in which each node v and each link e are associated

with their mapping functions ϕ (v ) : V → TV and φ (e ) : E → TE ,

respectively. TV andTE denote the sets of object and relation types,

where |TV | + |TE | > 2.

For example, one can represent the academic network in Figure

2(a) with authors (A), papers (P), venues (V), organizations (O) as

nodes, wherein edges indicate the coauthor (A–A), publish (A–P,



P–V), a�liation (O–A) relationships. By considering a heteroge-

neous network as input, we formalize the problem of heterogeneous

network representation learning as follows.

Problem 1. Heterogeneous Network Representation Learn-
ing: Given a heterogeneous network G, the task is to learn the d-
dimensional latent representations X ∈ R |V |×d , d � |V | that are
able to capture the structural and semantic relations among them.

�e output of the problem is the low-dimensional matrix X, with

the vth row—a d-dimensional vector Xv—corresponding to the

representation of node v . Notice that, although there are di�erent

types of nodes in V , their representations are mapped into the

same latent space. �e learned node representations can bene�t

various heterogeneous network mining tasks. For example, the

embedding vector of each node can be used as the feature input of

node classi�cation, clustering, and similarity search tasks.

�e main challenge of this problem comes from the network

heterogeneity, wherein it is di�cult to directly apply homogeneous

language and network embedding methods. �e premise of network

embedding models is to preserve the proximity between a node

and its neighborhood (context) [8, 22, 30]. In a heterogeneous envi-

ronment, how do we de�ne and model this ‘node–neighborhood’

concept? Furthermore, how do we optimize the embedding models

that e�ectively maintain the structures and semantics of multiple

types of nodes and relations?

3 THE METAPATH2VEC FRAMEWORK
We present a general framework, metapath2vec, which is capable

of learning desirable node representations in heterogeneous net-

works. �e objective of metapath2vec is to maximize the network

probability in consideration of multiple types of nodes and edges.

3.1 Homogeneous Network Embedding
We, �rst, brie�y introduce the word2vec model and its application

to homogeneous network embedding tasks. Given a text corpus,

Mikolov et al. proposed word2vec to learn the distributed represen-

tations of words in a corpus [17, 18]. Inspired by it, DeepWalk [22]

and node2vec [8] aim to map the word-context concept in a text

corpus into a network. Both methods leverage random walks to

achieve this and utilize the skip-gram model to learn the repre-

sentation of a node that facilitates the prediction of its structural

context—local neighborhoods—in a homogeneous network. Usu-

ally, given a network G = (V ,E), the objective is to maximize the

network probability in terms of local structures [8, 18, 22], that is:

arg max

θ

∏
v ∈V

∏
c ∈N (v )

p (c |v ;θ ) (1)

where N (v ) is the neighborhood of nodev in the networkG , which

can be de�ned in di�erent ways such as v’s one-hop neighbors,

and p (c |v ;θ ) de�nes the conditional probability of having a context

node c given a node v .

3.2 Heterogeneous Network Embedding:
metapath2vec

To model the heterogeneous neighborhood of a node, metapath2vec
introduces the heterogeneous skip-gram model. To incorporate

the heterogeneous network structures into skip-gram, we propose

meta-path-based random walks in heterogeneous networks.

Heterogeneous Skip-Gram. In metapath2vec, we enable skip-

gram to learn e�ective node representations for a heterogeneous

networkG = (V ,E,T ) with |TV | > 1 by maximizing the probability

of having the heterogeneous context Nt (v ), t ∈ TV given a node v :

arg max

θ

∑
v ∈V

∑
t ∈TV

∑
ct ∈Nt (v )

logp (ct |v ;θ ) (2)

where Nt (v ) denotes v’s neighborhood with the t th type of nodes

and p (ct |v ;θ ) is commonly de�ned as a so�max function [3, 7, 18,

24], that is: p (ct |v;θ ) = eXct ·Xv∑
u∈V eXu ·Xv , where Xv is the vth row of

X, representing the embedding vector for node v . For illustration,

consider the academic network in Figure 2(a), the neighborhood

of one author node a4 can be structurally close to other authors

(e.g., a2, a3 & a5), venues (e.g., ACL & KDD), organizations (CMU

& MIT), as well as papers (e.g., p2 & p3).

To achieve e�cient optimization, Mikolov et al. introduced neg-

ative sampling [18], in which a relatively small set of words (nodes)

are sampled from the corpus (network) for the construction of so�-

max. We leverage the same technique for metapath2vec. Given a

negative sample sizeM , Eq. 2 is updated as follows: logσ (Xct ·Xv )+∑M
m=1
Eum∼P (u )[logσ (−Xum ·Xv )], where σ (x ) = 1

1+e−x and P (u)
is the pre-de�ned distribution from which a negative node um is

drew from for M times. metapath2vec builds the the node frequency

distribution by viewing di�erent types of nodes homogeneously

and draw (negative) nodes regardless of their types.

Meta-Path-Based Random Walks. How to e�ectively trans-

form the structure of a network into skip-gram? In DeepWalk [22]

and node2vec [8], this is achieved by incorporating the node paths

traversed by random walkers over a network into the neighborhood

function.

Naturally, we can put random walkers in a heterogeneous network
to generate paths of multiple types of nodes. At step i , the transition

probability p (vi+1 |vi ) is denoted as the normalized probability

distributed over the neighbors of vi by ignoring their node types.

�e generated paths can be then used as the input of node2vec

and DeepWalk. However, Sun et al. demonstrated that heterogeneous
random walks are biased to highly visible types of nodes—those with
a dominant number of paths—and concentrated nodes—those with a
governing percentage of paths pointing to a small set of nodes [26].

In light of these issues, we design meta-path-based random walks

to generate paths that are able to capture both the semantic and

structural correlations between di�erent types of nodes, facilitat-

ing the transformation of heterogeneous network structures into

metapath2vec’s skip-gram.

Formally, a meta-path scheme P is de�ned as a path that is

denoted in the form of V1

R1

−−→ V2

R2

−−→ · · ·Vt
Rt
−−→ Vt+1 · · ·

Rl−1

−−−−→ Vl ,
wherein R = R1 ◦ R2 ◦ · · · ◦ Rl−1

de�nes the composite relations

between node types V1 and Vl [25]. Take Figure 2(a) as an example,

a meta-path “APA” represents the coauthor relationships on a paper

(P) between two authors (A), and “APVPA” represents two authors

(A) publish papers (P) in the same venue (V). Previous work has

shown that many data mining tasks in heterogeneous information

networks can bene�t from the modeling of meta-paths [6, 25, 27].
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Figure 2: An illustrative example of a heterogeneous academic network and skip-gram architectures of metapath2vec and
metapath2vec++ for embedding this network. (a). Yellow do�ed lines denote coauthor relationships and red do�ed lines denote citation

relationships. (b) �e skip-gram architecture used in metapath2vec when predicting for a4, which is the same with the one in node2vec if

node types are ignored. |V |=12 denotes the number of nodes in the heterogeneous academic network in (a) and a4’s neighborhood is set to

include CMU, a2, a3, a5, p2, p3, ACL, & KDD, making k = 8. (c) �e heterogeneous skip-gram used in metapath2vec++. Instead of one set of

multinomial distributions for all types of neighborhood nodes in the output layer, it speci�es one set of multinomial distributions for each

type of nodes in a4’s neighborhood. Vt denotes one speci�c t-type nodes and V = VV ∪VA ∪VO ∪VP . kt speci�es the size of a particular

type of one’s neighborhood and k = kV + kA + kO + kP .

Here we show how to use meta-paths to guide heterogeneous

random walkers. Given a heterogeneous networkG = (V ,E,T ) and

a meta-path scheme P: V1

R1

−−→ V2

R2

−−→ · · ·Vt
Rt
−−→ Vt+1 · · ·

Rl−1

−−−−→ Vl ,
the transition probability at step i is de�ned as follows:

p (vi+1 |vit ,P) =




1

|Nt+1 (v it ) |
(vi+1,vit ) ∈ E, ϕ (vi+1) = t+1

0 (vi+1,vit ) ∈ E, ϕ (vi+1) , t+1
0 (vi+1,vit ) < E

(3)

where vit ∈ Vt and Nt+1 (v
i
t ) denote theVt+1 type of neighborhood

of node vit . In other words, vi+1 ∈ Vt+1, that is, the �ow of the

walker is conditioned on the pre-de�ned meta-path P. In addition,

meta-paths are commonly used in a symmetric way, that is, its �rst

node typeV1 is the same with the last oneVl [25, 26, 28], facilitating

its recursive guidance for random walkers, i.e.,

p (vi+1 |vit ) = p (v
i+1 |vi

1
), if t = l (4)

�e meta-path-based random walk strategy ensures that the

semantic relationships between di�erent types of nodes can be

properly incorporated into skip-gram. For example, in a traditional

random walk procedure, in Figure 2(a), the next step of a walker

on node a4 transitioned from node CMU can be all types of nodes

surrounding it—a2, a3, a5, p2, p3, and CMU. However, under the

meta-path scheme ‘OAPVPAO’, for example, the walker is biased

towards paper nodes (P) given its previous step on an organization

node CMU (O), following the semantics of this path.

3.3 metapath2vec++
metapath2vec distinguishes the context nodes of nodev conditioned

on their types when constructing its neighborhood function Nt (v )
in Eq. 2. However, it ignores the node type information in so�max.

In other words, in order to infer the speci�c type of context ct in

Nt (v ) given a node v , metapath2vec actually encourages all types

of negative samples, including nodes of the same type t as well as

the other types in the heterogeneous network.

Heterogeneous negative sampling. We further propose the

metapath2vec++ framework, in which the so�max function is nor-

malized with respect to the node type of the context ct . Speci�cally,

p (ct |v ;θ ) is adjusted to the speci�c node type t , that is,

p (ct |v ;θ ) =
eXct ·Xv∑

ut ∈Vt e
Xut ·Xv

(5)

where Vt is the node set of type t in the network. In doing so,

metapath2vec++ speci�es one set of multinomial distributions for

each type of neighborhood in the output layer of the skip-gram

model. Recall that in metapath2vec and node2vec / DeepWalk, the

dimension of the output multinomial distributions is equal to the

number of nodes in the network. However, in metapath2vec++’s

skip-gram, the multinomial distribution dimension for type t nodes

is determined by the number of t-type nodes. A clear illustration

can be seen in Figure 2(c). For example, given the target node a4 in

the input layer, metapath2vec++ outputs four sets of multinomial

distributions, each corresponding to one type of neighbors—venues

V , authors A, organizations O , and papers P .

Inspired by PTE [29], the sampling distribution is also speci�ed

by the node type of the neighbor ct that is targeted to predict, i.e.,

Pt (·). �erefore, we have the following objective:

O (X) = logσ (Xct · Xv ) +
M∑

m=1

Eumt ∼Pt (ut )[logσ (−Xumt · Xv )]

(6)



Input: �e heterogeneous information network G = (V ,E,T ),
a meta-path scheme P, #walks per node w , walk

length l , embedding dimension d , neighborhood size k

Output: �e latent node embeddings X ∈ R |V |×d

initialize X ;

for i = 1→w do
for v ∈ V do

MP = MetaPathRandomWalk(G, P, v , l ) ;

X = HeterogeneousSkipGram(X, k , MP) ;

end
end
return X ;

MetaPathRandomWalk(G, P, v , l )
MP[1] = v ;

for i = 1→ l−1 do
draw u according to Eq. 3 ;

MP[i+1] = u ;

end
return MP ;

HeterogeneousSkipGram(X, k , MP)

for i = 1→ l do
v = MP[i] ;

for j = max(0, i-k)→ min(i+k, l) & j , i do
ct = MP[j] ;

Xnew
= Xold − η ·

∂O (X)
∂X (Eq. 7) ;

end
end

ALGORITHM 1: �e metapath2vec++ Algorithm.

whose gradients are derived as follows:

∂O (X)
∂Xumt

= (σ (Xumt · Xv − Ict [umt ]))Xv (7)

∂O (X)
∂Xv

=

M∑
m=0

(σ (Xumt · Xv − Ict [umt ]))Xumt

where Ict [umt ] is an indicator function to indicate whether umt is

the neighborhood context node ct and when m = 0, u0

t = ct . �e

model is optimized by using stochastic gradient descent algorithm.

�e pseudo code of metapath2vec++ is listed in Algorithm 1.

4 EXPERIMENTS
In this section, we demonstrate the e�cacy and e�ciency of the

presented metapath2vec and metapath2vec++ frameworks for het-

erogeneous network representation learning.

Data. We use two heterogeneous networks, including the AMiner

Computer Science (CS) dataset [31] and the Database and Infor-

mation Systems (DBIS) dataset [26]. Both datasets and code are

publicly available
1
. �is AMiner CS dataset consists of 9,323,739

1
�e network data, learned latent representations, labeled ground truth data, and

source code can be found at h�ps://ericdongyx.github.io/metapath2vec/m2v.html

computer scientists and 3,194,405 papers from 3,883 computer sci-

ence venues—both conferences and journals—held until 2016. We

construct a heterogeneous collaboration network, in which there

are three types of nodes: authors, papers, and venues. �e links

represent di�erent types of relationships among three sets of nodes—

such as collaboration relationships on a paper.

�e DBIS dataset was constructed and used by Sun et al. [26]. It

covers 464 venues, their top-5000 authors, and corresponding 72,902

publications. We also construct the heterogeneous collaboration

networks from DBIS wherein a link may connect two authors, one

author and one paper, as well as one paper and one venue.

4.1 Experimental Setup
We compare metapath2vec and metapath2vec++ with several recent

network representation learning methods:

(1) DeepWalk [22] / node2vec [8]: With the same random walk

path input (p=1 & q=1 in node2vec), we �nd that the choice be-

tween hierarchical so�max (DeepWalk) and negative sampling

(node2vec) techniques does not yield signi�cant di�erences.

�erefore we use p=1 and q=1 [8] in node2vec for comparison.

(2) LINE [30]: We use the advanced version of LINE by considering

both the 1st- and 2nd-order of node proximity;

(3) PTE [29]: We construct three bipartite heterogeneous networks

(author–author, author–venue, venue–venue) and restrain it as

an unsupervised embedding method;

(4) Spectral Clustering [33] / Graph Factorization [2]: With the

same treatment to these methods in node2vec [8], we exclude

them from our comparison, as previous studies have demon-

strated that they are outperformed by DeepWalk and LINE.

For all embedding methods, we use the same parameters listed

below. In addition, we also vary each of them and �x the others for

examining the parameter sensitivity of the proposed methods.

(1) �e number of walks per node w : 1000;

(2) �e walk length l : 100;

(3) �e vector dimension d : 128 (LINE: 128 for each order);

(4) �e neighborhood size k : 7;

(5) �e size of negative samples: 5.

For metapath2vec and metapath2vec++, we also need to specify

the meta-path scheme to guide random walks. We surveyed most

of the meta-path-based work and found that the most commonly

and e�ectively used meta-path schemes in heterogeneous academic

networks are “APA” and “APVPA” [12, 25–27]. Notice that “APA”

denotes the coauthor semantic, that is, the traditional (homoge-

neous) collaboration links / relationships. “APVPA” represents the

heterogeneous semantic of authors publishing papers at the same

venues. Our empirical results also show that this simple meta-path

scheme “APVPA” can lead to node embeddings that can be general-

ized to diverse heterogeneous academic mining tasks, suggesting its

applicability to potential applications for academic search services.

We evaluate the quality of the latent representations learned

by di�erent methods over three classical heterogeneous network

mining tasks, including multi-class node classi�cation [13], node

clustering [27], and similarity search [26]. In addition, we also use

the embedding projector in TensorFlow [1] to visualize the node

embeddings learned from the heterogeneous academic networks.

https://ericdongyx.github.io/metapath2vec/m2v.html


Table 2: Multi-class venue node classi�cation results in AMiner data.

Metric Method 5% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Macro-F1

DeepWalk/node2vec 0.0723 0.1396 0.1905 0.2795 0.3427 0.3911 0.4424 0.4774 0.4955 0.4457

LINE (1st+2nd) 0.2245 0.4629 0.7011 0.8473 0.8953 0.9203 0.9308 0.9466 0.9410 0.9466

PTE 0.1702 0.3388 0.6535 0.8304 0.8936 0.9210 0.9352 0.9505 0.9525 0.9489

metapath2vec 0.3033 0.5247 0.8033 0.8971 0.9406 0.9532 0.9529 0.9701 0.9683 0.9670

metapath2vec++ 0.3090 0.5444 0.8049 0.8995 0.9468 0.9580 0.9561 0.9675 0.9533 0.9503

Micro-F1

DeepWalk/node2vec 0.1701 0.2142 0.2486 0.3266 0.3788 0.4090 0.4630 0.4975 0.5259 0.5286

LINE (1st+2nd) 0.3000 0.5167 0.7159 0.8457 0.8950 0.9209 0.9333 0.9500 0.9556 0.9571

PTE 0.2512 0.4267 0.6879 0.8372 0.8950 0.9239 0.9352 0.9550 0.9667 0.9571

metapath2vec 0.4173 0.5975 0.8327 0.9011 0.9400 0.9522 0.9537 0.9725 0.9815 0.9857

metapath2vec++ 0.4331 0.6192 0.8336 0.9032 0.9463 0.9582 0.9574 0.9700 0.9741 0.9786

Table 3: Multi-class author node classi�cation results in AMiner data.

Metric Method 5% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Macro-F1

DeepWalk/node2vec 0.7153 0.7222 0.7256 0.7270 0.7273 0.7274 0.7273 0.7271 0.7275 0.7275

LINE (1st+2nd) 0.8849 0.8886 0.8911 0.8921 0.8926 0.8929 0.8934 0.8936 0.8938 0.8934

PTE 0.8898 0.8940 0.897 0.8982 0.8987 0.8990 0.8997 0.8999 0.9002 0.9005

metapath2vec 0.9216 0.9262 0.9292 0.9303 0.9309 0.9314 0.9315 0.9316 0.9319 0.9320

metapath2vec++ 0.9107 0.9156 0.9186 0.9199 0.9204 0.9207 0.9207 0.9208 0.9211 0.9212

Micro-F1

DeepWalk/node2vec 0.7312 0.7372 0.7402 0.7414 0.7418 0.7420 0.7419 0.7420 0.7425 0.7425

LINE (1st+2nd) 0.8936 0.8969 0.8993 0.9002 0.9007 0.9010 0.9015 0.9016 0.9018 0.9017

PTE 0.8986 0.9023 0.9051 0.9061 0.9066 0.9068 0.9075 0.9077 0.9079 0.9082

metapath2vec 0.9279 0.9319 0.9346 0.9356 0.9361 0.9365 0.9365 0.9365 0.9367 0.9369

metapath2vec++ 0.9173 0.9217 0.9243 0.9254 0.9259 0.9261 0.9261 0.9262 0.9264 0.9266

4.2 Multi-Class Classi�cation
For the classi�cation task, we use third-party labels to determine

the class of each node. First, we match the eight categories
2

of

venues in Google Scholar
3

with those in AMiner data. Among all of

the 160 venues (20 per category × 8 categories), 133 of them are suc-

cessfully matched and labeled correspondingly (Most of unmatched

venues are pre-print venues, such as arXiv). Second, for each au-

thor who published in these 133 venues, his / her label is assigned

to the category with the majority of his / her publications, and a

tie is resolved by random selection among the possible categories;

246,678 authors are labeled with research category.

Note that the node representations are learned from the full

dataset. �e embeddings of above labeled nodes are then used as

the input to a logistic regression classi�er. In the classi�cation

experiments, we vary the size of the training set from 5% to 90%

and the remaining nodes for testing. We repeat each prediction

experiment ten times and report the average performance in terms

of both Macro-F1 and Micro-F1 scores.

2
1. Computational Linguistics, 2. Computer Graphics, 3. Computer Networks &

Wireless Communication, 4. Computer Vision & Pa�ern Recognition, 5. Computing

Systems, 6. Databases & Information Systems, 7. Human Computer Interaction, and 8.

�eoretical Computer Science.

3
h�ps://scholar.google.com/citations?view op=top venues&hl=en&vq=eng. Accessed

on February, 2017.

Results. Tables 2 and 3 list the eight-class classi�cation results.

Overall, the proposed metapath2vec and metapath2vec++ models

consistently and signi�cantly outperform all baselines in terms

of both metrics. When predicting for the venue category, the ad-

vantage of both metapath2vec and metapath2vec++ are particular

strong given a small size of training data. Given 5% of nodes as train-

ing data, for example, metapath2vec and metapath2vec++ achieve

0.08–0.23 (relatively 35–319%) improvements in terms of Macro-

F1 and 0.13–0.26 (relatively 39–145%) gains in terms of Micro-F1

over DeepWalk / node2vec, LINE, and PTE. When predicting for

authors’ categories, the performance of each method is relatively

stable when varying the train-test split. �e constant gain achieved

by the proposed methods is around 2-3% over LINE and PTE, and

∼20% over DeepWalk / node2vec.

In summary, metapath2vec and metapath2vec++ learn signi�-

cantly be�er heterogeneous node embeddings than current state-

of-the-art methods, as measured by multi-class classi�cation perfor-

mance. �e advantage of the proposed methods lies in their proper

consideration and accommodation of the network heterogeneity

challenge—the existence of multiple types of nodes and relations.

Parameter sensitivity. In skip-gram-based representation learn-

ing models, there exist several common parameters (see Section

4.1). We conduct a sensitivity analysis of metapath2vec++ to these

parameters. Figure 3 shows the classi�cation results as a function

https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng
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Figure 3: Parameter sensitivity in multi-class node classi�cation. 50% as training data and the remaining as test data.

Table 4: Node clustering results (NMI) in AMiner data.

methods venue author

DeepWalk/node2vec 0.1952 0.2941

LINE (1st+2nd) 0.8967 0.6423

PTE 0.9060 0.6483

metapath2vec 0.9274 0.7470

metapath2vec++ 0.9261 0.7354

of one chosen parameter when the others are controlled for. In

general, we �nd that in Figures 3(a) and 3(b) the number of walksw
rooting from each node and the length l of each walk are positive to

the author classi�cation performance, while they are surprisingly

inconsequential for inferring venue nodes’ categories as measured

by Macro-F1 and Micro-F1 scores. �e increase of author clas-

si�cation performance converges as w and l reach around 1000

and 100, respectively. Similarly, Figures 3(c) and 3(d) suggest that

the number of embedding dimensions d and neighborhood size

k are again of relatively li�le relevance to the predictive task for

venues, and k on the other hand is positively crucial to determine

the class of a venue. However, the descending lines as the increase

of k for author classi�cations imply that a smaller neighborhood

size actually produces the best embeddings for separating authors.

�is �nding di�ers from those in a homogeneous environment [8],

wherein the neighborhood size generally shows a positive e�ect

on node classi�cation.

According to the analysis, metapath2vec++ is not strictly sen-

sitive to these parameters and is able to reach high performance

under a cost-e�ective parameter choice (the smaller, the more ef-

�cient). In addition, our results also indicate that those common

parameters show di�erent functions for heterogeneous network

embedding with those in homogeneous network cases, demonstrat-

ing the request of di�erent ideas and solutions for heterogeneous

network representation learning.

4.3 Node Clustering
We illustrate how the latent representations learned by embed-

ding methods can help the node clustering task in heterogeneous

networks. We employ the same eight-category author and venue

nodes used in the classi�cation task above. �e learned embeddings

by each method is input to a clustering model. Here we leverage

the k-means algorithm to cluster the data and evaluate the cluster-

ing results in terms of normalized mutual information (NMI) [26].

In addition, we also report metapath2vec++’s sensitivity with re-

spect to di�erent parameter choices. All clustering experiments are

conducted 10 times and the average performance is reported.

Results. Table 4 shows the node clustering results as measured

by NMI in the AMiner CS data. Overall, the table demonstrates

that metapath2vec and metapath2vec++ outperform all the compar-

ative methods. When clustering for venues, the task is trivial as

evident from the high NMI scores produced by most of the methods:

metapath2vec, metapath2vec++, LINE, and PTE. Nevertheless, the

proposed two methods outperform LINE and PTE by 2–3%. �e

author clustering task is more challenging than the venue case, and

the gain obtained by metapath2vec and metapath2vec++ over the

best baselines (LINE and PTE) is more signi�cant—around 13–16%.

In summary, metapath2vec and metapath2vec++ generate more

appropriate embeddings for di�erent types of nodes in the network

than comparative baselines, suggesting their ability to capture and

incorporate the underlying structural and semantic relationships

between various types of nodes in heterogeneous networks.

Parameter sensitivity. Following the same experimental proce-

dure in classi�cation, we study the parameter sensitivity of meta-
path2vec++ as measured by the clustering performance. Figure 4

shows the clustering performance as a function of each of the four

parameters when �xing the other three. From Figures 4(a) and 4(b),

we can observe that the balance between computational cost (a

small w and l in x-axis) and e�cacy (a high NMI in y-axis) can be

achieved at around w = 800∼1000 and l = 100 for the clustering of

both authors and venues. Further, di�erent from the positive e�ect

of increasing w and l on author clustering, d and k are negatively

correlated with the author clustering performance, as observed from

Figures 4(c) and 4(d). Similarly, the venue clustering performance

also shows an descending trend with an increasing d , while on the

other hand, we observe a �rst-increasing and then-decreasing NMI

line when k is increased. Both �gures together imply that d = 128

and k = 7 are capable of embedding heterogeneous nodes into latent

space for promising clustering outcome.

4.4 Case Study: Similarity Search
We conduct two case studies to demonstrate the e�cacy of our

methods. We select 16 top CS conferences from the corresponding
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Figure 4: Parameter sensitivity in clustering.
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Figure 5: 2D t-SNE projections of the 128D embeddings of
48 CS venues, three each from 16 sub-�elds.

sub-�elds in the AMiner CS data and another 5 from the DBIS data.

�is results in a total of 21 query nodes. We use cosine similarity

to determine the distance (similarity) between the query node and

the remaining others.

Table 5 lists the top ten similar results for querying the 16 leading

conferences in corresponding computer science sub-�elds. One can

observe that for the query “ACL”, for example, metapath2vec++
returns venues with the same focus—natural language processing,

such as EMNLP (1
st

), NAACL (2
nd

), Computational Linguistics

(3
rd

), CoNLL (4
th

), COLING (5
th

), and so on. Similar performance

can be also achieved when querying the other conferences from

various �elds. More surprisingly, we �nd that in most cases, the

top three results cover venues with similar prestige to the query

one, such as STOC to FOCS in theory, OSDI to SOSP in system,

HPCA to ISCA in architecture, CCS to S&P in security, CSCW to

CHI in human-computer interaction, EMNLP to ACL in NLP, ICML

to NIPS in machine learning, WSDM to WWW in Web, AAAI to

IJCAI in arti�cial intelligence, PVLDB to SIGMOD in database, etc.

Similar results can also be observed in Tables 6 and 1, which show

the similarity search results for the DBIS network.

4.5 Case Study: Visualization
We employ the TensorFlow embedding projector to further visualize

the low-dimensional node representations learned by embedding
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Figure 6: Scalability ofmetapath2vec andmetapath2vec++.

models. First, we project multiple types of nodes—16 top CS confer-

ences and corresponding top-pro�le authors—into the same space in

Figure 1. From Figure 1(d), we can clearly see that metapath2vec++
is able to automatically organize these two types of nodes and im-

plicitly learn the internal relationships between them, indicated by

the similar directions and distances of the arrows connecting each

pair of them, such as J. Dean→ OSDI, C. D. Manning→ ACL, R. E.

Tarjan→ FOCS, M. I. Jordan→ NIPS, and so on. In addition, these

two types of nodes are clearly located in two separate and straight

columns. Neither of these two results can be made by the recent

network embedding models in Figures 1(a) and 1(b).

As to metapath2vec, instead of separating the two types of nodes

into two columns, it is capable of grouping each pair of one venue

and its corresponding author closely, such as R. E. Tarjan and FOCS,

H. Jensen and SIGGRAPH, H. Ishli and CHI, R. Agrawal and SIG-

MOD, etc. Together, both models arrange nodes from similar �elds

close to each other and dissimilar ones distant from each other, such

as the “Core CS” cluster of systems (OSDI), networking (SIGCOMM),

security (S&P), and architecture (ISCA), as well as the “Big AI” clus-

ter of data mining (KDD), information retrieval (SIGIR), arti�cial

intelligence (AI), machine learning (NIPS), NLP (ACL), and vision

(CVPR). �ese groupings are also re�ected by their corresponding

author nodes.

Second, Figure 5 visualizes the latent vectors—learned by meta-
path2vec++—of 48 venues used in similarity search of Section 4.4,



Table 5: Case study of similarity search in AMiner Data

Rank ACL NIPS IJCAI CVPR FOCS SOSP ISCA S&P ICSE SIGGRAPH SIGCOMM CHI KDD SIGMOD SIGIR WWW

0 ACL NIPS IJCAI CVPR FOCS SOSP ISCA S&P ICSE SIGGRAPH SIGCOMM CHI KDD SIGMOD SIGIR WWW

1 EMNLP ICML AAAI ECCV STOC TOCS HPCA CCS TOSEM TOG CCR CSCW SDM PVLDB ECIR WSDM

2 NAACL AISTATS AI ICCV SICOMP OSDI MICRO NDSS FSE SI3D HotNets TOCHI TKDD ICDE CIKM CIKM

3 CL JMLR JAIR IJCV SODA HotOS ASPLOS USENIX S ASE RT NSDI UIST ICDM DE Bull IR J TWEB

4 CoNLL NC ECAI ACCV A-R SIGOPS E PACT ACSAC ISSTA CGF CoNEXT DIS DMKD VLDBJ TREC ICWSM

5 COLING MLJ KR CVIU TALG ATC ICS JCS E SE NPAR IMC HCI KDD E EDBT SIGIR F HT

6 IJCNLP COLT AI Mag BMVC ICALP NSDI HiPEAC ESORICS MSR Vis TON MobileHCI WSDM TODS ICTIR SIGIR

7 NLE UAI ICAPS ICPR ECCC OSR PPOPP TISS ESEM JGT INFOCOM INTERACT CIKM CIDR WSDM KDD

8 ANLP KDD CI EMMCVPR TOC ASPLOS ICCD ASIACCS A SE VisComp PAM GROUP PKDD SIGMOD R TOIS TIT

9 LREC CVPR AIPS T on IP JAlG EuroSys CGO RAID ICPC GI MobiCom NordiCHI ICML WebDB IPM WISE

10 EACL ECML UAI WACV ITCS SIGCOMM ISLPED CSFW WICSA CG IPTPS UbiComp PAKDD PODS AIRS WebSci

Table 6: Case study of similarity search in DBIS Data

Rank KDD SIGMOD SIGIR WWW WSDM

0 KDD SIGMOD SIGIR WWW WSDM

1 SDM PVLDB TREC CIKM WWW

2 ICDM ICDE CIKM SIGIR SIGIR

3 DMKD TODS IPM KDD KDD

4 KDD E VLDBJ IRJ ICDE AIRWeb

5 PKDD PODS ECIR TKDE CIKM

6 PAKDD EDBT TOIS VLDB WebDB

7 TKDE CIDR WWW TOTT ICDM

8 CIKM TKDE JASIST SIGMOD VLDB

9 ICDE ICDT JASIS WebDB VLDBJ

10 TKDD DE Bull SIGIR F WISE SDM

three each from 16 sub-�elds. We can see that conferences from

the same domain are geographically grouped to each other and

each group is well separated from others, further demonstrating

the embedding ability of metapath2vec++. In addition, similar to the

observation in Figure 1, we can also notice that the heterogeneous

embeddings are able to unveil the similarities across di�erent do-

mains, including the “Core CS” sub-�eld cluster at the bo�om right

and the “Big AI” sub-�eld cluster at the top right.

�us, Figures 1 and 5 intuitively demonstrate metapath2vec++’s

novel capability to discover, model, and capture the underlying

structural and semantic relationships between multiple types of

nodes in heterogeneous networks.

4.6 Scalability
In the era of big (network) data, it is necessary to demonstrate

the scalability of the proposed network embedding models. �e

metapath2vec and metapath2vec++ methods can be parallelized by

using the same mechanism as word2vec and node2vec [8, 18]. All

codes are implemented in C and C++ and our experiments are

conducted in a computing server with �ad 12 (48) core 2.3 GHz

Intel Xeon CPUs E7-4850. We run experiments on the AMiner CS

data with the default parameters with di�erent number of threads,

i.e., 1, 2, 4, 8, 16, 24, 32, 40, each of them utilizing one CPU core.

Figure 6 shows the speedup of metapath2vec & metapath2vec++
over the single-threaded case. Optimal speedup performance is

denoted by the dashed y = x line, which represents perfect distribu-

tion and execution of computation across all CPU cores. In general,

we �nd that both methods achieve acceptable sublinear speedups

as both lines are close to the optimal line. In speci�c, they can reach

11–12× speedup with 16 cores and 24–32× speedup with 40 cores

used. By using 40 cores, metapath2vec++’s learning process costs

only 9 minutes for embedding the full AMiner CS network, which is

composed of over 9 million authors with 3 million papers published

in more than 3800 venues. Overall, the proposed metapath2vec and

metapath2vec++ models are e�cient and scalable for large-scale

heterogeneous networks with millions of nodes.

5 RELATEDWORK
Network representation learning can be traced back to the usage of

latent factor models for network analysis and graph mining tasks

[10, 34], such as the application of factorization models for rec-

ommendation systems [14, 16], node classi�cation [32], relational

mining [19], and role discovery [9]. �is rich line of research focuses

on factorizing the matrix/tensor format (e.g., the adjacency matrix)

of a network, generating latent-dimension features for nodes or

edges in this network. However, the computational cost of decom-

posing a large-scale matrix/tensor is usually very expensive, and

also su�ers from its statistical performance drawback [8], making it

neither practical nor e�ective for addressing tasks in big networks.

With the advent of deep learning techniques, signi�cant e�ort

has been devoted to designing neural network-based representa-

tion learning models. For example, Mikolov et al. proposed the

word2vec framework—a two-layer neural network—to learn the

distributed representations of words in natural language [17, 18].

Building on word2vec, Perozzi et al. suggested that the “context”

of a node can be denoted by their co-occurrence in a random walk

path [22]. Formally, they put random walkers over networks to

record their walking paths, each of which is composed of a chain

of nodes that could be considered as a “sentence” of words in a text

corpus. More recently, in order to diversify the neighborhood of

a node, Grover & Leskovec presented biased random walkers—a

mixture of breadth-�rst and width-�rst search procedures—over

networks to produce paths of nodes [8]. With node paths gener-

ated, both works leveraged the skip-gram architecture in word2vec

to model the structural correlations between nodes in a path. In

addition, several other methods have been proposed for learning

representations in networks [4, 5, 11, 20, 23]. In particular, to learn

network embeddings, Tang et al. decomposed a node’s context

into �rst-order (friends) and second-order (friends’ friends) prox-

imity [30], which was further developed into a semi-supervised

model PTE for embedding text data [29].



Our work furthers this direction of investigation by designing

the metapath2vec and metapath2vec++ models to capture hetero-

geneous structural and semantic correlations exhibited from large-

scale networks with multiple types of nodes, which can not be

handled by previous models, and applying these models to a variety

of network mining tasks.

6 CONCLUSION
In this work, we formally de�ne the representation learning prob-

lem in heterogeneous networks in which there exist diverse types

of nodes and links. To address the network heterogeneity chal-

lenge, we propose the metapath2vec and metapath2vec++ meth-

ods. We develop the meta-path-guided random walk strategy in

a heterogeneous network, which is capable of capturing both the

structural and semantic correlations of di�erently typed nodes and

relations. To leverage this method, we formalize the heterogeneous

neighborhood function of a node, enabling the skip-gram-based

maximization of the network probability in the context of multiple

types of nodes. Finally, we achieve e�ective and e�cient optimiza-

tion by presenting a heterogeneous negative sampling technique.

Extensive experiments demonstrate that the latent feature repre-

sentations learned by metapath2vec and metapath2vec++ are able to

improve various heterogeneous network mining tasks, such as sim-

ilarity search, node classi�cation, and clustering. Our results can

be naturally applied to real-world applications in heterogeneous

academic networks, such as author, venue, and paper search in

academic search services.

Future work includes various optimizations and improvements.

For example, 1) the metapath2vec and metapath2vec++ models, as

is also the case with DeepWalk and node2vec, face the challenge

of large intermediate output data when sampling a network into a

huge pile of paths, and thus identifying and optimizing the sampling

space is an important direction; 2) as is also the case with all meta-

path-based heterogeneous network mining methods, metapath2vec
and metapath2vec++ can be further improved by the automatic

learning of meaningful meta-paths; 3) extending the models to

incorporate the dynamics of evolving heterogeneous networks; and

4) generalizing the models for di�erent genres of heterogeneous

networks.
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