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Introduction

Statistics and Algebraic Statistics

At the beginning of a book on Algebraic Statistics it is undoubtedly a good

idea to give the reader some idea of the goals of the discipline.

A reader who is already familiar with the basics of Statistics and Proba-

bility is probably curious about what the prefix ”Algebraic” might mean. As

we will see, Algebraic Statistics has its own problems which are somewhat

different from the problems that classical Statistics studies.

We will illustrate this point of view with some examples which consider

well known statistical models and problems. At the same time we will point

out the difference in the two approaches to these examples.

The treatment of random variables

The initial concern of classical Statistics is the behavior of one random

variable X. Usually X is identified with a function whose domain is the real

numbers. This is clearly an approximation. For example, if one records the

height of the members of a population, it is unlikely that the measure goes

much further than the second decimal digit (assume that the unit is 1 meter).

So, the corresponding graph is a histogram, with basic interval 0.01 meters.

This is translated to a continuous variable, by taking the (experimental) limit

as the basic interval is shortened (and the size of the population increases).

For random variables of this type, the first natural distribution that one

expects is the celebrated Gaussian distribution, which corresponds to the

i
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function

X(t) =
1

σ
√

1π
e
−(t−µ)2

2σ2

where µ and σ are parameters which describe the shape of the curve. (Of

course, other types of distributions are possible, in connection with special

behaviors of the random variable X(t).)

The first goal of classical Statistics is the study of the shape of the function

X(t), together with the determination of its numerical parameters.

When two or more variables are considered in the framework of classical

Statistic, their interplay can be studied with several techniques. For instance,

if we consider both the heights and the weights of the members of a popula-

tion and our goal is a proof of the (obvious) fact that the two variables are

deeply connected, then we can consider the distribution over pairs (height,

weight), which is represented by a bivariate Gaussian, in order to detect the

existence of the connection.

The starting point of Algebraic Statistic is quite different. Instead of

considering variables as continuous functions, Algebraic Statistics prefers to

deal with a finite (and possibly small) range of values for the variable X. So,

Algebraic Statistic emphasizes the discrete nature of the starting histogram,

and tends to group together values in wider ranges, instead of splitting them.

A distribution over the variable X is thus identified with a discrete function

(to begin with, over the integers).

Algebraic Statistics is rarely interested in situations where just one random

variable is concerned.

Instead, networks containing several random variables are considered and

some relevant questions, raised in this perspective, are:

� are there connections between the two or more random variables of the

network?

� which kind of connection is suggested by a set of data?
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� can one measure the complexity of the connections in a given network

of interacting variables?

Since, from the new point of view, we are interested in determining the

relations between discrete functions, in Algebraic Statistics a distribution

over a set of variables is usually represented by matrices, when two variables

are involved, or multidimensional matrices (i.e. tensors), as the number of

variables increases.

It is a natural consequence of the previous discussion, that while the main

mathematical tools for classical Statistics are based on Multivariate Analysis

and Measure Theory, the underlying mathematical machinery for Algebraic

Statistics is principally based on the Linear and Multilinear Algebra of ten-

sors (over the integers, at the start, but quickly one considers both real and

complex tensors).

Relations among variables

Just to give an example, let us consider the behavior of a population after

the introduction of a new medicine.

Assume that a population is affected by a disease, which dangerously alters

the value of a glycemic indicator in the blood. This dangerous condition

is partially treated with the new drug. Assume that the purpose of the

experiment is to detect the existence of a substantial improvement in the

health of the patients.

In classical Statistics, one considers the distribution of the random vari-

able X1 = the value of the glycemic indicator over a selected population of

patients before the delivery of the drug, and the random variable X2 = the

value of the glycemic indicator of patients after the delivery of the drug.

Both distributions are likely to be represented by Gaussians, the first one

centered at an abnormally high value of the glycemic indicator, the second

one centered at a (hopefully) lower value. The comparison between the two

distributions aims to detect if (and how far) the descent of the recorded
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values of the glycemic indicator is statistically meaningful, i.e. if it can be

distinguished from the natural underlying ground noise. The celebrated Stu-

dent’s t-test is the world-accepted tool for comparing the two Gaussians and

for determining the existence of a statistically significant response.

The approach of Algebraic Statistics to the same problem is usually along

the following lines: The population is divided into two subsets, one of which

is treated with the drug, while the other one is treated with traditional meth-

ods. Then, the values of the glycemic indicator are divided in classes (in the

roughest case just two classes, i.e. a threshold which separates two classes

is established). After some passage of time, one records the distribution of

the population in the four resulting categories (treated + under-threshold,

treated + over-threshold . . . ) which determines a 2× 2 matrix, whose prop-

erties encode the existence of a relation between the new treatment and an

improved normalization of the value of the glycemic indicator (this is just

to give an example: in the real world, a much more sophisticated analysis is

recommended!)

Bernoulli binary models

Another celebrated model, which is different from the Gaussian distribu-

tion, and is often introduced at the beginning of a course in Statistics, is the

so-called Bernoulli model over one binary variable.

Assume we are given an object that can assume only two states. A coin,

with the two traditional states H (heads) and T (tails), is a good represen-

tation. One has to bear in mind, however, that in the real world, binary

objects usually correspond to biased coins, i.e. coins for which the expected

distribution over the two states is not even.

If p is the probability of obtaining a result (say H) by throwing the coin,

then one can roughly estimate p by throwing the coin several times and

determining the ratio

number of throws giving H

total number of throws
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but this is usually considered too näıve. Instead, one divides the total set

of throws into several packages, each consisting of r throws, and determines

for how many packages, denoted q(t), one obtained H exactly t times. The

value of the constant p is thus determined by Bernoulli’s formula

q(t) = pt(1− p)r−t.

By increasing the number of total throws (and thus increasing the num-

ber of packages and the number of throws r in each packages) the function

q(t) tends to a real function, which can be treated with the usual analytic

methods.

Notice that in this way, at the end of the process, the discrete variable

Coin is substituted by a continuous variable q(t). Usually one even goes one

step further, by substituting the variable q with its logarithm, ending up

with a linear description.

Algebraic Statistics is scarcely interested in knowing how a single given

coin is biased. Instead, the main goal of Algebraic Statistics is to under-

stand the connections between the behavior of two coins. Or, better, the

connections between the behavior of a collection of coins.

Consequently, in Algebraic Statistics one defines a collection of variables,

one for each coin, and defines a distribution by counting the records in which

the variables X1, X2, . . . , Xn have a fixed combination of states. The distri-

bution is transformed into a tensor of type 2 × 2 × · · · × 2. All coins can

be biased, with different loads: this does not matter too much. In fact, the

main questions that one expects to solve are:

� are there connections between the outputs of two or more coins?

� which kind of connection is suggested by the distribution?

� can one divide the collection of coins in clusters, such that the behavior

of coins of the same cluster are similar?
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Answers are expected from an analysis of the associated tensor, i.e. in the

framework of Multilinear Algebra.

The importance of this last question can be better understood if one re-

places coins with positions in a composite digital signal. Each position has,

again, two possible states, 0 and 1. If the signal is the result of the superpo-

sition of many elementary signals, coming from different sources, and digits

coming from the same source behave similarly, then the division of the signal

in clusters yields the reconstruction of the original message that each source

issued.

Splitting in types

Of course, the separation of several phenomena that are mixed together

in a given distribution is also possible using methods of classical Statistics.

In a famous analysis of 1984, the biologist Karl Pearson made a statistical

study of the shape of a population of crabs. He constructed the histogram for

the ratio between the ”forehead” breadth and the body length for 1000 crabs,

sampled in Naples, Italy by W.F.R. Weldon. The resulting approximating

curve was quite different from a Gaussian and presented a clear asymmetry

around the average value. The shape of the function suggested the existence

of two distinct types of crabs, each determining its own Gaussian, that were

mixed together in the observed histogram. Pearson succeeded in separating

the two Gaussians with the method of moments. Roughly speaking he intro-

duced new statistical variables, induced by the same collection of data, and

separated the types by studying the interactions between the Gaussians of

these new variables.

This is a first instance of a computation which takes care of several pa-

rameters of the population under analysis, though the variables are derived

from the same set of data. Understanding the interplay between the variables

provides the fundamental step for a qualitative description of the population

of crabs.

From the point of view of Algebraic Statistics, one could obtain the same
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description of the two types which compose the population, by adding vari-

ables representing other ratios between lengths in the body of crabs, and

analyzing the resulting tensor.

Mixture models

Summarizing, Algebraic Statistics becomes useful when the existence and

the nature of the relations between several random variables is explored.

We stress that knowing the shape of the interaction between random vari-

ables is a central problem for the description of phenomena in Biology, Chem-

istry, Social Sciences etc. Models for the description of the interactions are

often referred to as Mixture Models. Thus, mixture models are a fundamental

object of study in Algebraic Statistics.

Perhaps, the most famous and easily described mixture models are the

Markov chains, in which the set of variables is organized in a totally ordered

chain, and the behavior of the variable Xi is only influenced by the behavior

of the variable Xi−1 (usually this interaction depends on a given matrix).

Of course, much more complicated types of networks are expected when

the complexity of the collection of variables under analysis increases. So,

when one studies composite signals in the real world, or pieces of a DNA

chain, or regions in a neural tissue, higher level models are likely to be nec-

essary for an accurate description of the phenomenon.

One thus moves from the study of Markov chains

X1 X2 X3 X4

M1 M2 M3
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to the study of Markov trees

X1

X2 X3

X4 X5 X6 X7

M1 M2

M3 M4 M5 M6

and the study of neural nets

X1 X2

X3

M1

M3 M2

In classical Statistics, the structure of the connections among variables

is often a postulate. In Algebraic Statistics, determining the Combinatorics

and the Topology of the network is a fundamental task. On the other hand,

the time-depending activating functions that transfer information from one

variable to the next ones, deeply studied by classical Statistics, are of no

immediate interest for Algebraic Statistics which, at first, considers steady

states of the configuration of variables.

The Multilinear Algebra behind the aforementioned models is not com-

pletely understood. It requires a deep analysis of subsets of linear spaces

described by parametric or implicit polynomial equations. This is the reason

why, at a certain point, methods of Algebraic Geometry are invoked to push

the analysis further.

Conclusion
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Algebraic Statistics is focused on aspects of the theory of random variables

which are different from the targets of classical Statistics.

The discipline is currently living in a rapidly expanding net of new insights

and new areas of application. Our knowledge of what we can do in this area is

constantly increasing and it is reasonable to hope that many of the problems

introduced in this book will soon be solved and, if not solved soon, without

doubt will be better understood. We feel that the time is right to provide

a systematic foundation for a field that promises to act as a stimulus for

mathematical research in Statistics, and also as a source of suggestions for

further developments in Multilinear Algebra and Algebraic Geometry.
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Part I

Algebraic Statistics
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Chapter 1

Systems of Random Variables
and Distributions

1.1 Systems of random variables

This section contains the basic definitions with which we will construct our

statistical theory.

It is important to point out right away that in the field of Algebraic

Statistics, a still rapidly developing area of study, the basic definitions are

not yet standardized. Therefore, the definitions which we shall use in this

text can differ significantly (more in form than in substance) from those of

other texts.

Definition 1.1.1. A random variable is a variable x taking values in a finite

non-empty set of symbols, denoted A(x). The set A(x) is called the alphabet

of x or the set of states of x. We will say that every element of A(x) is a

state of the variable x.

A system of random variables S is a finite set of random variables.

The condition of finiteness, required both for the alphabet of a random

variable and the number of variables of a system, is typical of Algebraic

Statistics. In other statistical situations this hypothesis is often not present.

5
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Definition 1.1.2. A subsystem of a system S of random variables is a system

defined by a subset S ′ ⊂ S.

Example 1.1.3. The simplest examples of a system of random variables are

those containing a single random variable. A typical example is obtained by

thinking of a die x as a random variable, i.e. as the unique element of S. Its

alphabet is A(x) = {1, 2, 3, 4, 5, 6}.
Another familiar example comes by thinking of the only element of S as

a coin c with alphabet A(c) = {H,T} (heads and tails).

Example 1.1.4. On internet sites about soccer betting one finds systems

in which each random variable has three states. More precisely the set S

of random variables are (say) all the professional soccer games in a given

country. For each random variable x, (i.e. game), its alphabet is A(x) =

{1, 2, T}. The random variable takes value ”1” if the game was won by the

home team, value ”2” if the game was won by the visiting team and value

”T” if the game was a tie.

Example 1.1.5. a) We can, similar to Example 1.1.3, construct a system

S with two random variables, namely with two dice {x1, x2}, both having

alphabet A(xi) = {1, 2, 3, 4, 5, 6}.
b) An example of another system of random variables T , closely related to

the previous one but different, is given by taking a single random variable

as the ordered pair of dice x = (x1, x2) and, as alphabet A(x), all possible

values obtained by throwing the dice simultaneously: {(1, 1), . . . (1, 6), . . . ,

(6, 1), (6, 2), . . . , (6, 6)}.
c) Another example W , still related to the two above (but different), is

given by taking as system the unique random variable the set consisting of

two dice z = {x1, x2} and as alphabet, A(z), the sum of the values of the

two dice after throwing them simultaneously: A(z) = {2, 3, 4, . . . , 12}.

Remark 1.1.6. The random variables of the systems S, T and W might

seem, at first glance, to be the same, but it is important to make clear that
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they are very different. In S there are two random variables while in b)

and c) there is only one. Also notice that in T we have chosen an ordering

of the two dice, while in W the random variable is an unordered set of two

dice. With example a) there is nothing stopping us from throwing the die

x1, say, 20 times and the die x2 ten times. However, in both b) and c) the

dice are each thrown the same number of times.

Example 1.1.7. There are many naturally occurring examples of systems

with many random variables. In fact, some of the most significant ones come

from applications in economics and biology and have an astronomical number

of variables.

For example, in economics and in market analysis, there are systems with

one random variable for each company which trades in a particular market.

It is easy to see that, in this case, we can have thousands, even tens of

thousands, of variables.

In biology, very important examples come from studying systems in which

the random variables represent hundreds (or thousands) of positions in the

DNA sequence of one or several species. The alphabet of each variable con-

sists of the four basic ingredients of DNA: Adenine, Cytosine, Guanine and

Thymine. As a shorthand notation, one usually denotes the alphabet of such

random variables as {A,C,G, T}).
In this book, we will refer to the systems arising from DNA sequences, as

DNA-systems.

Example 1.1.8. For cultural reasons (one of the authors was born and lives

in Siena!), we will have several examples in the text of systems describing

probabilistic events related to the famous and colorful Sienese horse race

called the Palio di Siena. Horses which run in the Palio represent the vari-

ous medieval neighborhoods of the city (called contrade) and the Palio is a

substitute for the deadly feuds which existed between the various sections of

the city.
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The names of the neighborhoods are listed below with a shorthand letter

abbreviation for each of them:

Aquila (eagle) (symbol: A) Bruco (catepillar) (symbol: B)
Chiocciola (snail) (symbol: H) Civetta (little owl) (symbol: C)

Drago (dragon) (symbol: D) Giraffa (giraffe) (symbol: G)
Istrice (crested porcupine) (symbol: I) Leocorno (unicorn) (symbol: E)
Lupa (she-wolf) (symbol: L) Nicchio (conch) (symbol: N)
Oca (goose) (symbol: O) Onda (wave) (symbol: Q)

Pantera (panther) (symbol: P) Selva (forest) (symbol: S)
Tartuca (tortoise) (symbol: R) Torre (tower) (symbol: T)

Valdimontone (valley of the ram) (symbol: M).

Definition 1.1.9. A random variable x of a system S is called a boolean

variable if its alphabet has cardinality 2. A system is boolean if all its random

variables are boolean.

Remark 1.1.10. The states of a boolean random variable can be thought

of as the pair of conditions (true, false). As a matter of fact the standard

alphabet of a boolean random variable can be thought of as the elements

of the finite field Z2, where 1 = true and 0 = false (this is our convention;

be careful: in some texts this notation is reversed!). Other alphabets, such

as heads-tails or even-ood, are also often used for the alphabets of boolean

random variables.

Definition 1.1.11. A map or morphism between systems S and T of random

variables is a pair f = (F,G) where F is a function F : S → T and, for all

x ∈ S, G defines a function between alphabets G(x) : A(x)→ A(F (x)).

The terminology used for functions can be transferred to maps of system

of random variables. Thus we can have injective maps ( in which case both

F and each of the G(x) are injective), surjective maps (in which case both

F and each of the G(x) are surjective), isomorphism (in which case both

F and all the maps G(x) are 1-1 correspondences). With respect to these

definitions, the systems of random variables form a category.

Example 1.1.12. If S ′ is a subsystem of S, the inclusion function S ′ → S

defines, in a obvious way, an injective map of systems. In this case, the maps

between alphabets are always represented by the identity map.
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Example 1.1.13. Let S = {x} be the system defined by a die as in Example

1.1.3 with alphabet {1, 2, 3, 4, 5, 6}. Let T be the system defined by T = {y},
with A(y) = {E,O} (E =even, O =odd). The function F : S → T , defined

by F (x) = y, and the function G : A(x) → A(y) defined by G(1) = G(3) =

G(5) = O and G(2) = G(4) = G(6) = E, define a surjective map from S to

T of systems of random variables.

The following definition will be of fundamental importance for the study

of the relationship between systems of random variables.

Definition 1.1.14. The (total) correlation of a system S of random vari-

ables {x1, . . . , xn} is the system ΠS = {x}, with a unique random variable

x = (x1, . . . , xn) (the cartesian product of the elements x1, . . . , xn of S).

Its alphabet is given by A(x1) × · · · × A(xn), the cartesian product of the

alphabets of the individual random variables.

Remark 1.1.15. It is very important to notice that the definition of the

total correlation uses the idea of a cartesian product. Moreover the idea of

the cartesian product requires that we fix an ordering of the variables in S.

Thus, the total correlation of a system is not uniquely determined, but it

changes as the chosen ordering of the random variables changes.

It is easy to see, however, that all the possible total correlations of the

system S are isomorphic.

Example 1.1.16. If S is a system with two coins c1, c2, each having alpha-

bet {H,T} then the only random variable in its total correlation, has an

alphabet with four elements {(T, T ), (T,H), (H,T ), (H,H)}. I.e. we have to

distinguish between the states (H,T ) and (T,H). This is how the ordering

of the coins enters into the definition of the random variable (c1, c2) of the

total correlation.

Example 1.1.17. Let S be the system of random variables consisting of

two dice, D1 and D2 each having alphabet the set {1, 2, 3, 4, 5, 6}. The total
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correlation of this system, ΠS, is the system with a unique random variable

D = (D1, D2) and alphabet the set {(i, j) | 1 ≤ i, j ≤ 6}. So, the alphabet

consists of 36 elements.

Now let T be the system whose unique random variable is the set x =

{D1, D2} and whose alphabet consists of the eleven numbers {2, 3, 4, ..., 11, 12}.
We can consider the surjective morphism of systems φ : ΠS → T which

takes the unique random variable of ΠS to the unique random variable of T

and takes the element (i, j) of the alphabet of the unique variable of ΠS to

i+ j in the alphabet of the unique variable of T .

Undoubtedly this morphism is familiar to us all!

Clearly if S is a system containing a single random variable, then X co-

incides with its total correlation.

Definition 1.1.18. Let f : S → T be a map of systems of random variables,

defined by F : S → T and G(x) : A(x) → A(F (x)) for all random variables

x ∈ S, and suppose that F is bijective i.e. S and T have the same number

of random variables.

Then f defines, in a natural way, a map Πf : ΠS → ΠT between the total

correlations as follows: for each state s = (s1, . . . , sn) of the unique variable

(x1, . . . , xn) of ΠS,

(Πf)(s) = (G(x1)(s1), . . . , G(xn)(sn)).

1.2 Distributions

One of the basic notions in the study of systems of random variables is the

idea of a distribution. Making the definition of a distribution precise will

permit us to explain clearly the idea of an observation on the random vari-

ables of a system. This latter concept is extremely useful for the description

of real phenomena.
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Definition 1.2.1. Let K be any set. A K-distribution on a system S with

random variables x1, . . . , xn, is a set of functions D = {D1, . . . , Dn}, where

for 1 ≤ i ≤ n, Di is a function from A(xi) to K.

Remark 1.2.2. In most concrete examples, K will be a numerical set, i.e.

some subset of C (the complex numbers).

The usual use of the idea of a distribution is to associate to each state

of a variable xi in the system S, the number of times (or the percentage of

times) such a state is observed in a sequence of observations.

Example 1.2.3. Let S be the system having as unique random variable a

coin c, with alphabet A(c) = {T,H} (the coin need not be honest!).

Suppose we throw the coin n times and observe the state T exactly dT times

and the state H exactly dH times (dT + dH = n). We can use those observa-

tions to get an N-distribution (N the natural numbers), denoted Dc, where

Dc : {T,H} → N by

Dc(T ) = dT , Dc(H) = dH .

One can identify this distribution with the element (dT , dH) ∈ N2.

We can define a different distribution, D′c on S (using the same series of

observations) as follows:

D′c : {T,H} → Q (the rational numbers),

where D′c(T ) = dT/n and D′c(H) = dH/n.

Example 1.2.4. Now consider the system S with two coins c1, c2, and with

alphabets A(ci) = {T,H}.
Again, suppose we simultaneously throw both coins n times and observe that

the first coin comes up with state T exactly d1 times and with state H exactly

e1 times, while the second coin comes up T exactly d2 times and comes up

H exactly e2 times.
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From these observations we can define an N-distribution, D = (D1, D2),

on S defined by the functions

D1 : {T,H} → N, D1(T ) = d1, D1(H) = e1,

D2 : {T,H} → N, D2(T ) = d2, D2(H) = e2

It is also possible to identify this distribution with the element

((d1, e1), (d2, e2)) ∈ N2 × N2.

It is also possible to use this series of observations to define a distribution

on the total correlation ΠS.

That system has a unique variable c = c1 × c2 = (c1, c2) with alphabet

A(c) = {TT, TH,HT,HH}. The N-distribution on ΠS we have in mind

associates to each of the four states how often that state appeared in the

series of throws.

Notice that if we only had the first distribution we could not calculate the

second one since we would not have known (solely from the functions D1 and

D2) how often each of the states in the second system were observed.

Definition 1.2.5. The set of K-distributions of a system S of random vari-

ables forms the space of distributions DK(S).

Example 1.2.6. Consider the DNA-system S with random variables pre-

cisely 100 fixed positions (or sites) p1, . . . , p100 on the DNA strand of a given

organism. As usual, each variable has alphabet {A,C,G, T}. Since each

alphabet has exactly four members, the space of Z-distributions on S is

D(S) = Z4 × · · · × Z4(100 times) = Z400.

Suppose we now collect 1, 000 organisms and observe which DNA com-

ponent occurs in site i. With the data so obtained we can construct a Z-

distribution D = {D1, . . . , D100} on S where Di associates to each of the

members of the alphabet A(pi) = {A,C,G, T} the number of occurrences of
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the corresponding component in the i−th position. Note that for each Di we

have

Di(A) +Di(C) +Di(G) +Di(T ) = 1, 000.

Remark 1.2.7. Suppose that S is a system with n random variables x1, . . . , xn

and that the cardinality of each alphabet A(xi) is exactly ai. As we have

said before, ai is simply the number of states that the random variable Xi

can assume.

With this notation, the K-distributions on S can be seen as points in the

space

Ka1 × · · · ×Kan .

We will often identify DK(S) with this space.

It is also certainly true that Ka1 ×· · ·×Kan = Ka1+···+an , and so it might

seem reasonable to say that this last is the set of distributions on S. However,

since there are so many ways to make this last identification we could easily

lose track of what a particular distribution did on a member of the alphabet

of one of the variables in S.

Remark 1.2.8. If S is a system with two variables x1, x2, whose alphabets

have cardinality (respectively) a1 and a2, then the unique random variable in

the total correlation ΠS has a1a2 states. Hence, as we said above, the space

of K-distributions on ΠS could be identified with Ka1 ×Ka2 .

Since we also wish to remember that the unique variable of ΠS arises as

the cartesian product of the variables of S, it is even more convenient to

think of DK(ΠS) = Ka1×Ka2 as the set of a1×a2 matrices with coefficients

in K.

Thus, for a distribution D on ΠS, we denote by Dij the value associated

to the state (i, j) of the unique variable, which corresponds to the states i of

x1 and j of x2.

For system with a bigger number of variables, we need to use multidimen-

sional matrices, commonly called tensors (see Definition 6.1.3).
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The study of tensors is thus strongly connected to the study of systems of

random variables when we want to fix relationships among the variables (i.e.

look at distributions on the system). In fact, the algebra (and geometry)

of spaces of tensors represents the point of connection between the study of

statistics on discrete sets and other disciplines, such as Algebraic Geometry.

The exploration of this connection is our main goal in this book. We will

take up that connection in another chapter.

Definition 1.2.9. Let S and T be two systems of random variables and

f = (F,G) : S → T a map of systems where F is a surjection. Let D be a

distribution on S, and D′ a distribution on T .

The induced distribution fD∗ on T (called the image distribution) is defined

as follows: for t a state of the variable y ∈ T :

(fD∗ )y(t) =
∑

x∈F−1(y),s∈G(x)−1(t)

Dx(s)

.

The induced distribution f ∗D′ on S (called the preimage distribution) is

defined as follows: for s a state of the variable x in S:

(f ∗D′)x(s) = D′F (x)(G(x)(s)).

We want to emphasize that distributions on a system of random variables

should, from a certain point of view, be considered as data on a problem.

Data from which one hopes to deduce other distributions or infer certain

physical, biological or economic facts about the system. We illustrate this

idea with the following example.

Example 1.2.10. In the city of Siena (Italy) two spectacular horse races

have been run every year since the seventeeth century, with a few interrup-

tions caused by the World Wars. Each race is called a Palio, and the Palio

takes place in the main square of the city. In addition there have been some

additional extraordinary Palios run from time to time. From the last in-

terruption, which ended in 1945, up to now (2014), a total number of 152
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Palios have taken place. Since the main square is large, but not enormous,

not every contrada can participate in every Palio. There is a method, partly

based on chance, that decides whether or not a contrada can participate in

a particular Palio.

Let’s build a system with 17 boolean random variables, one for each con-

trada. For each variable we consider the alphabet {0, 1}. The space of

Z-distributions of this system is Z2 × · · · × Z2 = Z34.

Let us define a distribution by indicating, for each contrada x, Dx(1) =

number of Palios where contrada x took part and Dx(0) = number of Palios

where contrada x did not participate. Thus we must always have Dx(0) +

Dx(1) = 152.

The data are given in the following table

x name Dx(1) Dx(0) x name Dx(1) Dx(0)

A Aquila 88 64 B Bruco 92 60
H Chiocciola 84 68 C Civetta 90 62
D Drago 95 57 G Giraffa 89 63
I Istrice 84 68 E Leocorno 99 52
L Lupa 89 63 N Nicchio 84 68
O Oca 87 65 Q Onda 84 68
P Pantera 96 56 S Selva 89 63
R Tartuca 91 61 T Torre 90 62
M V aldimontone 89 63

We see that the Leocorno (unicorn) contrada participated in the most

Palios while the contrada Istrice (crested porcupine), Nicchio (conch), Onda

(wave), Chiocciola (snail) participated in the fewest.

On the same system, we can consider another distribution E, where

Ex(1) = number of Palios that contrada x won and Ex(0) = number of

Palios that contrada x lost (non-participation is considered a loss). The

Win-Loss table is given below:
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x name Ex(0) Ex(1) x name Ex(0) Ex(1)

A Aquila 8 144 B Bruco 5 147
H Chiocciola 9 143 C Civetta 8 144
D Drago 11 141 G Giraffa 12 140
I Istrice 8 144 E Leocorno 9 143
L Lupa 5 147 N Nicchio 9 143
O Oca 14 138 Q Onda 9 143
P Pantera 8 144 S Selva 15 137
R Tartuca 10 142 T Torre 3 149
M V aldimontone 9 143

From the two tables we see that more participation in the Palios does not

necessarily imply more victories.

1.3 Measurements on a distribution

We now introduce the concepts of sampling and scaling on a distribution for

a system of random variables.

Definition 1.3.1. Let K be a numerical set and let D = (D1, . . . , Dn) be

a distribution on the system of random variables S = {x1, . . . , xn}. The

number

cD(xi) =
∑

s∈A(xi)

Di(s).

is called the sampling of the variable xi in D. We will say that D has constant

sampling if all variables in S have the same sampling in D.

A K-distribution D on S is called probabilistic if each xi ∈ S has sampling

equal to 1.

Remark 1.3.2. Let S be a system with random variables {x1, . . . , xn} and

let D = (D1, . . . , Dn) be a K-distribution on S, where K is a numerical field.
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If every variable xi has sampling cD(xi) 6= 0, we can obtain from D an

associated probabilistic distribution D̃ = (D̃1, . . . D̃n) defined as follows:

for all i and for all states s ∈ A(xi) set D̃i(s) =
Di(s)

cD(xi)
.

Remark 1.3.3. In Example 1.2.3, the distribution D′ is exactly the proba-

bilistic distribution associated to D (seen as a Q-distribution)

Convention. To simplify the notation in what follows and since we will

always be thinking of the set K as some set of numbers, usually clear from

the context, we won’t mention K again but will speak simply of a distribution

on a system S of random variables.

Warning. We want to remind the reader again that the basic notation in Al-

gebraic Statistics is far from being standardized. In particular, the notation

for a distribution is quite varied in the literature and in other texts.

E.g. if sij is the j−th state of the i−th variable xi of the system S, and

D is a distribution on S, we will denote this by writing Di(sij) as the value

of D on that state.

You will also find this number Di(sij) denoted by Dxi=sij .

Example 1.3.4. Suppose we have a tennis tournament with 8 players where

a player is eliminated as soon as that player loses a match. So, in the first

set of matches four players are eliminated and in the second two more are

eliminated and then we have the final match between the remaining two

players.

We can associate to this tournament a system with 8 boolean random

variables, one variable for each player. We denote by D the distribution

that, for each player xi, is defined as:

Di(0) = number of matches won ;
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Di(1) = number of matches lost.

Clearly the sampling c(xi) of every player xi represents the number of matches

played. For example, c(xi) = 3 iff xi is a finalist, while c(xi) = 1 for the four

players eliminated at the end of the first match. Hence D is not a distribution

with constant sampling.

Notice that this distribution doesn’t have any variable with sampling equal

to 0 and hence there is an associated probabilistic distribution D̃, which

represents the statistics of victories. For example, for the winner xk, one has

D̃k(0) = 1, D̃k(1) = 0.

Instead, for a player xj eliminated in the semi-final,

D̃j(0) = D̃j(1) =
1

2
.

While for a player xi eliminated after the first round we have

D̃i(0) = 0, D̃i(1) = 1.

The concept of an associated probabilistic distribution to a distribution D

is quite important in texts concerned with the analytic Theory of Probabil-

ity. This is true to such an extent that those texts work directly only with

probabilistic distributions.

This is not the path we have chosen in this text. For us the concept that

will be more important than a probabilistic distribution is the concept of

scaling. This latter idea is more useful in connecting the space of distributions

with the usual spaces in which Algebraic Geometry is done.

Definition 1.3.5. Let D = (D1, . . . , Dn) be a distribution on a system S

with random variables {x1, . . . , xn}. A distribution D′ = (D′1, . . . , D
′
n) is a

scaling of D if, for any x = xi ∈ S, there exists a constant λx ∈ K \ {0} such

that, for all states s ∈ A(x), D′x(s) = λxDx(s).
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Remark 1.3.6. Notice that the probabilistic distribution, D′, associated to

a distribution D is an example of a scaling of D, where λx = 1/c(x).

Note moreover that, give a scaling D′ of D, if D,D′ have the same sam-

pling, then they must coincide.

Remark 1.3.7. In the next chapters we will see that scaling doesn’t sub-

stantially change a distribution. Using a projectivization method, we will

consider two distributions ”equal” if they differ only by a scaling.

Proposition 1.3.8. Let f : S → T be a map of systems which is a bijection

on the sets of variables. Let D be a distribution on S and D′ a scaling of D.

Then fD
′
∗ is a scaling of fD∗ .

Proof. Let y be a variable of T and let t ∈ A(y). Since f is a bijection there

is a unique x ∈ S for which f(x) = y. Then by definition we have

(fD
′

∗ )y(t) =
∑
s∈A(x)

D′(s) =
∑
s∈A(x)

λiD(s) = λx(f
D
∗ )y(t).

1.4 Exercises for Chapter 1

Exercise 1. Let us consider the random system associated with the tennis

tournament, see Example 1.3.4.

Compute the probabilistic distribution for the finalist who did not win the

tournament.

Compute the probabilistic distribution for a tournament with 16 partici-

pants.

Exercise 2. Let S be a random system with variables x1, . . . , xn and assume

that all the variables have the same alphabet A = {a1, . . . , am}. Then one

can create the dual system S ′ by taking a1, . . . , am as variables, each ai with

alphabet X = {x1, . . . , xn}.



20 Cristiano Bocci, Luca Chiantini and Anthony V. Geramita

Determine the relation between the dimension of the spaces ofK-distributions

of S and S ′.

Exercise 3. Let S be a random system and let S ′ be a subsystem of S.

Determine the relation between the spaces of K-distributions of the cor-

relations of S and S ′.

Exercise 4. Let f : S → S ′ be a surjective map of random systems.

Prove that if a distribution D on S ′ has constant sampling, then the same

is true for f ∗D.

Exercise 5. One can define a partial correlation over a system S, by con-

necting only some of the variables.

For instance, if S has variables x1, . . . , xn and m < n, one can consider the

partia correlation on the variables x1, . . . , xm as a system T whose variables

are Y, xm+1, . . . xn, where Y stands for the variable x1×· · ·×xm, with alphabet

the product A(x1)× · · · × A(xm)

If S has variables c1, c2, c3, all of them with alphabet {T,H} (see Example

1.1.3), determine the space of K-distributions of the partial correlation T

with random variables c1 × c2 and c3
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Chapter 6

Tensors

6.1 Basic definitions

The main objects of multilinear algebra that we will use in the study of

Algebraic Statistics are multidimensional matrices, that we will call tensors.

One begins by observing that matrices are very versatile objects! One can

use them for keeping track of information in a systematic way. In this case the

entries in the matrix are “place holders” for the information. Any elementary

book on Matrix Theory will be filled with examples (ranging from uses in

Accounting, Biology and Combinatorics to uses in Zoology) which illustrate

how thinking of matrices in this way gives a very important perspective for

certain types of applied problems.

On the other hand, from a first course in Linear Algebra we know that

matrices can be used to describe important mathematical objects. For exam-

ple, one can use matrices to describe linear transformations between vector

spaces or to represent quadratic forms. Coupled with the calculus these ideas

form the backbone of much of mathematical thinking.

We want to now mention yet another way that matrices can be used:

namely to describe bilinear forms. To see this let M be an m × n matrix

with entries from the field K. Consider the two vector spaces Km and Kn

and suppose they have the standard bases. If v ∈ Km and w ∈ Kn we will

31



32 Cristiano Bocci, Luca Chiantini and Anthony V. Geramita

represent them as 1×m and 1×n matrices respectively, where the entries in

the matrices are the coordinates of v and w with respect to the chosen basis.

So, let

v =
(
a1 · · · am

)
and

w =
(
b1 · · · bn

)
.

The matrix M above can be used to define a function

Km ×Kn → K

described by

(v, w)→ vMwt

where the expression on the right is simply the multiplication of three ma-

trices (t denoting matrix transpose). Notice that this function is linear both

in Km and in Kn , and hence is called a bilinear form.

On the other hand, given any bilinear form B : Km × Kn → K i.e. a

function which is linear in both arguments, and choosing a basis for both

Km and Kn, we can associate to that bilinear form an m × n, matrix, N ,

as follows: if {v1, . . . , vm} is the basis chosen for Km and {w1, . . . , wn} is

the basis chosen for Kn then we form the m × n matrix N = (ni,j) where

ni,j := B(vi, wj).

It is easy to see that if v ∈ Km, v =
∑m

i=1 aivi and w ∈ Kn, w =
∑n

j=1 bjwj

Then

B(v, w) =
(
a1 · · · am

)
N

b1
...
bn

 .

Thus, bilinear forms mapping Km × Kn → K (and a choice of basis for

both Km and for Kn) are in 1-1 correspondence with m × n matrices with

entries from K.
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Remark 6.1.1. One should note that although Km ×Kn is a vector space

of dimension m + n, the bilinear map defined above from that vector space

to K is not a linear map. In fact, any vector in the cartesian product of the

form (v, 0) or (0, w) (where 0 is the zero vector) is sent to 0 under the bilinear

form, but the sum of those two vectors is (v, w) which does not necessarily

get sent to 0 by the bilinear form.

Example 6.1.2. Recall that if S is a system with two random variables, say

x and y, where A(x) contains m elements and A(y) contains n elements, then

we used an m× n matrix M to encode all the information of a distribution

on the total correlation ΠS. The (i, j) entry in M was the value of the

distribution on the (i, j)th element in the alphabet of the unique random

variable (x, y) of the system ΠS (see .....). This is an example where we used

a matrix as a convenient place to store the information of a distribution on

ΠS.

However, if we consider the ith element of the alphabet of the random

variable x as corresponding to the matrix

v =
(
0 · · · 0 1 0 · · · 0

)
(where the 1 occurs in the ith place in this 1×m matrix) and

w =
(
0 · · · 0 1 0 · · · 0

)
(where this time the 1 occurs in the jth place in this 1 × n matrix) then

the product vMwt is precisely the (i, j) entry in the matrix M . But, as we

noted above, this is the value of the distribution on the (i, j) element in the

alphabet of the unique random variable in the total correlation we described

above.

So, although the matrix M started out being considered simply as a place

holder for information, we see that considering it as a bilinear form on an

appropriate pair of vector spaces it can also be used to give us information

about the original distribution.
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Tensors will give us a way to generalize what we have just seen for two

random variables to any finite number of random variables. So, tensors will

encode information about the connections between distinct variables in a

random system. As the study of the properties of such connections is a

fundamental goal in Algebraic Statistics, it is clear that the role of tensors is

ubiquitous in this book.

From the discussion above concerning bilinear forms and matrices, we

see that we have a choice as to how to proceed. We can define tensors as

multidimensional arrays or we can define tensors as multilinear functions on

a cartesian product of a finite number of vector spaces. Both points of view

are equally valid and will eventually bring us to the same place. The two

ways are equivalent, as we saw above for bilinear forms, although sometimes

one point of view is preferable to the other. We will continue with both

points of view but, for low dimensional tensors, we will usually prefer to deal

with the multidimensional arrays.

Before we get too involved in studying tensors, this is probably a good

time to forewarn the reader that although matrices are very familiar objects

for which there are well understood tools to aid in their study, that is far from

the case for multidimensional matrices i.e. tensors. The search for appro-

priate tools to study tensors is part of ongoing research. The abundance of

research on tensors (research being carried out by mathematicians, computer

scientists, statisticians and engineers as well as by people in other scientific

fields) attests to the importance that these objects have nowadays in real life

applications.

Notation. For every positive integer i, we will denote by [i] the set {1, . . . , i}.
For the rest of the section K can indicate any set, but in practice K will

always be a set of numbers (like N, Z, Q, R, or C).

Definition 6.1.3. A tensor T over K, of dimension n and type

d1 × · · · × dn
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is a multidimensional table of elements of K, in which any element is deter-

mined by a multiindex (i1, . . . , in), where ij ranges between 1 and dj.

In more formal terms, a tensor T as above is a map:

T : [d1]× · · · × [dn]→ K.

Equivalently (when K is a field), such a tensor T is a multilinear map

T : Kd1 × · · · ×Kdn → K

where we consider the standard bases for each of the Kdi .

Remark 6.1.4. If we think of T as a multilinear map and suppose that for

each 1 ≤ i ≤ n, {eij | 1 ≤ j ≤ di} is the standard basis for Kdi then the

entry in the multidimensional array representation of T corresponding to the

multiindex (i1, . . . , in) is

T (e1
i1
, e2
i2
, . . . , enin) .

Tensors are a natural generalization of matrices. Indeed matrices of real

numbers and of type m×n correspond exactly to tensors over R of dimension

2 and type m× n.

Example 6.1.5. An example of a tensor over R, of dimension 3 and type

2× 2× 2 is:

4 7

−1 3

4 0

2 1

T =

Notation. Although we have written a 2× 2× 2 tensor above, we have not

made clear which place in that array corresponds to T (e1
i1
, e2
i2
, e3
i3

). We will
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have to make a convention about that. Again, the conventions in the case

of three dimensional tensors are not uniform across all books on multilinear

algebra, but we will attempt to motivate the notation that we use, and is most

common, by looking at the cases in which there is widespread agreement. I.e.

the cases of 1 dimensional and 2 dimensional tensors.

Let’s start by recalling the conventions for how to represent a 1 dimen-

sional tensor, i.e. a linear function

T : Rn → R .

Recall that such a tensor can be represented by a 1 × n matrix as follows:

let e1, . . . , en be the standard basis for Kn and suppose that T (ei) = ai then

the matrix for this linear map is:(
a1 · · · an

)
.

So, if v =
∑n

i=1 αiei is any vector in Kn then

T (v) =
(
a1 · · · an

)α1
...
αn


Now suppose that we have a 2-dimensional tensor T of type m× n, i.e. a

bilinear form

T : Km ×Kn → K .

Recall that such a tensor is represented by an m × n matrix, A, as follows:

let

{e1
j | 1 ≤ j ≤ m} be the standard basis for Km;

{e2
j | 1 ≤ j ≤ n} be the standard basis for Kn

then

A = (ai,j) where ai,j := T (e1
i , e

2
j) .
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So

A =

a1,1 a1,2 · · · a1,n
...

... · · · ...
am,1 am,2 · · · am,n


Now suppose we have a 3-dimensional tensor T of type m × n × r i.e. a

trilinear form

T : Km ×Kn ×Kr → K .

This tensor is represented by an m× n× r box, A, as follows: let

{e1
j | 1 ≤ j ≤ m} and {e2

j | 1 ≤ j ≤ n}

be the standard basis for Km and Kn respectively (as above) and let

{e3
j | 1 ≤ j ≤ r} be the standard basis for Kr .

Then

A = (ai,j,k) where a(i,j,k) := T (e1
i , e

2
j , e

3
k) .

How will we arrange these values in a rectangular box? We let the front

(or first ) face of the box be the m×n matrix whose (i, j) entry is T (e1
i , e

2
j , e

3
1).

The second face, parallel to the first face, is the m × n matrix whose (i, j)

entry is T (e1
i , e

2
j , e

3
2). We continue in this way so that the back face (the

rth face), parallel to the first face is the m × n matrix whose (i, j) entry is

T (e1
i , e

2
j , e

3
r).

Example 6.1.6. Let T be the three dimensional tensor of type 3 × 2 × 2

whose (i, j, k) entry is equal to ijk (the product of the three numbers). Then

the 3×2×2 rectangle has first face a 3×2 matrix whose (i, j) entry is (ij) ·1.

The second (or back) face is a 3× 2 matrix whose (i, j) entry is (ij) · 2. We

put this all together to get our 3× 2× 2 tensor.
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3 6

6 12

2 4

4 8

1 2

2 4

T1 =

To be assured that you have the conventions straight for trilinear forms,

verify that the three dimension tensor of type 3×2×2 whose multidimensional

matrix representation has entries (i, j, k) = i+ j + k, looks like

5 6

6 7

4 5

5 6

3 4

4 5

T1 =

Remark 6.1.7. We saw above that elements of Kn can be considered as

tensors of dimension 1 and type n. Notice that they can also be considered

as tensors of dimension 2 and type 1×n, or tensors of dimension 3 and type

1× 1× n, etc.

Similarly, n×m matrices are tensors of dimension 2 but they can also be

seen as tensors of dimension 3 and type 1× n×m, etc.

Elements of K can be seen as tensors of dimension 0.
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As a generalization of what we can do with matrices, we mention the

following easy fact.

Proposition 6.1.8. When K is a field, the set of all tensors of fixed dimen-

sion n and type d1×· · ·×dn is a vector space where the operations are defined

over elements with corresponding multiindices.

This space, whose dimension is the product d1 . . . dn, will be denoted by

Kd1,...,dn . One basis for this vector space is obtained by considering all the

multidimensional matrices with a 1 in precisely one place and a zero in every

other place. If that unique 1 is in the position (i1, . . . , in), we refer to that

basis vector as e(i1,...,in).

The null element of a space of tensors is the tensor having all entries equal

to 0.

Now that we have established our convention about how the entries in a

multidimensional array can be thought of it remains to be precise about how

a multidimensional array gives us a multilinear map.

So, suppose we have a tensor T which is a tensor of dimension n and type

d1×· · ·×dn. Let A = (ai1,i2,...,in), where 1 ≤ ij ≤ dj, be the multidimensional

array which represents this tensor. We want to use A to define a multilinear

map

T : Kd1 × · · · ×Kdn → K

whose multidimensional matrix representation is precisely A. Let vj ∈ Kdj ,

where vj has coordinates (αj,1, . . . , αj,dj) with respect to the standard basis

for Kdj . Then define

T (v1, v2, . . . , vn) =
∑

(ai1,i2,...,in)(α1,i1 · α2,i2 · · · · αn,in) .

Now if {e[j]
i | 1 ≤ i ≤ dj, 1 ≤ j ≤ n} is the standard basis for Kdj then it is

easy to see that

T (e
[1]
i1
, . . . , e

[n]
in

) = ai1,i2,...,in
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Because the (e
[1]
i1
, . . . , e

[n]
in

) form a basis for the space Kd1 × . . . Kdn and T is

the unique multilinear map with values equal to the entries in the multidi-

mensional matrix A (see Exercise ????) we are done.

6.2 The tensor product

Besides the natural operations (addition and scalar multiplication) between

tensors of the same type, there is another operation, the tensor product,

which combines tensors of any type. This tensor product is fundamental for

our analysis of the properties of tensors.

The simplest way to define the tensor product is to think of tensors as

multilinear maps. With that in mind we make the following definition.

Definition 6.2.1. Let T ∈ Kd1,...,dn , U ∈ Kd′1,...,d
′
m be tensors. We define the

tensor product T ⊗ U as the tensor W ∈ Kd1,...,dn,d′1,...,d
′
m such that:

if ai ∈ Kdi , bj ∈ Kd′j then W (a1, . . . , an, b1, . . . , bm) = T (a1, . . . , an)U(b1, . . . , bm).

We extend this definition to consider more factors. So, for any finite

collection of tensors Tj ∈ Kdj1,...,djnj , j = 1, . . . ,m, one can define their

tensor product as the tensor

W = T1 ⊗ · · · ⊗ Tm ∈ Kd11,...,d1n1 ,...,dm1,...,dmnm

such that

W (i11, . . . , i1n1 , . . . , im1, . . . , imnm) = T1(i11, . . . , i1n1) · · ·Tm(im1, . . . , imnm).

Definition. This innocent looking definition actually contains some new and

wonderful ideas. The following examples will illustrate some of the things

that come from the definition. The reader should keep in mind how different

this multiplication is from the usual multiplication that we know for matrices.
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Example 6.2.2. Given two one dimensional tensors v and w of type m and

n respectively we write v = (a1, . . . , am) ∈ Km and w = (b1, . . . , bn) ∈ Kn.

Then v defines a linear map (which we’ll also call v)

v : Km → K defined by: v(x1, . . . , xm) =
m∑
i=1

aixi

and w a linear map (again abusively denoted w)

w : Kn → K defined by: w(y1, . . . , yn) =
n∑
i=1

biyi .

By definition, the tensor product v ⊗ w is the bilinear map:

v ⊗ w : Km ×Kn → K

defined by

v ⊗ w : ((x1, . . . , xm), (y1, . . . , yn))→ (
m∑
i=1

aixi)(
n∑
i=1

biyi).

If we let {e1, . . . , em} be the standard basis for Km and {e′1, . . . , e′n} be

the standard basis for Kn then

v ⊗ w : (ei, e
′
j)→ aibj

and so the matrix for this bilinear form is vtw .

To give a very specific example of this let v = (1, 2) ∈ R2 and w =

(2,−1, 3) ∈ R3. Then:

v ⊗ w = vtw =

(
1
2

)(
2 −1 3

)
=

(
2 −1 3
4 −2 6

)
We could just as well have considered the tensor w ⊗ v. In the specific

example we just considered, notice that

w ⊗ v = wtv =

 2
−1

3

(1 2
)

=

 2 4
−1 −2

3 6

 = (vtw)t.

We see here that the tensor product is not commutative. In fact, the two

multiplications did not even give us tensors of the same type.
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Example 6.2.3. Let’s now consider a slightly more complicated example.

This time we will take the tensor product of v, a 1-dimensional tensor of

type 2, and multiply it by w, a 2-dimensional tensor of type 2 × 2. We can

represent v by a 1× 2 matrix and w by a 2× 2 matrix. So, let

v = (2,−3) ∈ R2 and w =

(
2 −1
4 3.

)
Then v defines a linear map

v : K2 → K given by v(x1, x2) = 2x1 − 3x2

and w defines a bilinear map

w : K2 ×K2 → K given by w : ((y1, y2), (z1, z2)) =
(
y1 y2

)
w

(
z1

z2

)
=

= 2y1z1 + 4y2z1 − y1z2 + 3y2z2.

Putting these all together we have a trilinear form,

v ⊗ w : (K2)× (K2 ×K2)→ K

defined by

v⊗w((x1, x2), (y1, y2), (z1, z2)) = (2x1− 3x2)(2y1z1 + 4y2z1− y1z2 + 3y2z2) =

= 4x1y1z1+8x1y2z1−2x1y1z2+6x1y2z2−6x2y1z1−12x2y2z1+3x2y1z2−9x2y2z2.

From this we express v⊗w as a 2×2×2 multidimensional matrix, namely

−6 (−12)

3 −9

4 8

−2 6

v ⊗ w =
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On the other hand,

w ⊗ v((x1, x2), (y1, y2), (z1, z2)) = w((x1, x2), (y1, y2))v(z1, z2) =

(2x1y1 + 4x2y1 − x1y2 + 3x2y2)(2z1 − 3z2) =

= 4x1y1z1+8x2y1z1−2x1y2z1+6x2y2z1−6x1y1z2−12x2y1z2+3x1y2z2−9x2y2z2 .

So, the multidimensional array for w ⊗ v is:

8 6

−12 −9

4 −2

−6 3

w ⊗ v =

Example 6.2.4. Observe that if T, U are n×n matrices, the tensor product

T ⊗ U does not coincide with their row-by-column product. The tensor

product of these two matrices is a tensor of dimension 4, of type n×n×n×n.

Definition. As we just noted, the tensor product does not define an internal

operation in the spaces of tensors of the same dimension and same type. It

is possible, however, to define something called the tensor algebra on which

the tensor product behaves like a product. We will just give the definition of

the tensor algebra, but won’t have occasion to use it in this text.

Definition 6.2.5. Let K be a field. The tensor algebra over the space Kn

is the direct sum

T (n) = K ⊕Kn ⊕Kn,n ⊕ · · · ⊕Kn,...,n ⊕ · · ·

The tensor product defines a homogeneous operation inside T (n).
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Remark 6.2.6. It is an easy (but messy) consequence of our definition that

the tensor product is an associative product, i.e. if T, U, V are tensors, then

T ⊗ (U ⊗ V ) = (T ⊗ U)⊗ V.

Notice that the tensor product is not, in general, a commutative product

(see Example 6.2.3 above). Indeed, in that example we saw that even the

spaces in which T ⊗ U and U ⊗ T lie can be different.

Remark 6.2.7. The tensor product of tensors has the following properties:

for any T, T ′ ∈ Kd1,...,dn , U,U ′ ∈ Kd′1,...,d
′
m and a ∈ K, one has

� T ⊗ (U + U ′) = T ⊗ U + T ⊗ U ′;

� (T + T ′)⊗ U = T ⊗ U + T ′ ⊗ U ;

� (aT )⊗ U = T ⊗ (aU) = a(T ⊗ U).

This can be expressed by saying that the tensor product is linear over the

two factors.

More generally, the tensor product defines a map

Kd11,...,d1n1 × · · · ×Kdm1,...,dmnm −→ Kd11,...,d1n1 ,...,dm1,...,dmnm

which is linear in any factor. For this reason we say that the tensor product

is a multilinear product in its factors.

The following useful proposition holds for the tensor product.

Proposition 6.2.8. (Vanishing Law) Let T, U be tensors. Then:

- If T = 0 or U = 0, then T ⊗ U = 0.

- Conversely, if T ⊗ U = 0 then either T = 0 or U = 0.

Proof. Assume T ′ ∈ Kd1,...,dn , U ∈ Ke1,...,em .

If T = 0 then for any choice of the indices i1, . . . , in, j1, . . . , jm one has:

(T ⊗ U)i1,...,in,j1,...,jm = Ti1,...,in · Uj1,...,jm = 0 · Uj1,...,jm = 0.
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A similar computation holds when U = 0.

Conversely, if T 6= 0 and U 6= 0, then there exist two sets of indices,

i1, . . . , in and j1, . . . , jm, such that Ti1,...,in 6= 0 and Uj1,...,jm 6= 0. Thus

(T ⊗ U)i1,...,in,j1,...,jm = Ti1,...,in · Uj1,...,jm 6= 0.

The bilinear map

Kd1,...,dn ×Ke1,...,em → Kd1,...,dn,e1,...,em

determined by the tensor product, is not injective (as the Vanishing Law

clearly shows). However we can characterize tensors T, T ′ ∈ Kd1,...,dn and

U,U ′ ∈ Ke1,...,em such that T ⊗ U = T ′ ⊗ U ′.

Proposition 6.2.9. Let T, T ′ ∈ Kd1,...,dn and U,U ′ ∈ Ke1,...,em satisfy

T ⊗ U = T ′ ⊗ U ′ 6= 0.

Then there exists a non-zero scalar a ∈ K such that T ′ = aT and U ′ = 1
a
U .

In particular if U = U ′ then T = T ′ (and conversely).

Proof. Put Z = T ⊗ U = T ′ ⊗ U ′. Since Z 6= 0, there exists a choice of

indices such that

Zi1,...,in,j1,...,jm = Ti1,...,in · Uj1,...,jm = T ′i1,...,in · U
′
j1,...,jm

6= 0.

Thus Ti1,...,in 6= 0.

Let

b = T ′i1,...,in/Ti1,...,in .

Since b 6= 0, it is easy to show that

U ′k1,...,km =
T ′i1,...,in
Ti1,...,in

Uk1,...,km = bUk1,...,km ,
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for all k1, . . . , km, i.e. U ′ = bU .

Similarly, since Uj1,...,jm 6= 0, we can let a 6= 0 be the quotient U ′j1,...,jm/Uj1,...,jm .

As above one shows that T ′ = aT .

Finally, by multilinearity, we get Z = T ′ ⊗ U ′ = (ab)(T ⊗ U). Hence

ab = 1, i.e. b = 1
a
.

The final statement in the Proposition is clear from the preceeding since

a must equal 1.

Using the associativity of the tensor product and slightly modifying the

proof of the preceeding proposition one can prove, by induction on the num-

ber of factors, the following result:

Proposition 6.2.10. Let T1, U1 ∈ Kd11,...,d1n1 , . . . , Ts, Us ∈ Kds1,...,dsns satisfy

T1 ⊗ T2 ⊗ · · · ⊗ Ts = U1 ⊗ U2 ⊗ · · · ⊗ Us 6= 0.

Then there exist non-zero scalars a1, . . . , as ∈ K such that Ui = aiTi for all

i, and moreover a1 · · · as = 1.

Remark 6.2.11. We mentioned above that the tensor product of two bilinear

forms, represented by matrices M and N respectively, doesn’t correspond to

the product of the two matrices M and N . Indeed, in most cases we cannot

even take the product of the two matrices!

However, when M is an n×m matrix and N is an m× s matrix we can

form their product as matrices and also form their tensor product. It turns

out that there is a relation between these two objects.

The tensor product is an element of the vector space Kn×Km×Km×Ks

while the matrix product can be considered as an element of Kn×Ks. How

can we recover the regular product from the tensor product?

Now the tensor product is the tensorQ of dimension 4 and type (n,m,m, s),

such that Q(i, j, k, l) = M(i, j)N(k, l). The row-by column product of M,N

is obtained by sending Q to the matrix Z ∈ Kn,s defined by:

Z(i, l) =
∑
j

T (i, j, j, l).
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So, the ordinary matrix product is obtained, in this case, by taking the

tensor product and following that by a projection onto the space Kn×Ks =

Kn,s.

6.3 Rank of tensors

In the next two sections we generalize, to tensors of any dimension,a definition

which is basic in the theory of matrices, namely the notion of the rank of a

matrix.

To find the appropriate generalization to tensors we will have to choose

among the many equivalent ways one can define the rank of a matrix. It

turns out that it is not convenient to choose, as the definition of rank, its

characterization as the dimension of either the row space or the column

space of a matrix. We will use, instead, a characterization of the rank of a

matrix which is probably less familiar to the reader, but which turns out to

be perfect for a generalization to arbitrary tensors. The starting point is a

simple characterization of matrices of rank 1.

Proposition 6.3.1. Let A = (aij) be a non-zero m × n matrix with coeffi-

cients in a field K. A has rank 1 if and only if there are non− zero vectors

v ∈ Km, w ∈ Kn such that,

A = v ⊗ w = vtw.

Proof. Assume that v and w exist. Since A = vtw every row of A is a multiple

of w and so the row space of A has dimension 1 and hence the rank of A is

1.

Conversely, if the rank of A is 1 then every row of A is a multiple of some

non-zero vector, which we will call w. I.e. the ith row of A is ciw. If we set

v = (c1, . . . , cm) then clearly A = vtw = v ⊗ w.
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Thus, one can define matrices of rank 1 in terms of the tensor product of

vectors.

Although the rank of a matrix M is usually defined as the dimension of ei-

ther the row space or column space of M , we now give a neat characterization

of rank(M) in terms of matrices of rank 1.

Proposition 6.3.2. Let M 6= 0 be an m× n matrix. Then the rank of M is

equal to the smallest integer r such that M is a sum of r matrices of rank 1.

Proof. Assume M = M1 + · · · + Mr, where every Mi has rank 1. Then we

may write Mi = (vi)
twi where vi ∈ Km, wi ∈ Kn. Form the matrix A whose

columns are the vectors vti , and the matrix B whose rows are the vectors wi.

It is easy to see that

M = AB

and so the rows of M are linear combinations of the rows of B. Since B has

only r rows we obtain that rank(M) ≤ r.

Conversely, assume that M has rank r. Then we can find r linearly inde-

pendent vectors in Kn which generate the row space of M . Call those vectors

w1, . . . , wr. Suppose that the ith row of M is ci,1w1 + · · · + ci,rwr. Form the

vector vi = (ci,1, . . . , ci,r) and construct a matrix A whose ith column is vti . If

B is the matrix whose jth row is wj then M = AB =
∑r

i=1 v
t
iwi is a sum of

r matrices of rank 1 and we are done.

The two previous results on matrices allow us to extend the definition of

rank to tensors of any type.

Definition 6.3.3. A non-zero tensor T ∈ Kd1,...,dn has rank 1 if there are

vectors vi ∈ Kdi such that T = v1 ⊗ · · · ⊗ vn. (since the tensor product is

associative, there is no need to specify the order in which the tensor products

in the formula are performed).

We define the rank of a non-zero tensor T to be the minimum r such that

there exist r tensors T1, . . . , Tr of rank 1 with

T = T1 + · · ·+ Tr. (6.3.1)
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Remark 6.3.4. A tensor of rank 1 is also called a simple or decomposable

tensor.

For any tensor T of rank r, the expression 6.3.1 is called a (decomposable)

decomposition of T .

We will sometimes just refer to the decomposable decomposition of T as

a decomposition of T or a rank decomposition of T ..

By convention we say that null tensors, i.e. tensors whose entries are all

0, have rank 0.

Remark 6.3.5. Let T be a tensor of rank 1 and let a 6= 0, a ∈ K. Then,

using the multilinearity of the tensor product, we see that aT also has rank

1. More generally, if T has rank r then aT also has rank r. Then (exactly

as for matrices), the union of the null tensor with all the tensors in Kd1,...,dn

of rank r is closed under scalar multiplication.

Subsets of vector spaces that are closed under scalar multiplication are

called cones. Thus the set of tensors in Kd1,...,dn of fixed rank (plus 0) is a

cone.

On the other hand (again exactly as happens for matrices), in general the

sum of two tensors in Kd1,...,dn of rank r need not have rank r. Thus the

set of tensors in Kd1,...,dn having fixed rank (union the null tensor) is not a

subspace of Kd1,...,dn .

6.4 Tensors of rank 1

In this section we give a useful characterization of tensors of rank 1. There

exists a generalization for matrices of higher rank but, unfortunately, there

does not exist a similar characterization for tensors of higher rank and having

dimension ≥ 3.

Recall that we are using the notation [i] = {1, 2, . . . , i− 1, i}.
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Definition 6.4.1. Let 0 < m ≤ n be integers. An injective non-decreasing

function

f : [m]→ [n]

is a function with the property that

whenever a, b ∈ [m] and a < b then f(a) < f(b) .

With this technical definition made we are now able to define the notion

of a subtensor of a given tensor.

Definition 6.4.2. Let T be a tensor in Kd1,...,dn . We consider T as a map

T : [d1]× · · · × [dn]→ K .

For any choice of positive integers d′j ≤ dj ( 1 ≤ j ≤ n) and for any

choice of injective, non-decreasing maps fj : [d′j]→ [dj] we define the tensor

T ′ ∈ Kd′1,...,d
′
n as follows:

T ′ : [d′1]× · · · × [d′n]→ K

where

T ′i1...in = Tif1(i1)...ifn(in)
.

Remark 6.4.3. This is a formal (and perhaps a bit odd) way to say that we

are fixing a few values for the indices i1, . . . , in and forgetting the elements

of T whose k-th index is not in the range of the map fk.

Since we usually think of a tensor of type 1× d2 × · · · × dn as a tensor of

type d2 × · · · × dn, whenever a d′k = 1, we simply forget the k-th index in T .

In this case the dimension of T ′ is n−m, where m is the number of indices

for which d′k = 1.

Example 6.4.4. A 3× 2× 2 tensors T can be denoted as follows
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T311 T321

T312 T322

T211 T221

T212 T222

T111 T121

T112 T122

T =

and an instance is:

2 1

−3 4

0 1

2 3

−2 4

1 0

T =

If one takes the maps f2 = f3 = identity, f1 : [2] → [3] defined as f3(1) =

1, f3(2) = 3, the the corresponding subtensor is:

2 1

−3 4

−2 4

1 0

T ′ =

i.e. one just cancels the layer corresponding to the elements whose first index

is 2.

If, instead, one takes f2 = f3 = identity, f1 : [1]→ [3] defined as f1(1) = 1,

then one gets the top face (matrix) of elements whose first index is 1:

T ′ =

(
1 0
−2 4

)
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Definition 6.4.5. A subtensor of T of dimension 2 is called a submatrix of

T . Note that any submatrix of T is a 2 × 2 matrix inside T (considered as

a multidimensional array) which is parallel to one of the faces of the array.

So, for instance, in the example 1.4.4 above, the array(
T112 T122

T211 T221

)
is not a submatrix of T .

Proposition 6.4.6. If T has rank 1, and T ′ is a subtensor of T then either

T ′ is the null tensor or T ′ has rank 1.

In particular, if T has rank 1, then the determinant of any 2×2 submatrix

of T vanishes.

Proof. Assume that T ∈ Kd1,...,dn has rank 1. Then there exist vectors vi ∈
Kdi such that T = v1 ⊗ · · · ⊗ vn. Eliminating from T the elements whose

k-th index has some value q corresponds to eliminating the q-th component

in the vector vk. Thus, the corresponding subtensor T ′ is the tensor product

of the vectors v′1, . . . , v
′
n, where v′i = vi if i 6= k, and v′k is the vector obtained

from vk by eliminating the q-th component. Thus T ′ has rank ≤ 1 (it has

rank 0 if v′k = 0). For a general subtensor T ′ ∈ Ke1,...,en of T , we obtain the

result arguing step by step, by deleting each time one value for one index of

T , i.e. arguing by induction on (d1 + · · ·+ dn)− (e1 + · · ·+ en).

The second claim in the statement of the theorem is immediate from what

we have just said and the fact that a 2× 2 matrix of rank 1 has determinant

0.

Corollary 6.4.7. The rank of a subtensor of T cannot be bigger than the

rank of T .

Proof. If T has rank 1, the claim follows from Proposition 6.4.6. For tensors

T of higher rank r, the claim follows since if T = T1 + · · ·+Tk, with Ti of rank

1, then a subtensor T ′ of T is equal to T ′1 + · · ·+T ′k, where T ′i is the subtensor
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of Ti obtained by eliminating all the elements corresponding to elements of

T eliminated in the passage from T to T ′. Thus, by Proposition 6.4.6 each

T ′i is either 0 or it has rank 1, and the claim follows.

Example 6.4.8. Recall that a non-zero matrix has rank 1 if and only if all

of its 2× 2 submatrices have determinant equal to zero. This is not true for

tensors of dimension greater than 2, as the following example shows. Recall

our earlier warning about the subtle differences between matrices and tensors

of dimension greater than 2.

Consider the 2× 2× 2 tensor T , defined by:

T1,1,1 = 0 T1,2,1 = 0 T2,1,1 = 1 T2,2,1 = 0 ( front face )
T1,1,2 = 0 T1,2,2 = 1 T2,1,2 = 0 T2,2,2 = 0 (back face) .

1 0

0 0

0 0

0 1

T =

It is clear that all the 2× 2 submatrices of T have determinant equal to 0.

On the other hand, if T has rank 1, i.e. T = (a1, a2)⊗ (b1, b2)⊗ (c1, c2), then

T2,1,1 = a2b1c1 6= 0 which implies a2, b1, c1 6= 0. However, T2,1,2 = T1,1,1 =

T2,2,1 = 0 implies a1 = b2 = c2 = 0. But then T1,2,2 = a1b2c2 = 1 6= 0 yields a

contradiction.

We want to find a set of conditions which describe the set of all tensors of

rank 1. To this aim, we need to introduce some new piece of notation.

Notation. Recall that we denote by [n] the set {1, . . . , n}.
Fix a subset J ⊂ [i]. Then for any fixed pair of multi-indexes a =

(a1, . . . , an) and b = (b1, . . . , bn), we denote by J(a, b) the multi-index (c1, . . . , cn)
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where

cj =

{
aj if j ∈ J,
bj otherwise.

Example 6.4.9. Let n = 4 and set J = {2, 3} ⊂ [4]. Consider the two

multiindices a = (1, 3, 3, 2) and b = (2, 1, 3, 4). Then J(a, b) = (2, 3, 3, 4).

Notice that if J ′ = [n] \ J = {1, 4} then J ′(a, b) = (1, 1, 3, 2).

Remark 6.4.10. If T has rank 1, then for any pair of multi-indexes a =

(a1, . . . , an) and b = (b1, . . . , bn) and for any subset J ⊂ [n], the entries of T

satisfy:

TaTb = TJ(a,b)TJ ′(a,b) (6.4.1)

where J ′ = [n] \ J .

To see why this is so recall that since T has rank 1 we can write T =

v1 ⊗ · · · ⊗ vn, with vi = (vi1, vi2, . . . ). In this case both of the products in

(6.4.1) are equal

v1a1v1b1 · · · vnanvnbn

and so the result is obvious.

Remark 6.4.11. When a, b differ only in two indices, the equality 6.4.1

simply says that the determinant of a 2× 2 submatrix of T is 0.

Example 6.4.12. Look back to Example 6.4.8, and notice that if one takes

a = (1, 1, 1), b = (2, 2, 2) and J = {1} ⊂ [3], then J(a, b) = (1, 2, 2) and

J ′(a, b) = (2, 1, 1) so that formula (6.4.1) does not hold, since

TaTb = 0 6= 1 = TJ(a,b)TJ ′(a,b).

Theorem 6.4.13. A tensor T 6= 0 of dimension n has rank 1 if and only

if it satisfies all the equalities (6.4.1), for any choice of multiindices a, b and

J ⊂ [n].



AN INTRODUCTION TO ALGEBRAIC STATISTICS 55

Proof. Thanks to Remark 6.4.10, we need only prove that if all the equalities

(6.4.1) hold, then T has rank 1.

Let us argue by induction on the dimension n of T ∈ Kd1,...,dn . The case

n = 2 is well known: a matrix has rank 1 if and only if all its 2 × 2 minors

vanish.

For n > 2, pick an entry Ta = Ta1,...,an 6= 0 in T .

Let J1 ⊂ [d1] where J1 = {1} and let f1 : J1 → [di] be defined by

f1(1) = a1. For 2 ≤ i ≤ n, let fi = identity. Let T ′ be the subtensor

corresponding to this data. T ′ is a tensor of dimension n − 1 and hence

satisfies the equalities (6.4.1). By induction, we obtain that rank(T ′) = 1, so

there are vectors v2, . . . vn such that, for any choice of i2, . . . , in, one gets

Ta1,i2,...,in = T ′i2,...,in = v2i2 · · · vnin . (a)

For all m ∈ [d1] define the number

pm =
Tm,a2,...,an
Ta1,a2,...,an

. (b)

We use those numbers to define the vector v1 = (p1, . . . , pd1).

We now claim that T = v1 ⊗ v2 ⊗ · · · ⊗ vn.

Indeed for any b = (b1, . . . , bn), by setting J = {1}, and hence J ′ =

{2, . . . , n}, one obtains from the equalities (6.4.1) that:

TaTb = TJ(a,b)TJ ′(ab) = Ta1,b2,...,bnTb1,a2,...,an = Ta1,b2,...,bn · pb1Ta1,a2,...,an .

Using the terms at the beginning and end of this string of equalities and

also taking into account (a) and (b) above, we obtain:

v2a2 · · · vnanTb = v2b2 · · · vnbn · v1b1 · v2a2 · · · vnan .

Since Ta 6= 0, and hence v2a2 , . . . , vnan 6= 0, we can divide both sides of

this equality by v2a2 , . . . , vnan and finally get

Tb = v2b2 · · · vnbn · v1b1 ,

which proves the claim.
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The equations corresponding to the equalities (6.4.1) determine a set of

polynomial (quadratic) equations, in the space of tensors Kd1,...,dn , which

describe the locus of decomposable tensors. (Interestingly enough, it turns

out that in many cases this set of equations is not minimal.)

In any event, Proposition 6.4.13 provides a finite procedure which allows us

to decide if a given tensor has rank 1 or not. We simply plug the coordinates

of the given tensor into the equations we just described and see if all the

equations vanish or not.

Unfortunately, as the dimension grows, the number of operations required

in the algorithm rapidly becomes quite large!

Recall that for matrices there is a much simpler method for calculating

the rank of the matrix: one uses Gaussian reduction to find out how many

non-zero rows that reduction has. That number is the rank. We really don’t

have to calculate the determinants of all the 2×2 submatrices of the original

matrix.

There is nothing like the simple and well known Gaussian reduction algo-

rithm (which incidentally calculates the rank for a tensor of dimension 2) for

calculating the rank of tensors of dimension greater than 2. All known proce-

dures for calculating the rank of such a tensor quickly become not effective.

There are many other ways in which the behavior of rank for tensors

having dimension greater than 2 differs considerably from the behavior of

rank for matrices (tensors of dimension exactly 2). E.g. although a matrix

of size m×n (a 2 dimensional tensor of type (m,n)) cannot have rank which

exceeds the minimum of m and n, tensors of type d1 × · · · × dn (for n > 2)

may have rank bigger than max{di}. Although the general matrix of size

m × n has rank = min{m,n} (the maximum possible rank) there are often

special tensors of a given dimension and type whose rank is bigger than the

rank of a general tensor of that dimension and type.

The attempt to get a clearer picture of how rank behaves for tensors of a



AN INTRODUCTION TO ALGEBRAIC STATISTICS 57

given dimension and type has many difficult problems associated to it. E.g.

is there some nice geometric structure for the set of tensors having a given

rank? when are there no tensors of a given rank? what is the maximum

rank for a tensor of given dimension and type? These questions, and several

variants of them, are the subject of research for many mathematicians and

other scientists today.

We conclude this section with some examples which illustrate that al-

though there is no algorithm for finding the rank of a given tensor, one can

sometimes decide, using ad-hoc methods, exactly what is the rank of the

tensor.

Example 6.4.14. The following tensor of type 2× 2× 2 has rank 2:

3 −5

2 −6

3 −1

4 0

Indeed it cannot have rank 1, because some of its 2× 2 submatrices have

determinant different from 0. T has rank 2 because it is the sum of two

tensors of rank 1 (one can check, using the algorithm, that the summands

have rank 1)

−1 −1

−2 −2

1 1

2 2

4 −4

4 −4

2 −2

2 −2

+

Example 6.4.15. The tensor
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0 2

0 4

1 3

2 3

D =

has rank 3 i.e. one cannot write D as a sum of two tensors of rank 1. Let us

see why.

Let’s assume that D is the sum of two tensors T = (Tijk) e T ′ = (T ′ijk) of

rank 1 and let’s try to derive a contradiction from that assumption.

Notice that the vector (D211, D212) = (0, 0) would have to be equal to the

sum of the vectors (T211, T212) + (T ′211, T
′
212), Consequently the two vectors

(T211, T212) and (T ′211, T
′
212) are negatives of each other and hence span a

subspace W ⊂ K2 of dimension ≤ 1.

If one (hence both) of these vectors is non-zero, then also the vectors

(T111, T112), (T221, T222),and (T ′111, T
′
112), (T ′221, T

′
222), would also have to belong

to W because all the 2× 2 determinants of T and T ′ vanish. But notice that

(T121, T122) and (T ′121, T
′
122) must also belong to W by Remark 6.4.10 (take

J = {3} ⊂ [3]).

It follows that both vectors (D111, D112) = (1, 2) and (D121, D122) = (3, 3),

must belong to W . This is a contradiction, since dim(W ) = 1 and (1, 2), (3, 3)

are linearly independent.

So, we are forced to the conclusion that (T211, T212) = (T ′211, T
′
212) = (0, 0).

Since the sum of (T111, T112) and (T ′111, T
′
112) is (1, 2) 6= (0, 0) we may assume

that one of them, say (T111, T112), is non-zero. As T has rank 1, there exists

a ∈ K such that (T221, T222) = a(T111, T112) (we are again using Remark

6.4.10).

Now, the determinant of the front face of the tensor T is 0, i.e.

0 = T111T221 − T121T211.



AN INTRODUCTION TO ALGEBRAIC STATISTICS 59

Since T211 = 0 and T221 = aT111 we get 0 = aT 2
111. Doing the same argument

on the back face of the tensor T we get 0 = aT 2
112. It follows that a = 0 and

so the bottom face of the tensor T consists only of zeroes.

It follows that (T ′221, T
′
222) = (2, 4). Since the tensor T ′ has rank 1, it

follows that the vector (T ′111, T
′
112) is also a multiple of (2, 4), as is the vector

(T ′121, T
′
122).

Since (T111, T112) = (1, 2)−(T ′111, T
′
112) , and both (1, 2) and (T ′111, T

′
112) are

multiples of (2, 4), it follows that the vector (T111, T112) (which we assumed

was not 0) is also a multiple of (2, 4). Thus, since the tensor T has rank 1,

the vector (T121, T122) is also a multiple of (2, 4). Since we already noted that

(T ′121, T
′
122) is a multiple of (2, 4) it follows that the vector (3, 3) is a multiple

of (2, 4), which is the final contradiction.
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Chapter 7

Symmetric tensors

In this chapter we make a specific analysis of the behavior of symmetric

tensors, with respect to the rank and the decomposition.

We will see, indeed, that besides their utility to understand some models

of random systems, symmetric tensors have a relevant role in the study of

the algebra and the computational complexity of polynomials.

7.1 Generalities and examples

Definition 7.1.1. A cubic tensor is a tensor of type d1 × · · · × dn where all

the di’s are equal, i.e. a tensor of type d× · · · × d (n times).

We say that a cubic tensor T is symmetric if for any multiindex (i1, . . . , in)

and for any permutation σ on the set {i1, . . . , in}, it satisfies

Ti1,...,in = Tiσ(1),...,iσ(n) .

Example 7.1.2. When T is a square matrix, then the condition for the

symmetry of T simply requires that Ti,j = Tj,i for any choice of the indices.

In other words, our definition of symmetric tensor coincides with the plain

old definition of symmetric matrix, when T has dimension 2.

If T is a cubic tensor of type 2× 2× 2, then T is symmetric if and only if

61
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the following equalities hold:{
T1,1,2 = T1,2,1 = T2,1,1

T2,2,1 = T2,1,2 = T1,2,2

An example of a 2× 2× 2 symmetric tensor is the following:

1 2

2 3

2 3

3 0

Remark 7.1.3. The set of symmetric tensors is a linear subspace of K(d,...,d).

Namely it is defined by a set of linear equations:

Ti1,...,in = Tσ(i1),...,σ(in)

in the coordinates of K(d,...,d).

As a vector space itself, the space of symmetric tensors of type d×· · ·×d,

n times, is usually denoted by Symn(Kd).

Of course, from the point of view of multilinear forms, Symn(Kd) coincides

with the space of symmetric multilinear maps (Kd)n → K.

As we will see later (see Proposition 7.3.8), the dimension of Symn(Kd)

is

dim(Symn(Kd)) =

(
n+ d− 1

n

)
=

(
n+ d− 1

d− 1

)
.

7.2 The rank of a symmetric tensor

Next step is the study of the behavior of symmetric tensors with respect to

the rank. It is easy to realize that there are symmetric tensors of rank 1, i.e.

the space Symn(Kd) intersects the set of decomposable tensors. Just to give

an instance, look at:
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1 2

2 4

2 4

4 8

D =

The following proposition determines how one construct decomposable,

symmetric tensors.

Proposition 7.2.1. Let T be a cubic tensor of type d × · · · × d, n times.

Then T is symmetric, of rank 1, if and only if there exists a scalar α ∈ K
and a non-zero vector v ∈ Kd with:

T = α(v ⊗ v ⊗ · · · ⊗ v).

If moreover K is an algebraically closed field (as the complex field C), then

we may assume α = 1.

Proof. If T = α(v⊗v⊗· · ·⊗v), v 6= 0, then T cannot be zero by Proposition

??, thus it has rank 1. Moreover if v = (a1, . . . , ad), then for any multiindex

(i1, . . . , in) and for any permutation σ:

Ti1,...,in = ai1 · · · ain = Tσ(i1),...,σ(in)

thus T is symmetric.

Conversely, assume that T is symmetric of rank 1, say T = v1 ⊗ · · · ⊗ vn,

where no vi ∈ Kd can be 0, by Proposition ??. Write vi = (vi,1, . . . , vi,d)

and fix a multiindex (i1, . . . , in) such that v1,i1 6= 0, . . . , vn,in 6= 0. Then

Ti1,...,in = v1,i1 · · · vn,in cannot vanish. Define b2 = v2,i1/v1,i1 . Then we claim

that v2 = b2v1. Namely, for all j we have, by symmetry:

v1,i1v2,jv3,i3 · · · vn,in = Ti1,j,i3,...,in = Tj,i1,i3,...,in = v1,jv2,i1v3,i3 · · · vn,in ,
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which means that v1,i1v2,j = v1,jv2,i1 , so that v2,j = b2v1,j. Similarly we can

define b3 = v3,i1/v1,i1 ,. . . , bd = vd,i1/v1,i1 , and obtain that v3 = b3v1, . . . ,

vd = bdv1. Thus, if α = b2 · b3 · · · · · bd, then

T = v1 ⊗ v2 ⊗ · · · ⊗ vn = v1 ⊗ (b2v1)⊗ · · · ⊗ (bnv1) = α(v1 ⊗ v1 ⊗ · · · ⊗ v1).

When K is algebraically close, then take a d-th root β of α ∈ K and define

v = βv1. Then T = βd(v1 ⊗ v1 ⊗ · · · ⊗ v1) = v ⊗ v ⊗ · · · ⊗ v.

Notice that purely algebraic properties of K can be relevant in determining

the shape of a decomposition.

Remark 7.2.2. In the sequel, we will often write v⊗d for v ⊗ v ⊗ · · · ⊗ v, d

times.

If K is algebraically closed, then a symmetric tensor T ∈ Symn(Kd) of

rank 1 has a finite number (exactly: d) decompositions as a product T = v⊗d.

Namely if w⊗· · ·⊗w = v⊗· · ·⊗ v, then by Proposition 6.2.9 there exists

a scalar β such that w = βv and moreover βd = 1, thus w is equal to v

multiplied by a d-th root of unity.

Passing from rank 1 to higher ranks, the situation becomes suddenly more

involved.

The definition itself of rank of a symmetric tensors is not completely triv-

ial, as we have two natural choices for it:

� First choice. The rank of a symmetric tensor T ∈ Symn(Kd) is simply

its rank as a tensor in K(d,...,d) , i.e. it is the minimum r for which one

has r decomposable tensors T1,. . . ,Tr with

T = T1 + · · ·+ Tr.

� Second choice. The rank of a symmetric tensor T ∈ Symn(Kd) is

the minimum r for which one has r symmetric decomposable tensors

T1,. . . ,Tr with

T = T1 + · · ·+ Tr.
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Then, the natural question is about which choice gives the correct defini-

tion. Here correct definition means the definition which proves to be most

useful, for the applications to Multilinear Algebra and random systems.

The reader could be disappointed in knowing that there is no clear pref-

erence between the two options: each can be preferable, depending on the

point of view.

Thus, we will leave the word rank for the minimum r for which one has

a decomposition T = T1 + · · · + Tr, with the Ti’s not necessarily symmetric

(i.e. the first choice above).

Then, we give the following:

Definition 7.2.3. The symmetric rank srank(T ) of a symmetric tensor T ∈
Symn(Kd) is the minimum r for which one has r symmetric decomposable

tensors T1,. . . ,Tr with

T = T1 + · · ·+ Tr.

Example 7.2.4. The symmetric tensor

0 2

2 0

2 0

0 2
T =

has not rank 1, as one can compute by taking the determinant of some face.

T has rank 2, because it is expressible as the sum of two decomposable

tensors T = T1 + T2, where:
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1 1

1 1

1 1

1 1
T1 =

(−1) 1

1 (−1)

1 (−1)

(−1) 1
T2 =

and T1 = (1, 1)⊗3, T2 = (−1, 1)⊗3.

Example 7.2.5. The tensor (over C):

1 0

0 7

0 7

7 8
T =

is not decomposable. Let us prove that the symmetric rank is bigger than 2.

Assume that T = (a, b)⊗3 + (c, d)⊗3. Then we have
a3c3 = 1

a2b+ c2d = 0

ab2 + cd2 = 7

b3d3 = 8

Notices that none of a, b, c, d can be 0. Moreover we have ac = ε and bd = 2ε′,

where ε, ε′ are two cubic roots of unit, not necessarily equal. But then c = ε/a
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and d = ε′/b, so that a2b + c2d = 0 yields 1 + ε2ε′ = 0, which cannot hold,

because −1 is not a cubic root of unit.

Remark 7.2.6. Proposition 7.2.1 shows in particular that any symmetric

tensor of (general) rank 1 has also the symmetric rank equal to 1.

The relations between the rank and the symmetric rank of a tensor are

not obvious at all, when the ranks are bigger than 1. It is clear that

srank(T ) ≥ rank(T ),

but we have no description of situations where the strict inequality holds.

Namely no examples are known of symmetric tensors over the complex field

C, for which the two ranks are different!

The difficulty in finding examples where the two ranks are different, de-

spite the large number of concrete tensors tested, suggested to the French

mathematician Pierre Comon to launch the following:

Conjecture 7.2.7. (Comon,2000) Over the complex field, the rank and the

symmetric rank of a symmetric tensor always coincide.

In other words, for any T = Symn(Cd), if there exists a decomposition T =

T1 + · · ·+ Tr in terms of tensors of rank 1, then there exists a decomposition

with the same number of summands, in which each Ti is symmetric, of rank

1.

A lot of partial results are known about Comon’s Conjecture, in some

particular case. For instance, it is easy to prove that the Conjecture is true

when T is a symmetric matrix (and this is left as an exercise at the end of

the chapter). Experimental evidence proves that the Conjecture is true, as

far as modern computers can produce an answer.

However, nobody has been able, since now, to prove the complete result

(or produce a counterexample).
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The reader could wonder that such a question, which seems rather ele-

mentary in its formulation, could yield a problem which is still open, after

being studied by many mathematicians, with modern techniques.

We remark that Comon’s Conjecture is among the truly open questions

in modern Mathematics, in the sense that the general consensus is towards

its validity, mainly because in any test made since now the two ranks proved

to be equal. Yet, no clear heuristic argument in favor of the Conjecture is

presently available.

This explains a reason why, at the beginning of the chapter, we warned

the reader that problems that are simple for Linear Algebra and matrices,

can suddenly become prohibitive, as the dimension of the tensors grows.

7.3 Symmetric tensors and polynomials

Homogeneous polynomials and symmetric tensors are two apparently rather

different mathematical objects, that indeed have a strict interaction, so that

one can skip from each other, translating properties of tensors to properties

of polynomials, and viceversa.

The main construction behind this interaction is probably well known to

the reader, for the case of polynomials of degree 2. It is a standard fact that

one can associate a symmetric matrix to quadratic homogeneous polynomial,

in a one-to-one correspondence, so that properties of the quadratic form (as

well as properties of quadratic hypersurfaces) can be read as properties of

the associated matrix.

The aim of this section is to point out that a similar correspondence holds,

more generally, between homogeneous forms of any degree and symmetric

tensors of higher dimension.

Definition 7.3.1. There is a natural map between a space Kn,...,n of cubic

tensors of dimension d and the space of homogeneous polynomials of degree

d in n variables (i.e. the d-th graded piece Rd of the ring of polynomials
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R = K[x1, . . . , xn]), defined by sending a tensor T to the polynomial FT such

that

F =
∑
i1,...,in

Ti1,...,inxi1 · · ·xin .

It is clear that the previous correspondence is not one-to-one, as soon as

general tensors are considered. Namely, for the case n, d = 2, one immedi-

ately sees that the two matrices(
2 3
−1 1

) (
2 0
2 1

)
define the same polynomial of degree 2 in two variables F = 2x2

1 +2x1x2 +x2
2.

The correspondence becomes one-to-one (and onto) when restricted to

symmetric tensors. To see this, we need to introduce a piece of notation.

Definition 7.3.2. For any multiindex (i1, . . . , id) we will define the multiplic-

ity m(i1, . . . , id) as the number of different permutations of the multiindex.

Definition 7.3.3. Let R = K[x1, . . . , xn] be the ring of polynomials, with

coefficients in K, with n variables. Then there are linear isomorphisms

p : Symd(Kn)→ Rd t : Rd → Symd(Kn)

defined as follows. The map p is the restriction to Symd(Kn) of the previous

map

p(T ) =
∑
i1,...,in

Ti1,...,inxi1 · · ·xin .

The map t is defined by sending the polynomial F to the tensor t(F ) such

that

t(F )i1,...,in =
1

m(i1, . . . , id)
(the coefficient of xi1 · · ·xin in F ).

Example 7.3.4. If G is a quadratic homogeneous polynomial in 3 variables

G = Ax2 +Bxy+Cy2 +Dxz+Eyz+Fz2, then t(G) is the symmetric matrix

t(G) =

 A B/2 D/2
B/2 C E/2
D/2 E/2 F


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which the usual matrix of the bilinear form associated to G.

Example 7.3.5. Consider the homogeneous cubic polynomial in two vari-

ables

F (x1, x2) = x3
1 − 3x2

1x2 + 9x1x
2
2 − 2x3

2.

Since one easily computes that

m(1, 1, 1) = 1, m(1, 1, 2) = m(2, 1, 1) = 3, m(2, 2, 2) = 1,

then the symmetric tensor t(F ) is:

1 (−1)

(−1) 3

(−1) 3

3 (−2)
T =

It is an easy exercise to prove that the two maps p and t defined above

are inverse each other.

Once the correspondence is settled, one can easily speak about the rank

or the the symmetric rank of a polynomial.

Definition 7.3.6. For any homogeneous polynomial G ∈ K[x1, . . . , xn] we

define the rank (respectively the symmetric rank) of G as the rank (respec-

tively the symmetric rank) of the associated tensor t(G).

Example 7.3.7. The polynomial G = x3
1 +21x1x

2
2 +8x3

2 has rank 3, since the

associated tensor t(G) is exactly the 2× 2× 2 symmetric tensor of Example

7.5.1.

Proposition 7.3.8. The linear space Symd(Kn) has dimension

dim(Symd(Kn)) =

(
n+ d− 1

d

)
=

(
n+ d− 1

n− 1

)
.
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Proof. This is obvious once one knows that
(
n+d−1

d

)
is the dimension of the

space of homogeneous polynomials Rd of degree d in n variables. We prove

it for the sake of completeness.

Since monomials of degree d in n variables are a basis for Rd, it is enough

to count the number of such monomials.

The proof goes by induction on n. For n = 2 the statement is easy: we

have d+ 1 monomials, namely xd1, x
d−1
1 x2, . . . , x

d
2.

Assume the formula holds for n− 1 variables x2, . . . , xn. Every monomial

of degree d in n variables is obtained by multiplying xa1 by any monomial of

degree d− a in x2, . . . , x2. Thus we have 1 monomial with xd1, n monomials

with xd−1
1 ,. . . ,

(
n+d−a−2

d−a

)
monomials with xa1, and so on. Summing up

dim(Symd(Kn)) =
d∑
a=0

(
n+ d− a− 2

d− a

)
,

and the sum is
(
n+d−1

d

)
, by standard facts on binomials.

7.4 The complexity of polynomials

In this section, we rephrase the results on the rank of symmetric tensors in

terms of the associated polynomials.

It will turn out that the rank decomposition of a polynomial is the ana-

logue of a long standing series of problems in Number Theory, for the espres-

sion of integers as a sum of powers.

In principle, from the point of view of Algebraic Statistic, the complexity

of a polynomial is the complexity of the associated symmetric tensor. So,

the most elementary case of polynomials correspond to symmetric tensor of

rank 1. We start with a description of polynomials of this type.

Remark 7.4.1. Before we proceed, we need to came back to the multiplicity

of a multiindex J = (i1, . . . , id), introduced in Definition 7.3.2.
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In the correspondence between polynomials and tensors, the element Ti1,...,id
is a linked with the coefficient of the monomial xi1 · · ·xid . Notice that

i1, . . . , id need not be distinct, so the monomial xi1 · · · xid could be written

unproperly. The usual way in which xi1 · · ·xid is written is:

xi1 · · ·xid = x
mJ (1)
1 x

mJ (2)
2 · · · xmJ (n)

n ,

where mJ(i) indicates the times in which i occurs in the multiindex J .

With the notation just introduce, one can describe the multiplicitym(i1, . . . , in).

Indeed a permutation changes the multiindex, unless it simply switches in-

dices ia, ib which are equal. Since the number of permutations over a set with

m elements is m!, then one finds that:

m(J) = m(i1, . . . , id) =
d!

mJ(1)! · · ·mJ(n)!
.

Proposition 7.4.2. Let G be a homogeneous polynomial of degree d in n

variables, so that t(G) ∈ Symd(Kn).

Then t(G) has rank 1 if and only if there exists a homogeneous linear

polynomial L ∈ K[x1, . . . , xn], such that G = Ld.

Proof. It is sufficient to prove that t(G) = v⊗d, where v = (a1, . . . , an) ∈ Kn,

if and only if G = (a1x1 + · · ·+ anxn)d.

To this aim, just notice that the coefficient of the monomial xm1
1 · · · xmnn

in p(v⊗d) is the sum of the entries of the tensors v⊗d whose multiindex

J satisfies mJ(1) = m1, . . . ,mJ(n) = mn. These entries are all equal to

am1
1 · · · amnn and their number is d!/m(J), which is equal to m1! · · ·mn!, by

the previous Remark. On the other hand, by the well known Newton for-

mula, (m1! · · ·mn!)(am1
1 · · · amnn ) is exactly the coefficient of the monomial

xm1
1 · · · xmnn in the power (a1x1 + · · ·+ anxn)d.

Corollary 7.4.3. The symmetric rank of a homogeneous polynomial G ∈
K[x1, . . . , xn]d is the minimum r for which there are r linear homogeneous

forms L1, . . . , Lr ∈ K[x1, . . . , xn], with

G = Ld1 + · · ·+ Ldr . (7.4.1)
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The symmetric rank is the number that computes the complexity of sym-

metric tensors, hence the complexity of homogeneous polynomials, from the

point of view of Algebraic Statistics. Hence it turns out that the simplest

polynomials, in this sense, are powers of linear forms. We guess that nobody

will object to the statement that powers are rather simple!

We should mention, however, that sometimes the behavior of polynomials

with respect to the complexity can be much less intuitive.

For instance, the rank of monomials is usually very high, so that the

complexity of general monomials is over the average (and we expect that

most people will be surprised). Even worse, efficient formulas for the rank

of monomials were obtained only very recently by Enrico Carlini, Maria

Virginia Catalisano and the third author. For other famous polynomials,

as the determinant of a matrix of indeterminates, we do not even know the

rank. All we have are lower and upper bounds, not matching.

We finish the chapter by mentioning that the problem of finding the rank

of polynomials reflects a well known problem in Number Theory. Solving a

question posed by Diophantus, the Italian mathematician Giuseppe Lagrange

proved that any positive integer N can be written as a sum of 4 squares,

i.e. for any positive integer G there are integers L1, L2, L3, L4 such that

G = L2
1 + L2

2 + L2
3 + L2

4. The problem has been generalized by the English

mathematician Edward Waring, who asked in 1770 for the minimum integer

r(k) such that any positive integer G can be written as a sum of r(k) powers

Lki . In other words, find the minimum r(k) such that any positive integers is

of the form

G = Lk1 + · · ·Lkr(k).

The analogy with the decomposition (7.4.1) that computes the symmetric

rank of a polynomial is evident.

The determinantion of r(k) is called, from then, the Waring problem for

integers. Because of the analogy, the symmetric rank of a polynomial is also

called the Waring rank.
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For integers, few values of r(k) are known, e.g. r(2) = 4, r(3) = 9,

r(4) = 19. There are also variations on the Waring problem, as asking for

the minimum r′(k) such that all positive integers, except for a finite subset,

are the sum of r′(k) k-th powers (the little Waring problem).

Going back to the polynomial case, as for integers, a complete description

of the maximal complexity that a homogeneous polynomial of given degree

in a given number of variables can have, is not known. We have only upper

bounds for the maximal rank. On the other hand, we know the solution of

an analogue to the little Waring problem, for polynomials over the complex

field.

Theorem 7.4.4. (Alexander-Hirschowitz, 1995) Over the complex field,

the symmetric rank of a general homogeneous polynomial of degree d in n

variables (here general means: all polynomials outside a set of measure 0 in

C[x1, . . . , xn]d; or also: all polynomials outside a Zariski closed subset of the

space C[x1, . . . , xn]d, see ??) is:

r = d
(
n+d−1

d

)
n
e

except for the following cases:

� d = 2, any n, where r = n;

� d = 3, n = 5, where r = 8;

� d = 4, n = 3, where r = 6.

For specific tensors, an efficient way to compute the rank requires the use

of inverse systems, which will be explained in a next chapter.

7.5 Exercises

Exercise 6. Prove that the two maps p and t introduced in Definition 7.3.3

are linear and inverse each other.
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Exercise 7. Prove the Comon’s Conjecture for matrices: a symmetric matrix

M has rank r if and only if there are r symmetric matrices of rank 1, M1,. . . ,

Mr, such that M = M1 + · · ·+Mr.

Exercise 8. Prove that the tensor T of Example 7.5.1 cannot have rank 2.

Exercise 9. Prove that the tensor T of Example 7.5.1 has symmetric rank

srank(T ) = 3.

Example 7.5.1. The tensor (over C):

0 0

0 7

0 7

7 8
T =

is not decomposable. Let us prove that the symmetric rank is bigger than 2.

Assume that T = (a, b)⊗3 + (c, d)⊗3. Then we have
a3 + c3 = 0

a2b+ c2d = 0

ab2 + cd2 = 7

b3 + d3 = 8

Notices that if a = 0, then c = 0 and we get a contradiction with the third

equality. A similar argument shows that c 6= 0. If b = 0, then d 6= 0 thus

c = 0 from the second equality, a contradiction. A similar argument excludes

d = 0, so that none of a, b, c, d can be 0.

We have a = −εc where ε is a cubic root of unit. Since c 6= 0, the second

equality yields d = −ε2b so that d3 = −b3. Thus the last equality yields a

contradiction.
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Algebraic Geometry
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Chapter 10

Elements of Algebraic
Geometry

The aim of this section, together with the following ones, is a quick intro-

duction to the main tools of Algebraic Geometry (of projective saces) that

we need to understand some aspects of algebraic Models in Statistics.

The material we collect here is far from being self-contained. For many

technical results, as the Nullstellensatz, we refer to specific texts on the

subject.

We assume in the sequel that the reader knows the basic definitions of

algebraic structures, as rings, ideals, homomorphisms, etc. as well as the

main properties of polynomial rings.

This part of the book could also be utilized for a short course or a cutway

through the results of Algebraic and Projective Geometry which are relevant

in the study of Statistics.

10.1 Projective varieties

The first step is a definition of the ambient space. We will do that in more

generality than usual, because sometimes the more general ambient is simpler

than specific ones.

83
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So, since we are going to deal with subsets defined by polynomial equa-

tions, the starting point is the polynomial rings over the complex field, the

field where solutions of polynomial equations live properly. Several claims

that we are going to illustrate would work also on any algebraically closed

field. We deal only with the complex field in order to avoid details on the

structure of fields of arbitrary characteristic.

Next, we are going to consider the coordinates of a point up to scaling.

This leads us directly into the theory of complex projective spaces.

Definition 10.1.1. Let V be a linear space over C. Define on V \ {0} an

equivalence relation ∼ which associates v, v′ if and only if there exists α ∈ C
with v′ = αv. The quotient P(V ) = V \ {0}/ ∼ is the projective space

associated to V .

The projective dimension of P(V ) is the number dim(V )− 1 (notice that

it decreases by 1).

When V = Cn+1, we will denote the projective space P(V ) also with Pn

Points of the projective space are thus equivalent classes of vectors, in the

relation ∼, hence are formed by a vector v 6= 0 together with all its multiples.

Thus, P ∈ Pn is an equivalence class of (n+1)-tuples of complex numbers.

The homogeneous coordinates are any representative of the equivalence class.

Notice that the coordinates, in a projective space, are no longer uniquely

defined, but only defined modulo a (non-zero) scalar multiplication.

By a small abuse, we will also write P = [a0 : · · · : an] when (a0, . . . , an)

is a representative for the homogeneous coordinates of P .

Remark 10.1.2. Pn contains several subsets in natural one-to-one corre-

spondence with Cn.

Indeed, take the subset Ui of points with homogeneous coordinates [a0 :

· · · : an] whose i-th coordinate ai is non-zero. The condition is clearly in-

dependent from the representative of the class that we choose. There is a
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one-to-one correspondence Ui ↔ Cn, obtained as follows:

[a0 : · · · : an] 7→ (
a0

ai
,
a1

ai
, . . . ,

âi
ai
, . . . ,

an
ai

)

Ui is called the i-th affine subspace.

Notice that when P = [a0 : · · · : an] ∈ Ui, hence ai 6= 0, then there exists a

unique representative of P with ai = 1. The previous process identifies P ∈
Ui with the point of Cn whose coordinates correspond to such representative

of P , excludind the i-th coordinate.

Definition 10.1.3. A subset C of a linear space V is a cone if for any v ∈ C
and a ∈ C then av ∈ C.

Remark 10.1.4. Cones of a linear space V are the fundamental subsets that

define subsets in the associated projective space.

Indeed there is an obvious map π : Cn+1 \ {0} → Pn that sends (n + 1)-

tuples to their equivalence classes. IfW ⊂ Pn is any subset, then π−1(W )(∪{0})
is a cone in V .

Conversely, every cone in Cn+1 is the inverse image in π of a subset of Pn

(one must add ∪{0}).

In general, one cannot expect that a polynomial p ∈ C[x0, . . . , xn] defines

a cone in Cn+1. This turns out to be true when p is homogeneous Indeed, if

p is homogeneous of degree d and a ∈ C is any scalar, then

p(ax1, . . . , axn) = adp(x1, . . . , xn),

thus for a 6= 0 the vanishing of p(ax1, . . . , axn) is equivalent to the vanishing

of p(x1, . . . , xn).

The observation can be reversed, as follows.

Lemma 10.1.5. Let p = p(t) be a polynomial in C[t0, . . . , tn], of degree bigger

than 0.

Then there exists a point x = (x0, . . . , xn) ∈ Cn with p(x) = 0 and in-

finitely many points y = (y0, . . . , yn) ∈ Cn with p(y) 6= 0.
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Proof. Make induction on the number of variables.

When p has only one variable, then the first claim is exactly the definition

of algebraically closed field. The second claim holds because every non-zero

polynomial of degree d has at most d roots.

If we know both claims for n variables, then write p ∈ C[t0, . . . , tn] as a

polynomial in t0, with coefficients in C[t1, . . . , tn]:

p = pdx
d
0 + pd−1x

d−1
0 + · · ·+ p0

where each pi is a polynomial in x0, . . . , xn. We may assume that pd 6= 0,

otherwise p has only n − 1 variables, and the claim holds by induction. By

induction, there are infinitely many points (y1, . . . , yn) ∈ Cn which are not a

solution of pd (notice that such points exist trivially if pd 6= 0 is constant).

Then for any (y1, . . . , yn) the polynomial p′ = p(t0, y1, . . . , yn) has just one

variable and degree d > 0, hence there are infinitely many y0 ∈ C with

p′(y0) = p(y0, . . . , yn) = 0.

For the next proposition, recall that any polynomial p(t) ∈ C[t0, . . . , tn]

can be written uniquely as a sum of homogeneous polynomials

p(t) = pd + pd−1 + · · ·+ p0,

with pi homogeneous of degree i for all i. The previous sum is called the

homogeneous decomposition of p(t).

Proposition 10.1.6. Let p = p(t) be a polynomial in C[t0, . . . , tn] of degree

d > 0. Assume that p(t) is not homogeneous.

Then there exists x = (x0, . . . , xn) ∈ Cn+1 and a scalar α ∈ C \ {0} such

that p(x) = 0 and p(αx) 6= 0.

Proof. Take the homogeneous decomposition of p(t)

p(t) = pd + pd−1 + · · ·+ p0.
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Since p(t) is not homogeneous, we may assume pd, pi 6= 0 for some i < d.

Take the minimal i with pi 6= 0. Choose y = (y0, . . . , yn) ∈ Cn with pd(y) 6= 0

(it exists by the previous Lemma). Then p(ay) = adpd(y) + ad−1pd−1(y) +

· · ·+ aipi(y) is a polynomial of degree d > 0 in the unique variable a, which

can be divided by ai, i.e. p(ay) = aiq(ay) with q(ay) polynomial of degree

d − i > 0 in a, whose constant term is non-zero. By the previous Lemma,

there exist a1, a2 ∈ C with q(a1y) = 0 and q(a2y) 6= 0. Notice that a1 6= 0,

since the constant term of q(ay) does not vanish. The claim holds by taking

x = a1y and α = a2/a1.

The previous Proposition shows that the vanishing of a polynomial in

C[t0, . . . , tn] is not defined over a cone, hence over a subset of Pn, unless the

polynomial is homogeneous. Conversely, if p ∈ C[t0, . . . , tn] is homogeneous,

then the vanishing of p at a set of projective coordinates [a0 : · · · : an] of

P ∈ Pn implies the vanishing of p at any set of homogeneous coordinates of

p, because the vanishing set of p is a cone.

Consequently, we give the following, basic:

Definition 10.1.7. We call projective variety of Pn every subset of PnK de-

fined by the vanishing of a family J = {pj} of homogeneous polynomials

pj ∈ C[t0, . . . , tn].

In other words, projective varieties are subsets of Pn whose equivalence

classes are the solutions of a system of homogeneous polynomial equations.

When V is any linear space of dimension d, we define the projective va-

rieties in P(V ) by taking an identification V ∼ Cd (hence taking a basis of

V ).

We will denote with X(J) the projective variety defined by the family J

of homogeneous polynomials.

Example 10.1.8. let {p1, . . . , pm} be a family of linear homogeneous poly-

nomials in C[t0, . . . , tn]. The projective variety X defined by {p1, . . . , pm} is

called a linear projective variety.
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The polynomials p1, . . . , pm define also a linear subspace W ⊂ Cn+1. One can

easily prove that there is a canonical identification of X with the projective

space P(W ).

Remark 10.1.9. Let X be a projective variety defined by a set J of homo-

geneous polynomials and take a subset J ′ ⊂ J . Then the projective variety

X ′ = X(J ′) defined by J ′ contains X.

One can easily find examples (even of linear varieties) with X ′ = X even if

J ′ is properly contained in J .

Remark 10.1.10. Projective varieties provide a system of closed sets for a

topology, called the Zariski topology on Pn.

Namely ∅ and Pn are both projective varieties, defined respectively by

the families of polynomials {1} and {0}. Se {Wi} is a family of projective

varieties, with Wi = X(Ji), then
⋂
{Wi} is the projective variety defined by

the family J =
⋃
{Ji} of homogeneous polynomials. Finally, if W1 = X(J1)

and W2 = X(J2) are projective varieties, then W1 ∪ W2 is the projective

variety defined by the family of homogeneous polynomials:

J1J2 = {pq : p ∈ J1, q ∈ J2}.

Example 10.1.11. Every singleton in Pn is a projective variety

Namely, if [a0 : · · · : an] are homogeneous coordinates of a point P , with

ai 6= 0, then the set of linear homogeneous polynomials

I = {a0xi − aix0, . . . , anxi − aixn}

defines {P} ⊂ Pn

In particular, the Zariski topology satisfies the first separation axiom T1.

Example 10.1.12. Every Zariski closed subset of P1 is finite, except P1

itself.
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Namely let p is any non zero homogeneous polynomial of degree d in C[x0, x1].

Then setting x1 = 1, we get a polynomial p̄ ∈ C[x0] which, by the Fun-

damental Theorem of Algebra, can be uniquely decomposed in a products

p̄ = e(x0−a0)m0 · · · (x0−ak)mk , where a1, . . . , ak are the roots of p̄ and e ∈ C.

Going back to p, we see that there exists a power xβ1 (maybe β = 0) such

that

p = exβ1 (x0 − a0x1)m0 · · · (x0 − akx1)mk .

It follows immediately that p vanishes only at the points [a0 : 1], . . . , [ak : 1],

with the addition of [1 : 0] if β > 0.

Thus, the open sets in the Zariski topology on P1 are ∅ and the cofinite sets,

i.e. sets whose complement is finite. In other words, the Zariski topology on

¶1 coincides with the cofinite topology.

In higher projective spaces there are non-trivial closed subsets which are

infinite. Thus the Zariski topology on Pn, n > 1, is not the cofinite topology.

Corollary 10.1.13. Let p 6= 0 be a homogeneous polynomial in C[t0, . . . , tn],

of degree bigger than 0. Assume n > 1.

Then the variety V (p), which is not Pn by Lemma ??, has infinitely many

points.

Proof. If all points Q = [q0 : q1 : · · · : qn] with q0 6= 0 belong to V (p), then we

are done. So we may assume that we may take Q = [1 : q1 : · · · : qn] /∈ V (p)

For any choice of m = (m2, . . . ,mn) ∈ Cn− 2 consider the line Lm, passing

through Q, defined by the vanishing of the linear polynomials

t2 −m2(t1 − q1t0)− q2t0, . . . , tn −mn(t1 − q1t0)− qnt0.

Define the polynomial

pm = p(t0, t1,m2(t1 − q1t0) + q2t0, . . . ,mn(t1 − q1t0) + qnt0).

If (a0, a1) is a solution of the equation pm = 0, then the intersection V (p)∩Lm
contains the point

[a0 : a1 : m2(a1 − q1a0) + q2a0, . . . ,mn(a1 − q1a0) + qna0].
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Since the polynomial pm is homogeneous of the same degree than p, then

it vanishes at some point, so that V (p) ∩ Lm 6= ∅. Since two different lines

Lm, Lm′ meet only at Q /∈ V (p), the claim follows.

Next, we define the ideals associated with a projective variety.

Definition 10.1.14. Let I be an ideal of a polynomial ring R = C[t0, . . . , tn].

We say that I is generated by J ⊂ R, and write I =< J >, when

I = {f1p1 + · · ·+ fmpm : f1, . . . , fm ∈ R, p1, . . . , pm ∈ J}.

We say that I is a homogeeous ideal if there is a set of homogeneus elements

J ⊂ R such that I =< J >.

Notice that not every element of a homogeneous ideal is homogeneous.

for instance, in C[x] the homogeneous ideal I =< x > contains the non

homogeneous element x+ x2.

Proposition 10.1.15. The ideal I is homogeneous if and only if for any

polynomial p ∈ I, whose homogeneous components are pd, . . . , p0, then every

pi belongs to I.

Proof. Assume that I is generated by a set of homogeneous elements J and

take p ∈ I. Consider the decomposition in homogeneous components p =

pd + · · · + p0. There are homogeneous polynomials q1, . . . , qm ∈ J such that

p = f1q1 + · · ·+fmqm, for some polynomials fj ∈ R. Denote by dj the degree

of qj and denote by fij the homogeneous component of degree i in fj (with

fij = 0 whenever i < 0). Then, comparing the homogeneous components,

one has for every degree i

pi = f1 i−d1q1 + · · ·+ fm i−dmqm

and thus pi ∈< J >= I for every i.

Conversely, I is always contained in the ideal generated by the homoge-

neous components of its elements. Thus, when these components are also in

I for all p ∈ I, then I is generated by homogeneous polynomials.
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Remark 10.1.16. If W is a projective variety defined by the vanishing of a

set J of homogeneous polynomials, then W is also defined by the vanishing

of all the polynomials in the ideal I =< J >.

Indeed if P is a point of W , then for all p ∈ I, write p = f1p1 + · · ·+fmpm

for some pi’s in J . We have

p(P ) = f1(P )p1(P ) + · · ·+ fm(P )pm(P ) = 0.

It follows that every projective variety can be defined as the vanishing

locus of a homogemneous ideal.

For any ideal I ⊂ R, define the radical of I as the set

√
I = {p : pm ∈ I for some exponent m}.

√
I is an ideal of R and contains I.

When I is a homogeneous ideal, then also
√
I is homogeneous.

For any ideal I, the projective varieties X(I) and X(
√
I) are equal. Indeed

pm vanishes at P if and only if p does.

Before stating the basic result in the correspondence between projective

varieties and homogeneous ideals (i.e. the homogeneous version of the cele-

brated Hilbert’s Nullstellensatz), we need some more piece of notation.

Definition 10.1.17. We say that an ideal I in R is radical if I =
√
I. For

any ideal I,
√
I is a radical ideal, since

√√
I =
√
I.

We call irrelevant ideal the ideal of R = C[t0, . . . , tn] generated by the

indeterminates t0, . . . , tn.

The irrelevant ideal is a radical ideal that defines the empty set in Pn.

Indeed, no points of Pn can annihilate all the variables, as no points in Pn

have all the homogeneous coordinates equal to 0.

Example 10.1.18. In C[x, y] consider the homogeneous element x2. One

computes soon that the radical of the ideal I =< x2 > is the ideal generated

by x.
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The three sets {x2}, < x2 >,
√
< x2 > =< x > all define the same

projective subvariety of P1: the point of homogeneous coordinates [0 : 1].

Theorem 10.1.19 (homogeneous Nullstellensatz). Two homogeneous

ideals I1, I2 in the polynomial ring R = C[t0, . . . , tn] define the same projective

variety X if and only if √
I1 =

√
I2,

with the unique exception I1 = R, I2 = the irrelevant ideal.

Thus, if two radical homogeneous ideals I1, I2 define the same projective

variety X, and none of them is the whole ring R, then I1 = I2.

A proof of the homogeneous Nullstellesatz can be found in ZS.

We should notice that the Theorem works because C is algebraically

closed. The statement is not true over a non algebraically closed field, as

the real field R. This is a good reason to start the study of Projective Ge-

ometry from varieties defined on an algebraically closed field, as C.

A consequence of the homogeneous Nullstellensatz is that two sets J1, J2

of homogeneous elements define the same projective variety X if and only if
√
< J1 > =

√
< J2 >.

We list below other consequences.

Corollary 10.1.20. Let J ∈ C[t0 . . . , tn] be a set of homogeneous polynomi-

als which define a projective variety X 6= ∅. Then the set

J(X) = {p ∈ C[t0 . . . , tn] : p is homogeneous and p(P ) = 0 for all P ∈ X}

coincides with the radical of the ideal generated by J .

We will call J(X) the homogeneous ideal associated with X.

Corollary 10.1.21. Let I ∈ R = C[t0 . . . , tn] be a homogeneous ideal. I

defines the empty set in Pn if and only if, for some m, all the powers tmi

belong to I.
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Proof. Indeed we get from the homogeneous Nullstellensatz that
√
I is either

R or the irrelevant ideal. In the former case, the claim is obvious. In the

latter, for every i there exists mi such that xmii ∈ I, and one can take m as

the maximum of the mi’s.

Another fundamental fact in the study of projective varieties is encoded

in the following algebraic result (for the proof, see [ZS]):

Theorem 10.1.22 (Basis Theorem). Let J be a set of polynomials and let

I be the ideal generated by J . Then there exists a finite subset J ′ ⊂ J that

generate the ideal I.

As a first consequence, the Basis Theorem tells us that any projective

variety can be defined by the vanishing of a finite set of homogeneous poly-

nomials.

Let us list other consequences.

Definition 10.1.23. Call hypersuperface any projective variety defined by

the vanishing of a single homogeneous polynomial. By abuse we will write

X(p) to indicate X({p}).
When p has degree 1, then X(p) is called a hyperplane.

Corollary 10.1.24. Every projective variety is the intersection of a finite

number of hypersurfaces. Equivalently, every open set in the Zariski topology

is a finite union of complements of hypersurfaces.

Proof. Se X = X(J) be a projective variety, defined by the set J of homo-

geneous polynomials. Find a finite subset J ′ ⊂ J such that < J >=< J ′ >.

Then:

X = X(J) = X(< J >) = X(< J ′ >) = X(J ′).

If J = {p1, . . . , pm} then, by remark 10.1.10:

X = X(p1) ∩ · · · ∩X(pm).
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Example 10.1.25. If L ⊂ Pn is a linear variety which corresponds to a linear

subspace of dimension m+ 1 in Cn+1, then L can be defined by n−m linear

homogeneous polynomials, i.e. L is the intersection of n−m hyperplanes.

Remark 10.1.26. One could think that every projective variety in Pn can be

defined with a finite set of homogeneous polynomials of cardinality bounded

by a function of n.

F.S. Macaualay proved that this guess is false.

Indeed, in [Mac] he found that for every integer m there exists a subset

(curve) in P3 which cannot be defined by a set of less than m homogeneous

polynomials.

Definition 10.1.27. A topological space Y is irreducible when any pair of

non-empty open subsets have a non-empty intersection.

Equivalently, Y is irreducible if it is not the union of two proper closed

subsets.

Equivalently, Y is irreducible if the closure of every non-empty open subset

A is Y itself, i.e. every non-empty open subset is dense in Y .

The following Proposition is easy and left to the reader as an exercise.

Proposition 10.1.28. (i) Every singleton is irreducible.

(ii) If Y is an irreducible subset, then the closure of Y is irreducible.

(iii) If an irreducible subset Y is contained in a finite union of closed

subsets X1 ∪ · · · ∪Xm, then Y is contained in some Xi.

(iv) If Y1 ⊂ . . . Yi ⊂ . . . is an ascending chain of irreducible subsets, then⋃
Yi is irreducible.

Corollary 10.1.29. Any projective space Pn is irreducible and compact in

the Zariski topology.

Proof. Let A1, A2 be non-empty open subsets, in the Zariski topology, and

assume that Ai is the complement of the projective variety Xi = X(Ji), where
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J1, J2 are two subsets of homogeneous polynomials in C[t0, . . . , tn]. We may

assume, by the Basis Theorem, that bot J1, J2 are finite. Notice that none

of X(J1), X(J2) can coincide with Pn, thus both J1, J2 contain a non-zero

element. To prove that Pn is irreducible, we must show that A1 ∩A2 cannot

be empty, i.e. that X1 ∪ X2 cannot coincide with Pn. By Remark 10.1.10,

X1 ∪X2 is the projective variety defined by the set of products J1J2. If we

take p1 6= 0 in J1 and p2 6= 0 in J2, then p = p1p2 is a non-zero element in

J1J2. By Lemma 10.1.5 there exist points P ∈ Pn such that p(P ) 6= 0. Thus

P does not belong to X1 ∪X2, and the irreducibility of Pn is settled.

For the compactness, we prove that Pn enjoys the Finite Intersection Prop-

erty. Let {Xi} be any family of closed subsets such that
⋂
Xi = ∅. Assume

Xi = X(Ji) and define J =
⋃
Ji. By Remark 10.1.10,

⋂
Xi = X(J), thus

also
⋂
Xi = X(< J >). By the Basis Theorem, there exists a finite sub-

set J ′ of J such that < J ′ >=< J >. Thus there exists a finite subfamily

Ji1 , . . . , Jik such that < Ji1 ∪ · · · ∪ Jik >=< J >. Thus

∅ = X(< J >) = X(< Ji1 ∪ · · · ∪Jik >) = X(Ji1 ∪ · · · ∪Jik) = Xi1 ∩ · · · ∩Xik

and the Finite Intersection Property holds.

Closed subsets in a compact space are compact. Thus any projective

variety X ⊂ Pn is compact in the topology induced by the Zariski topology

of Pn.

Notice that irreducible topological spaces are far from being Hausdorff

spaces. Thus no non-trivial projective space satisfies the Hausdorff separation

axiom T2.

Another important consequence of the Basis Theorem is the following.

Theorem 10.1.30. Any non-empty family F of closed subsets of Pn (i.e. of

projective varieties), partially ordered by inclusion, has a minimal element.

Proof. Let the claim fail. Then one can find an infinite chain of elements of

F ,

X0 ⊃ X1 ⊃ · · · ⊃ Xi ⊃ . . .
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where all the inclusions are strict. Consider for all i the ideal I(Xi) generated

by the homogeneous polynomials which vanish at Xi. Then one gets an

ascending chian of ideals

I(X0) ⊃ I(X1) ⊃ · · · ⊃ I(Xi) ⊃ . . .

where again all the inclusions are strict. Let I =
⋃
I(Xi). It is immediate

to see that I is a homogeneous ideal. By the Basis Theorem, there exists a

finite set of homogeneous generators g1, . . . , gk for I. Since every gj belongs

to
⋃
I(Xi), for i0 sufficiently large we have gj ∈ I(Xi0) for all j. Thus

I = I(Xi0), so that I(Xi0) = I(Xi0+1), a contradiction.

Definition 10.1.31. For any projective varietiy X, a subset X ′ of X is an

irreducible component of X if it is closed (in the Zariski topology, thus X ′ is

a projective variety itself), irreducible and X ′ maximal with respect to these

two properties.

It is clear that X is irreducible if and only if X itself is the unique irre-

ducible component of X.

Theorem 10.1.32. Let X be any projective variety. Then the irreducible

components of X exist and their number is finite.

Moreover there exists a unique decomposition of X as the union

X = X1 ∪ · · · ∪Xk

where X1, . . . , Xk are precisely the irreducible components of X.

Proof. First, let us prove that irreducible components exist. To do that,

consider the family Fp of closed irreducible subsets containing a point P .

FP is not empty, since it contains {P}. If X1 ⊂ . . . Xi ⊂ . . . is an ascending

chain of elements of Fp, then the union Y =
⋃
Xi is irreducible by 10.1.28

(iv), thus the closure of Y sits in Fp (by 10.1.28 (ii)) and it is an upper

bound for the chain. Then the family Fp has maximal elements, by Zorn’s

Lemma. These elements are irreducible components of X.
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Notice that we also proved that every point of X sits in some irreducible

component, i.e. X is the union of its irreducible components. If Y is an

irreducible component, by 10.1.28 (ii) also the closure of Y is irreducible.

Thus, by maximality, Y must be closed.

Next, we prove that X is a finite union of irreducible closed subsets. For,

assume this is false. Call F the family of closed subsets of X which are not

a finite union of irreducible subsets. F is non-empty, since it contains X.

By Theorem 10.1.30, F has some minimal element X ′. As X ′ ∈ F , then X ′

cannot be irreducible. Thus there are two closed subsets X1, X2, properly

contained in X ′, whose union is X ′. Since X ′ is minimal in F , none of

X1, X2 is in F , thus both X1, X2 are union of a finite number of irreducible

closed subsets. But then also X ′ would be a finite union of closed irreducible

subsets. As X ′ ∈ F , this is a contradiction.

Thus, there are irreducible closed subsets X1, . . . , Xk, whose union is X.

Then, if Y is any irreducible component of X, we have Y ⊂ X = X1 ∪ · · · ∪
Xk. By 10.1.28 (iii), Y is contained in some Xi. By maximality, we get

that Y coincides with some Xi. This proves that the number of irreducible

components of X is finite.

We just proved that X decomposes in the union of its irreducible com-

ponents Y1, . . . , Ym. By 10.1.28 (iii), none of the Yi can be contained in the

union of the remaining components. Thus the decomposition is unique.

If X is a finite projective variety, then the irreducible components of X

are its singletons.

Example 10.1.33. Let X be the variety in P2 defined by the vanishing of

the homogeneous polynomial g = t0t2 − t21. Then X is irreducible.

Proving the irreducibility of a projective variety, in general, is not an easy

task. We do that, in this case, introducing a method that will be refined

later.

Assume that X is the union of two proper closed subsets X1, X2, where

Xi is defined by the vanishing of homogeneous polynomials in the set Ji.
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We consider the map f : P1 → P2 defined by sending each point P = [y0 :

y1] to the point f(P ) = [y2
0 : y0y1 : y2

1] of P2. It is immediate to control,

indeed, that the point f(P ) does not depend on the choice of a particular

pair of homogeneous coordinates for P . Here f is simply a set-theoretic map.

We will see, later, that f has relevant geometric properties.

The image of f is contained in X, for any point with homogeneous coor-

dinates [x0 : x1 : x2] = [y2
0 : y0y1 : y2

1] annihilates g. Moreover the image of

f is exactly X. Indeed let Q = [a0 : a1 : a2] be a point of X. Fix elements

b, c ∈ C such that b2 = a0 and c2 = a2. Then we cannot have both b, c equal

to 0, for in this case a0 = a2 = 0 and also a1 = 0, because g(Q) = 0, a

contradiction. Moreover (bc)2 = a0a2 = a2
1. Thus, after possibly the change

of the sign of one between b and c, we may also assume bc = a1. Then:

f([b : c]) = [b2 : bc : c2] = [a0 : a1 : a2] = Q.

The map f is one-to-one. To see this, assume f([b : c]) = f([b′ : c′]). Then

(b′2, b′c′, c′2) is equal to (b2, bc, c2) multiplied by some non-zero scalar z ∈ C.

Taking a suitable square root w of Z, we may assume b′ = wb. We have

c′ = ±wc, but if c′ 6= wc then b′c′ = −zbc 6= zbc, a contradiction. Thus also

c′ = wc and (b′, c′), (b, c) define the same point in P1.

In conclusion, f is a bijective map f : P1 → X.

Next, we prove that Z1 = f−1(X1) is closed in P1. Indeed for any poly-

nomial p = p(y0, y1, y2) ∈ J1 consider the polynomial p′ = p(x2
0, x0x1, x

2
1) ∈

C[x0, x1]. It is immediate to control that any P ∈ P1 satisfies p′(P ) = 0 if

and only if f(P ) satisfies p(f(P )) = 0. Thus Z1 is the projective variety in

P1 associated to the set of homogeneous polynomials

J ′ = {p(x2
0, x0x1, x

2
1) : p ∈ J1} ⊂ C[x0, x1].

Similarly Z2 = f−1(X2) is closed in P1.

Since f is bijective, then Z1, Z2 are proper closed subset of P1, whose union

is P1. This contradicts the irreducibility of P1.
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We will see below (Example 10.1.38) that any linear variety is irreducible.

Example 10.1.34. Let X be the variety in P2 defined by the set of homo-

geneous polynomials J = {t0t1, t0(t0 − t2)}. Then X is the union of the sets

L1 = {P = [x0 : x1 : x2] : x0 = 0} and L2 = {P = [x0 : x1 : x2] : x1 = 0, x0 =

x2}. These are both linear varieties, hence they are irreducible (L2 is indeed

a singleton). Moreover L1 ∩ L2 = ∅. It follows that X is not irreducible:

L1, L2 are its irreducible components.

Definition 10.1.35. We say that a polynomial p ∈ C[x0, . . . , xn] is irre-

ducible when p = q1q2 implies that either q1 or q2 are constant.

Example 10.1.36. Every linear polynomial is irreducible.

Theorem 10.1.37 (Unique factorization). Any polynomial f can be writ-

ten as a product f = f1f2 · · · fh where the fi’s are irreducible polynomials.

The fi’s are called irreducible factors of f and are unique up to scalar, in

the sense that if f = g1 · · · gs, with each gj irreducible, then h = s and, after

a possible permutation, there are scalars c1, . . . , ch ∈ C with gi = cifi for all

i.

If f is homogeneous, also the irreducible factors of f are homogeneous.

Notice that the irreducible factors of f need not to be distinct. In any

event, the irreducible factors of a product fg are the union of the irreducible

factors of f and the irreducible factors of g.

Example 10.1.38. Let X = X(f) be a hypersurface an take a decomposi-

tion f = f1 · · · fh of f into irreducible factors. Then the X(fi)’s are presisely

the irreducible components of X.

To prove this, first notice that when f is irreducible, then X is irreducible.

Indeed assume that X = X1 ∪X2, where X1, X2 are closed an none of them

contains X. Then take f1 (respectively f2) in the radical ideal of X1 (respec-

tively X2) and such that X is not contained in X(f1) (respectively in X(f2)).
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We have X1 ⊂ X(f1) and X2 ⊂ X(f2), thus:

X(f) ⊂ X(f1) ∪X(f2) = X(f1f2).

It follows that f1f2 belongs to the radical of the ideal generated by f , thus

some power of f1f2 belongs to the ideal generated by f , i.e. there is an

equality

(f1f2)n = fh

for some exponent r and some polynomial h. It follows that f is either an

irreducible factor of either f1 or f2. In the former case f1 = fh1 hence X(f1)

contains X. In the latter, X(f2) contains X.

In particular, X is irreducible if and only if f has a unique irreducible

factor. This clearly happens when f is irreducible, but also when f is a

power of an irreducible polynomial.

10.2 Multiprojective varieties

Let us move to consider products of projective spaces, which we will call also

multiprojective spaces.

The non-expert reader would be surprised, at first, by knowing that a

product of projective spaces is not trivially a projective space itself.

For instance, consider the product P1 × P1, whose points have a pair of

homogeneous coordinates ([x0 : x1], [y0, y1]). These pairs can be multiplied

separately by two different scalars. Thus, ([1 : 1], [1 : 2]) and ([2 : 2], [1 : 2])

represent the same point of the product. On the other hand, the most näıve

association with a point in a projective space yields to relate ([x0 : x1], [y0, y1])

with [x0 : x1 : y0 : y1] (which, by the way, sits in P3), but ([1 : 1 : 1 : 2]) and

([2 : 2 : 1 : 2]) are different points in P3.

In the next chapter, we will see how a product can be identified with a

subset (indeed, with a projective variety) of a higher dimensional projective

space.
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By now, we develope independently a theory for products of projective

spaces and their relevant subsets: multiprojective varieties.

Remark 10.2.1. Consider a product P = Pm1 × · · · × Pmn . A point P ∈ P
corresponds to an equivalence class whose elements are n-tuples

((a1,0, . . . , a1,m1), . . . , (an,0, . . . , an,mn))

where, for all i, (ai,1, . . . , ai,mi) 6= 0. Two such elements

a = ((a1,0, . . . , a1,m1), . . . , (an,0, . . . , an,mn))

b = ((b1,0, . . . , b1,m1), . . . , bn,0, . . . , bn,mn))

belong to the same class when there are scalars k1, . . . kn ∈ C (all of them

necessarily non-zero) such that, for all i, j, bij = kiaij.

We will denote the elements of the equivalence class that define P as sets

of multihomogeneous coordinates for P , writing

P = ([a1,0 : · · · : a1,m1 ], . . . , [an,0 : · · · : an,mn ]).

Since we want to construct a projective geometry for multiprojective

spaces, we need to define the vanishing of a polynomial

p ∈ C[t1,0, . . . , t1,m1 , . . . , tn,0, . . . , tn,mn ]

at a point P of the product above. This time, it is not sufficient that p is

homogeneous, for subsets of coordinates referring to factors of the product

can be scaled independently.

Definition 10.2.2. A polynomial p ∈ C[t1,0, . . . , t1,m1 , . . . , tn,0, . . . , tn,mn ] is

multihomogeneos of multidegree (d1, . . . , dn) if p, considered as a polynomial

in the variables ti,0, . . . , ti,mi , is homogeneos of degree di, for every i.

Strictly speaking, the definition of a multihomogeneous polynomial in a

polynomial ring C[x0, . . . , xN ] makes sense only after we defined a partition



102 Cristiano Bocci, Luca Chiantini and Anthony V. Geramita

in the set of variables. Moreover, if we change the partition, the notion of

multihomogeneous polynomial also changes.

Notice however that a partition is canonically determined when we con-

sider the polynomial ring C[t1,0, . . . , t1,m1 , . . . , tn,,0, . . . , tnmn ] associated to the

multiprojective space Pm1 × · · · × Pmn .

Multihomogeneous polynomials are homogeneous, but the converse is false.

Example 10.2.3. Consider the polynomial ring C[x0, x1, y0, y1], with the

partition {x0, x1}, {y0, y1}, and consider the two homogneous polynomials

p1 = x2
0y0 + 2x0x1y1 − 3x2

1y0 p2 = x3
0 − 2x1y0y1 + x0y

2
1.

Then p1 is multihomogeneous (of multidegree (2, 1)) while p2 is not multiho-

mogeneous.

Example 10.2.4. In C[t1,0, . . . , t1,m1 , . . . , tn,0, . . . , tn,mn ] the homogeneous

linear polynomial t1,0 + · · · + t1,m1 + · · · + tn,0 + · · · + tn,mn is never mul-

tihomogeneous, except for the trivial partition.

For the trivial partition, homogeneous and multihomogeneous polynomials

coincide.

If for any i one takes a homogeneous polynomial pi ∈ C[ti,0, . . . , ti,m1 ]

of degree di, then the product p1 · · · pn is multihomogeneous of multidegree

(d1, . . . , dn), in the ring C[t1,0, . . . , t1,m1 , . . . , tn,0, . . . , tn,mn ] with the natural

partition.

It is immediate to verify that given two representatives of the same class

in Pm1 × · · · × Pmn :

a = ((a1,0, . . . , a1,m1), . . . , (an,0, . . . , anmn))

b = ((b1,0, . . . , b1,m1), . . . , bn,,0, . . . , bn,mn)),

when p ∈ C[t1,0, . . . , t1,m1 , . . . , tn,0, . . . , tn,mn ] is multihomogeneous of any

multidegree, then p(a) = 0 if and only if p(b) = 0.
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Thus one can define the vanishing of p at a point P = ([a1,0 : · · · :

a1,m1 ], . . . , [an,0 : · · · : an,mn ]) of the product, as the vanishing of p at any set

of multihomogeneous coordinates.

Definition 10.2.5. We call multiprojective variety every subset X ⊂ Pm1 ×
· · · × Pmn defined by the vanishing of a family J of multihomogeneous poly-

nomials

J ⊂ C[t1,0, . . . , t1,m1 , . . . , tn,0, . . . , tn,mn ].

We will also write X(J) to denote the multiprojective variety defined by J .

Example 10.2.6. Consider the product P = Pm1 × · · · × Pmn and consider,

for all i, a projective variety Xi in Pmi . Then the product X1 × · · · ×Xn is

a multiprojective variety in P.

Indeed, assume that Xi is defined by a subset Ji of homogeneous polyno-

mials in the variables ti,0, . . . , ti,ni . Then X1 × · · · ×Xn is defined by the set

of products:

J = {f1 · · · fn : fi ∈ Ji}.

Example 10.2.7. There are multiprojective varieties that are not a product

of projective varieties.

For instance, consider the multiprojective variety X defined by x0y1−x1y0

in the product P1×P1. X does not coincide with P1×P1, but for each point

P ∈ P1, the point (P, P ) of the product sits in X. Thus X cannot be the

product of two subsets of P1, one of which is a proper subset.

Most properties introduced in the previous section for projective varieties

also hold for multiprojective varieties. We give here a short survey.

Remark 10.2.8. Let X(J) be a multiprojective variety, defined by a set J

of multihomogeneous polynomials. Then for any J ′ ⊂ J , the variety X(J ′)

contains X(J).

Beware that one can have X(J ′) = X(J) even if J ′ is properly contained

in J .
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For instance, X(J) is also defined by the ideal < J > and by its radical√
< J >.

Remark 10.2.9. Multiprojective varieties define a family of closed subset

for a topology on a product P = Pa1 × · · · × Pan . We call this topology the

Zariski topology on P.

P is irreducible and compact, in the Zariski topology. Thus every multi-

projective variety is itself compact, in the induced topology.

Remark 10.2.10. Theorem 10.1.22 guarantees that every multihomoge-

neous variety is the zero-locus of a finite set of multihomogeneous polynomi-

als

Every multihomogeneous variety is indeed the intersection of a finite num-

ber of hypersurfaces in P = Pa1 × · · · × Pan , where a hypersurface is defined

as a multiprojective variety X(J), where J is a singleton.

Theorem 10.2.11. Let X be a multiprojective variety. Then there exists a

unique decomposition of X as the union

X = X1 ∪ · · · ∪Xk

where X1, . . . , Xk are irreducible multiprojective varieties: the irreducible

components of X.

10.3 Projective and multiprojective maps

A theory of algebraic objects in Mathematics cannot be considered complete

unless one introduces also the notion of good maps between the objects.

We define in this section a class of maps between projective and multipro-

jective varieties, that are good for our purposes. We will call them projective

or multiprojective maps.

In principle, a projective map is a map which is described by polynomials.

Unfortunately, one cannot take this as a global definition, because it is too

restrictive and would introduce some undesirable phenomenon.
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Instead, we define projective maps in terms of a local description by poly-

nomials.

Definition 10.3.1. let X ⊂ Pn and Y ⊂ Pm be projective varieties. We say

that a map f : X → Y is projective if the following property holds:

for any P ∈ X there exist an open set U of X (in the Zariski topology),

containing P , andm+1 polynomials f0, . . . , fm ∈ C[x0, . . . , xn], homogeneous

of the same degree, such that for all Q = [a0 : · · · : an] ∈ U :

f(Q) = [f0(a0, . . . , an) : · · · : fm(a0, . . . , an)].

We will also write that, over U , the map f is given parametrically by the

system: 
y0 = f0(x0, . . . , xn)

. . . . . .

ym = fm(x0, . . . , xm)

Thus X is covered by open subsets on which f is defined by polynomials.

Since X is compact, we can always assume that the cover is finite.

Notice that if we take another set of homogeneous coordinates for the

point Q ∈ U , i.e. we write Q = [ca0 : · · · : can], where c is a non-zero scalar,

then since the polynomials are homogeneous of the same degree, say degree d,

we get fi(ca0, . . . , can) = cdfi(a0, . . . , an) for all i. Thus f(Q) is independent

on the choice of a specific set of homogeneous coordinates for Q.

We may always consider a projective map f : X → Y ⊂ Pm as a map

from X to the projective space Pm. Next proposition shows that when the

domain X of f is a projective space itself, then the localization to open sets,

in the definition of projective maps, is useless.

Proposition 10.3.2. Let f : Pn → Pm be a projective map. Then there

exists a set of m + 1 homogeneous polynomials f0, . . . , fm ∈ C[x0, . . . , xn] of

the same degree, such that f(Q) is defined by f0, . . . , fm for all Q ∈ Pn.

In other words, in the definition we can always take just one open subset

U = Pn.
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Proof. Take two open subsets U1, U2 where f is defined, respectively, by

homogeneous polynomials g0, . . . , gm and h0, . . . , hm of the same degrees.

Since Pn is irreducible, then U = U1 ∩U2 is a non-empty, dense open subset.

For any point P ∈ U there exists a scalar αP ∈ C − {0} such that, if

P = [a0 : · · · : an], then

(g0(a0, . . . , an), . . . , gm(a0, . . . , an)) = αP (h0(a0, . . . , an), . . . , hm(a0, . . . , an)).

It follows that the homogeneous polynomials

gjhi − gihj

vanish at all the points of U . Thus they must vanish at all the points of

Pn, since U is dense. In particular they vanish in all the points of U1 ∪ U2.

It follows immediately that for any P ∈ U1 ∪ U2, P = [a0 : · · · : an], the

sets of coordinates [g0(a0, . . . , an) : · · · : gm(a0, . . . , an)] and [h0(a0, . . . , an) :

· · · : hm(a0, . . . , an)] determine the same, well defined point of Pm. The claim

follows.

Remark 10.3.3. After Proposition 10.3.2 one may wonder if the local defi-

nition of projective maps is really necessary. Well, it is, as illustrated in the

following Example 10.3.5.

The fundamental point is that necessarily the polynomials f0, . . . , fm that

define the projective map f over U , cannot have a common zero Q ∈ U ,

otherwise the map would not be defined in Q. Sometimes this property cannot

be obtained globally by a unique set of polynomials. It is necessary to use an

open cover and vary the polynomials, passing from one open subset to another

one.

Example 10.3.4. Assume n ≤ m and consider the map between projective

spaces f : Pn → Pm, defined globally by polynomials p0(x0, . . . , xn) , . . . ,

pm(x0, . . . , xn) where

pi(x0, . . . , xn) =

{
xi if i ≤ n

0 otherwise.
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Then f is a projective map. It is easy to prove that f is injective.

Be careful that the map f would not exist for n > m!

Indeed, if for instance n = m + 1, then the image of the point P ∈ Pn,

with coordinates [0 : · · · : 0 : 1], would be the point of coordinates [0 : · · · : 0],

which does not exist in Pm.

Example 10.3.5. Let X be the hypersurface of the projective plane P2,

defined by g(x0, x1, x2) = x2
0 + x2

1 − x2
2. People can immediately realize that

X corresponds to a usual circle of Analytic Geometry.

We define a projective map (stereographic projection) PICTURE??? f :

X → P1.

Consider the two hypersurfacesX(h1), X(h2), where h1, h2 are respectively

equal to x1 − x2 and x1 − x2. Notice that X(h1)∩X(h2) is just the point of

coordinates [1 : 0 : 0], which does not belong to X. Thus the open subsets

of the plane (X(h1))c, (X(h2))c cover X. Define two open subsets of X by

U1 = X ∩ (X(h1))c, U2 = X ∩ (X(h2))c.

Then defined the map f as follows:

on U1, f =

{
y0 = x0

y1 = x1 − x2

, on U2, f =

{
y0 = x1 + x2

y1 = −x0

.

We need to prove that the definition is consistent in the intersection U1∩U2.

Notice that if Q = [0 : a1 : a2] belongs to X, then a2
1 − a2

2 = 0, so that Q

belongs either to U1 or to U2. Thus any point Q = [a0 : a1 : a2] ∈ U1 ∩ U2

satisfies a0 6= 0. Since clearly Q also satisfies a1 + a2 6= 0, then

[a0 : a1 − a2] = [a0(a1 + a2) : (a1 − a2)(a1 + a2)] =

= [a0(a1 + a2) : a2
1 − a2

2] = [a0(a1 + a2) : −a2
0] = [a1 + a2 : −a0].

Thus f is a well defined projective map.

Notice that the two polynomials that define the map on U1 cannot define

the map globally, because X \ U1 contains the point [0 : 1 : 1], where both

x0 and x1 − x2 vanish.
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The map f is one-to-one and onto. Indeed if B = [b0 : b1] ∈ P1, then

f−1(B) consists of the unique point [2b0b1 : −b2
0 + b2

1 : −b2
0 − b2

1], as one can

easily compute.

Remark 10.3.6. The composition of two projective maps is a projective

map.

The identity from a projective variety to itself is a projective map.

Proposition 10.3.7. Projective maps are continuous in the Zariski topology.

Proof. Cosider X ⊂ Pn and a projective map f : X → Y ⊂ Pm. We

may assume indeed Y = Pm, to prove the continuity. Let U be an open

subset of Pm, which is the complement of a hypersurface X(g), for some

g ∈ C[y0, . . . , ym]. Let Ψ be an open subset of X where f is defined by

the polynomials f0, . . . , fm. Then f−1(U) ∩ Ψ is the intersection of Ψ with

the complement of the hypersurface defined by the homogeneous polynomial

g(f0, . . . , fm) ∈ C[x0, . . . , xn]. It follows that f−1(U) is a union of open sets,

hence it is open.

Since every open subset of Pm is a (finite) union of complements of hyper-

surfaces (by 10.1.24), the claim follows.

Definition 10.3.8. We will say that a projective map f : X → Y is an

isomorphism if there is a projective map g : Y → X such that g ◦ f =

identity on X and f ◦ g = identity on Y .

Equivalently, a projective map f is an isomorphism if it is one-to-one and

onto, and the set-theoretic inverse g is itself a projective map.

Example 10.3.9. Let us prove that the map f defined in Example 10.3.5,

from the hypersurface X ⊂ P2 defined by the polynomial x2
0 + x2

1 − x2
2 to P1

is an isomorphism.

We already know, indeed, what is the inverse of f : it is the map g : P1 → X
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defined parametrically by 
x0 = 2y0y1

x1 = −y2
0 + y2

1

x2 = −y2
0 − y2

1

It is immediate to check, indeed, that both g ◦ f and f ◦ g are the identity

on the respective spaces.

Remark 10.3.10. We are now able to prove that the map f of Example

10.3.5 cannot be defined globally by a pair of polynomials:{
y0 = p0(x0, x1, x2)

y1 = p1(x0, x1, x2)

Otherwise, since the map g defined in the previous example is the inverse of f ,

we would have that for any choice of Q = (b0, b1) 6= (0, 0), the homogeneous

polynomials

hb0,b1 = b1p0(y0y1, y
2
1 − y2

2,−y2
1 − y2

2)− b0p1(y0y1, y
2
1 − y2

2,−y2
1 − y2

2),

whose vanishing defines f(g(Q)), vanishes at a single points of P1. Notice

that the degree d of any hb0,b1 is at least 2.

By the Fundamental Theorem of Algebra, a homogeneous polynomial in

two variables that vanishes at a single point is a power of linear form. Thus

any polynomial hb0,b1 is a d-th power of a linear form. In particular there are

scalars a0, a1, c0, c1 such that:

h1,0 = p0(y0y1, y
2
1 − y2

2,−y2
1 − y2

2) = (a0y0 − a1y1)d

h0,1 = p1(y0y1, y
2
1 − y2

2,−y2
1 − y2

2) = (c0y0 − c1y1)d

Notice that the point Q′ = [a1 : a0] cannot be equal to [c1 : c0], otherwise both

p0, p1 would vanish at g(Q′) ∈ X. Then h1,−1 = (a0y0−a1y1)d−(c0y0−c1y1)d

vanishes at two different points, namely [a1 + c1 : a0 + c0] and [ea1 + c1 :

ea0 + c0], where e is any d-root of unit, different from 1.
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In the case of multiprojective varieties, most definitions and properties

above can be rephrased and proved straightforwardly.

Definition 10.3.11. Let X ⊂ Pa1 × · · · × Pan be a multiprojective variety.

A map f : X → Pm is a projective map if there bexists a open cover {Ui}
of the domain X such that f is defined over each Ui by multihomogeneous

polynomials, all of the same multidegree.

In other words f is multiprojective if for any Ui of a cover there are

multihomogeneous polynomials p0, . . . , pm in C[x0,1, . . . , xn,an ], of the same

multidegree, such that for all P ∈ X, P = ([c0,1 : · · · : c0,a1), . . . , [cn,1 : · · · :

cn,an)), then f(P ) has coordinates

f(P ) = [p0((c0,1, . . . , c0,a1), . . . , (cn,1, . . . , cn,an)) : . . .

· · · : pm((c0,1, . . . , c0,a1), . . . , (cn,1, . . . , cn,an))).

We will write in parametric form:
y0 = f0(x0,1, . . . , xn,an)

. . . . . .

ym = fm(x0,1, . . . , xn,an)

We will say that

f : X → Pb1 × · · · × Pbm

is a multiprojective map if all of its components are.

Remark 10.3.12. The composition of two multiprojective maps is a multi-

projective map.

The identity from a multiprojective variety to itself is a multiprojective

map.

Multiprojective maps are continuous in the Zariski topology.
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10.4 Exercises

Exercise 10. Prove that any open subset of a projective variety X is covered

by a finite union of open subsets which are the intersection of X with the

complement of a hypersurface.
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Chapter 11

Chow’s Theorem

We collect in this chapter some fundamental facts on projective maps induced

by linear maps.

The non trivial case concerns linear maps which are surjective but not

injective. After a change of coordinates, such maps induce maps between

projective varieties that can be described as projections.

Despite of the fact that the words projective and projection have a common

origin (in the paintings of Renaissance, indeed) projections not always give

rise to projective maps.

The description of the image of a projective variety under projections

requires indeed some non trivial algebraic tool: the rudiments of the elimi-

nation theory.

11.1 Linear maps and change of coordinates

The following definition generalizes Example 1.3.4.

Definition 11.1.1. Consider a linear map f : Cn+1 → Cm+1 which is injec-

tive.

Then f defines a projective map (which, by abuse, we will still denote by

f) between the projective spaces Pn → Pm, as follows:

113
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for all P ∈ Pn, consider a set of homogeneous coordinates [a0 : · · · : an] and

send P to the point f(P ) ∈ Pm with homogeneous coordinates [f(x0, . . . , xn)].

Such maps are called linear projective maps.

It is plain that the point f(P ) does not depend on the choice of a set of

coordinates for P , since f is linear.

Also, notice that the map cannot be defined in the same way when f is

not injective, for in this case the image of a point P whose coordinates lie in

the Kernel of f would be indeterminate.

Since any linear map Cn+1 → Cm+1 is defined by linear homogeneous

polynomials, then it is clear that the induced map between projective spaces

is indeed a projective map.

Example 11.1.2. If the map f is an isomorphism of Cn+1, then the corre-

sponding linear projective map is called a change of coordinates.

Indeed f corresponds to a change of basis inside Cn+1.

Such a projective map is an isomorphism, since clearly the inverse isomor-

phism f−1 determines a projective map which is the inverse of f .

In particular, any change of coordinates in a projective space is a home-

omorphism of the corresponding topological space, in the Zariski topology.

So, the image of a projective variety under a change of coordinates is still a

projective variety.

This remark generalizes to any linear projective map.

Example 11.1.3. Every injective map f : Cn+1 → Cm+1, m ≥ n, can be

factored as a composition f = g ◦ f ′ where f ′ is the inclusion which sends

(x0, . . . , xn) to (x0, . . . , xn, 0, . . . , 0) (with m−n zeroes), followed by a change

of coordinates.

As such, up to a change of coordinates, any linear projective map can be

reduced to the map that embeds Pn into Pm as the linear space defined by

equations xn+1 = · · · = xm = 0.
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It follows that any linear projective map is closed in the Zariski topology:

the image of the projective subvariety X ⊂ Pn defined by homogeneous

polynomials p1 = · · · = ps = 0 is exactly the image, under a change of

coordinates, of the projective subvariety defined in Pm by equations p1 =

· · · = ps = xn+1 = · · · = xm = 0.

Remark 11.1.4. Let V be a linear space of dimension n + 1. The choice

of a basis for V corresponds to fixing an isomorphism between V and Cn+1.

Thus we can identify, after a choice of the basis, the projective space P(V )

with Pn.

A base change on V corresponds to a change of coordinates Pn → Pn.

From now on, we will make use of an identification between V and Cn+1,

induced by the choice of a basis, to introduce and study projective varieties

into P(V ).

The simple situation described above becomes much more involved if we

analyze what happens for non-injective linear maps f : Cn+1 → Cm+1.

Let us now consider a linear map f : Cn+1 → Cm+1 which is not injective.

In this case, we cannot define through f a projective map Pn → Pm as

above, since for any vector (a0, . . . , an) in the kernel of f , the image of the

point [a0 : · · · : an] is unefined, because f(a0, . . . , an) vanishes.

On the other hand, the kernel of f defines a projective linear subspace of

Pn, the projective kernel, which will be denoted by Kf .

If X ⊂ Pn is a subvariety which does not meet Kf , then the restriction of

f to the coordinates of the points of X determines a well defined map from

X to Pm.

Example 11.1.5. Consider the subspace M ⊂ Cn+1 of dimension m +

1 < n + 1, formed by the elements of type (x0, . . . , xm, 0, . . . , 0). Let f :

Cn+1 → M be the linear surjective map which sends any (x0, . . . , xn) to

(x0, . . . , xm, 0, . . . , 0).
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Notice that M defines a linear projective subspace P(M) ⊂ Pn, of projec-

tive dimension m. Let P be a point of Pn, outside the projective kernel Kf

(this means exactly that P = [a0 : · · · : an], with ai 6= 0 for some index i be-

tween 0 and m). Then the image of P under f corresponds to the projection

of P to P(M) = Pm, from the center of projection Kf .

If f : Cn+1 → Cm+1 is any surjective map, then we can always find an

isomorphism of vector spaces g from Cm+1 to the subspace M of Pn of all

vectors with xm+1 = · · · = xn = 0, so that the composition g ◦ f sends

(x0, . . . , xn) to (x0, . . . , xm, 0, . . . , 0).

Thus, after a projective isomorphism, f acts on points of Pn \ Kf as a

geometric projection. The observation explains the following definition.

Definition 11.1.6. Given a linear surjective map f : Cn+1 → Cm+1 and a

subvariety X ⊂ Pn which does not meet Kf , the restriction map f|X : X →
Pm is a well defined projective map, which will be denoted as a projection of

X with center Kf .

Next, we will show that for any choice of f and X as above, the image of

X in Pm is an algebraic subvariety of Pm. To do that, we will need at least

the rudiments of Elimination Theory.

11.2 Elimination Theory

Let us consider with the following problem.

Assume we are given two (not necessarily homogeneous) polynomials p, q ∈
C[t]. Clearly both p and q factorise in a product of linear factors.

Which algebraic condition do p, q satisfy when they have a common factor?

The answer to this question relies in the notion of resultant of p and q.

Proposition 11.2.1. There exists a polynomial R(p, q) in the coefficients
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of p and q, such that R(p, q) = 0 exactly when p, q share a common linear

factor. The polynomial R(p, q) is called then resultant of p and qt.

Proof. Write p = a0 + a1t + · · · + art
r and q = b0 + b1t + . . . bst

s (ar, bs 6=
0). The existence of a common root y for p, q, which is also a solution for

tp, t2p, . . . , tsp and tq, t2q, . . . , trq, implies that the linear system associated

to the (r + s)× (r + s) matrix

a0 a1 a2 . . . ar 0 0 . . . 0
0 a0 a1 . . . ar−1 ar 0 . . . 0
...
0 . . . 0 a0 a1 a2 0 . . . ar
b0 b1 b2 . . . bs 0 0 . . . 0
...
0 . . . 0 b0 b1 b2 0 . . . bs


has a non trivial solution: the powers (1, y, y2, . . . ).

Conversely, if the system above has a non-trivial solution, then either a0, b0

are both 0 (in which case p, q both vanish at the origin) or, if say a0 6= 0,

then ar0b
s
0 6= 0, so the rank of the matrix is r+ s− 1 and the solutions of the

system are all proportional. Substituting in the rows, one sees immediately

that there exists a solution of type (1, y, y2, . . . ).

Thus, the determinant of the matrix is a polynomial R(p, q) in the coefficients

of p, q, that vanishes exactly when p, q have a common root.

When two polynomials p, q have many variables t0, . . . , tn, then we can

consider them as polynomials in x0, with coefficients in C[t1, . . . , tn]. The

corresponding resultant R0(p, q) is a polynomial in C[t1, . . . , tn] which van-

ishes at (y1, . . . , yn) exactly when there exists y0 with

p(y0, y1, . . . , yn) = q(y0, y1, . . . , yn) = 0.

We define similarly the resultant Ri(p, q) by isolating the variable ti in the

two polynomials.
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Remark 11.2.2. When p, q are homogeneous polynomials in C[t0, . . . , tn],

then for any i the resultantRi(p, q) is a homogeneous polynomial in C[t1, . . . , tn]

Proposition 11.2.3. Let X be a projective variety, with homogeneous ideal

I(X). For any pair p, q ∈ I(X) and for any index i, the resultant Ri(p, q)

belongs to I(X).

Proof. Assume i = 0 and let P = [y0 : · · · : yn] be any point in X. Then

p(y0, y1, . . . , yn) = q(y0, y1, . . . , yn) = 0. Thus R0(p, q)(P ), which is clearly

equal to R0(p, q)(y1, . . . , yn) since R0(p, q) does not have the variable x0,

vanishes. So R0(p, q) vanishes at the points of X, thus it belongs to I(X).

The same argument works for any index.

The resultant is a tool that shows that the image of a projective variety

in a projection is a projective variety.

Proposition 11.2.4. Given a linear surjective map f : Cn+1 → Cm+1, m <

n, and a subvariety X ⊂ Pn which does not meet Kf , the image of the

restriction f|X : X → Pm is a projective subvariety 0f Pm.

Proof. After a change of coordinates we may assume that the map f sends

(x0, . . . , xn) to (x0, . . . , xm). Then we may consider f as a sequence of maps,

each killing one variable. Thus we may restrict ourselves to prove the claim

in the case m = n− 1.

Consider the homogeneous ideal I(X) of X and let I ′ ⊂ C[x0, . . . , xn−1]

be the ideal generated by the homogeneous elements of I(X) belonging to

C[x0, . . . , xn−1]. We will prove that f|X(X) is exactly the projective variety

defined by I ′.

Indeed if a point Q = [y0 : · · · : yn−1] belongs to f|X(X), then there exists

yn such that P = [y0 : · · · : yn] sits in X. Since I ′ ⊂ I(X), then for every

p ∈ I ′, we have

p(y0, . . . , yn−1) = p(y0, . . . , yn) = 0.
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Conversely assume that Q ∈ Pm \ f|X(X), Q = [y0 : · · · : yn−1]. Then

for any choice of yn, there exists a polinomial p ∈ I(X) such that p̄ =

p(y0, . . . , yn−1, xn) ∈ C[xn] does not vanish at xn = yn. In particular p̄ is not

identically 0. Call u1, . . . , uk the roots of p̄. For each j there exists pj ∈ I(X)

such that p̄j = pj(y0, . . . , yn−1, xn) does not vanish at uj. Thus, a general

linear combination of the pj’s determine a polynomial q ∈ I(X) such that

q̄ = p(y0, . . . , yn−1, xn) does not vanish at any uj, otherwise [y0 : · · · : yn−1, :

uj] ∈ X, so that Q = [y0 : · · · : yn−1] ∈ f|X(X), a contradiction. We claim

that the resultant Rn(p, q) is a homogeneous polynomial in I ′ which does not

vanish at Q. Indeed Rn(p, q) ∈ I ′ by Proposition 11.2.3. If Rn(p, q)(Q) =

Rn(p, q)(y0, . . . , yn−1) = 0, then there exists yn such that P ′ = [y0 : · · · :

yn−1 : yn] annihilates both p and q. This is excluded by construction.

Summarizing, we proved that p(Q) = 0 for all Q ∈ f|X(X) and p ∈ I ′,

while if Q ∈ Pm \ f|X(X) then p(Q) 6= 0 for at least one p ∈ I ′. It follows

that f|X(X) is the projective variety defined by I ′.

11.3 The projective and multiprojective Chow’s

Theorem

We prove in this section that the images of all projective and multiprojective

maps are projective (or multiprojective) varieties.

The first step is the proof that any projective or multiprojective map fac-

torizes through change of coordinates, projections and two special projective

maps: the Veronese map and the Segre map. These two maps owe their

names to two famous Italian mathematicians of the XIX century: Giuseppe

Veronese and Corrado Segre, who developed a systematic geometric study of

projective spaces.

Both maps are the projective counterpart of fundamental operations in

multilinear algebra: the symmetric and the general tensor products.

Definition 11.3.1. Fix n, d and set N =
(
n+d
d

)
−1. There are exactly N + 1
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monic monomials of degree d in n+ 1 variables x0, . . . , xn. Let us choose an

ordering and call M0, . . . ,MN these monomials.

The Veronese map of degree d in Pn is the map vn,d : Pn → PN which

sends a point [a0 : · · · : an] to [M0(a0, . . . , an) : · · · : MN(a0, . . . , an)].

The map is well defined, since for any P = [a0 : · · · : an] ∈ Pn there

exists ai 6= 0, and among the monomials one has M = xdi , which satisfies

M(a0, . . . , an) = adi 6= 0.

The Veronese map is injective. Indeed if P = [a0 : · · · : an] and Q = [b0 :

· · · : bn], have the same image, then the powers of the ai’s and the bi’s are

equal, up to a scalar multiplication. Thus, up to a scalar multiplication, one

may assume adi = bdi for all i, so that bi = eiai, for some choice of a d-root of

unit ei. If the ei’s are not all equal to 1, then there exists a monic monomialM

such that M(e0, e1, . . . , en) 6= 1, thus M(a0, . . . , an) 6= M(b0, . . . , bn), which

contradicts vn,d(P ) = vn,d(Q).

Because of its injectivity, sometimes we will refer to the Veronese map as

the Veronese embedding.

Proposition 11.3.2. Every projective map f : Pn → Pm factors through a

Veronese map, a change of coordinates and a projection.

Proof. By proposition ?? there are homogeneous polynomials f0, . . . , fm ∈
C[x0, . . . , xn] of the same degree d, which do not vanish simultaneously at

any point P ∈ Pn, and such that f is defined by the fj’s. Each fj is a linear

combination of monic monomials of degree d. Hence there exists a change

of coordiantes g in the target space PN of vn,d such that f is equal to vn,d

followed by g and by the projection to the first m+1 coordinates. Notice that

since (f0(P ), . . . , fm(P )) 6= 0 for all P ∈ Pn, the projection is well defined on

the image of g ◦ vn,d.

A similar procedure holds to describe a canonical decomposition of mul-

tiprojective maps.
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Definition 11.3.3. Fix a1, . . . , an and set N = (a1 + 1) · (a2 + 1) · · · (an +

1) − 1. There are exactly N + 1 monic monomials of multidegree (1, . . . , 1)

in the variables x1,0, . . . , x1,a1 , x2,0, . . . , x2,a2 , . . . , xn,0 . . . xn,an . Let us choose

an ordering and call M0, . . . ,MN these monomials.

The Segre map of degree d in Pn is the map sa1,...,an : Pa1×· · ·×Pan → PN

which sends a point P = ([p10 : · · · : p1a1 ], . . . , [pn0 : · · · : pnan ]) to [M0(P ) :

· · · : MN(P )].

The map is well defined, since for any i = 1, . . . , n there exists piji 6= 0, and

among the monomials one has M = x1,j1 · · ·xn,jn , which satisfies M(P ) =

p1j1 · · · pnjn 6= 0.

Notice that when n = 1, then the Segre map is the identity.

Proposition 11.3.4. The Segre map is injective.

Proof. Make induction on n, the case n = 1 being trivial.

For the general case, assume that

P = ([p10 : · · · : p1a1 ], . . . , [pn,0 : · · · : pn,an ]),

Q = ([q10 : · · · : q1a1 ], . . . , [qn,0 : · · · : qn,an ])

have the same image. Fix indexes such that p1j1 , . . . , pnjn 6= 0. The monomial

M = x1,j1 · · ·xn,jn does not vanish at P , hence also q1j1 , . . . , qnjn 6= 0.

Call α = q1j1/p1j1 . Our first task is to show that α = q1i/p1i for i = 1, . . . , a1,

so that [p11 : · · · : p1a1 ] = [q11 : · · · : q1a1 ]. Define β = (q2j2 · · · qnjn)/(p2j1 · · · pnjn).

Then β 6= 0 and

αβ = (q1j1 · · · qnjn)/(p1j1 · · · pnjn).

Since P,Q have the same image in the Segre map, then for all i = 1, . . . , a1,

the monomials Ni = x1,ix2,j2 · · ·xn,jn satisfy

αβNi(P ) = Ni(Q).

It follows immediately αβ(p1i · · · pnjn) = (q1i · · · qnjn) so that αp1i = q1i for

all i. Thus [p10 : · · · : p1a1 ] = [q10 : · · · : q1a1 ].
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We can repeat the argument for the remaining factors of P,Q, obtaining

P = Q.

Because of its injectivity, sometimes we will refer to the Segre map as the

Segre embedding.

Proposition 11.3.5. Every multiprojective map f : Pa1 × · · · × Pan → PN

factors through Veronese maps, aSegre map, a change of coordinates and a

projection.

Proof. By proposition ?? there are multihomogeneous polynomials fj’s in the

ring C[x1,0, . . . , x1,a1 , . . . , xn,0 . . . xn,an ] of the same multidegrees (d1, . . . , dn),

which do not vanish simultaneously at any point P ∈ Pa1×· · ·×Pan , and such

that f is defined by the fj’s. Each fj is a linear combination of products of

monic monomials of degrees d1, . . . , dn respectively in the set of coordinates

(x1,0, . . . , x1,a1), . . . , (xn,0 . . . xn,an). If vai,di denotes the Veronese embedding

of degree di of Pai into the corresponding space PAi , then f factors through

va1,d1 × · · · × van,dn followed by a multilinear map F : Pa1 × · · · × Pan →
PN defined by multihomogeneous polynomials Fj of multidegree (1, . . . , 1).

Each Fj is a linear combination of products of n coordinates in the sets

(x1,0, . . . , x1,a1), . . . , (xn,0 . . . xn,an) respectively. Hence F factors through a

Segre map sA1,...,An , followed by a change of coordinates in PM , M = (A1 +

1) · · · (An + 1)− 1, and then followed by a projection.

Now we are ready to state and prove the Chow’s Theorem.

Theorem 11.3.6. Chow’s Theorem Every projective map f : Pn → PN

is Zariski-closed, i.e. the image of a projective subvariety is a projective

subvariety.

Every multiprojective map f : Pa1 × · · · × Pan → PM is Zariski-closed.

Proof. In view of the previous propositions, it is enough to prove that the

Veronese map and the Segre map are Zariski-closed.
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Let us consider a Veronese embedding vn,d : Pn → PN and let Y be a projec-

tive subvariety in Pn. Then Y is a finite intersection of hypersurfaces. Thus,

if we prove that the image of any hypersurface of Pn is Zariski-closed in PN ,

then the claim holds for any Y , because vn,d is injective. Tus we may reduce

ourselves to the case where Y is a hypersurface of degree e in Pn, defined by

the homogeneous polynomial f ∈ C[x0, . . . , xn].

Fix an integer m such that u = md − e is non-negative. The polynomials

g0 = fxu0 , . . . , gn = fxun are homogeneous of degree md. So each gi is a linear

combinations of products of m monic monomials of degree d in the xj’s.

Thus, following the notation of the definition of the Veronese maps, every gi

corresponds to some polinomial Gi of degree m in the variables Mj’s of PN .

We want to prove that the image of Y is the vanishing locus of the Gi’s.

Indeed if P = [p0 : · · · : pn] ∈ Y , then for all i, gi(p0, . . . , pn) = 0. Thus

Gi(M0(p0, . . . , pn), . . . ,MN(p0, . . . , pn)) = 0, i.e. each Gi vanishes at the

point [M0(p0, . . . , pn) : · · · : MN(p0, . . . , pn)] = vn,d(P ).

Conversely, assume that P /∈ Y , so that f(P ) 6= 0. Let i be the in-

dex of a non-vanishing coordinate of P . Then gi(P ) 6= 0. It follows soon

Gi(M0(p0, . . . , pn), . . . ,MN(p0, . . . , pn)) 6= 0.

In the multiprojective case, we can as above reduce ourselves to varieties Y

defines by a single polynomial f . So, let Y be defined by the multihomo-

geneous polynomial f , of multidegree (d1, . . . , dn). Define d = max{di} and

ui = d − di. Consider the polynomials fxu11,i1
· · ·xunn,in , for any choice of in-

dexes (i1, . . . , in). These polynomials are multihomogeneous of multidegree

(d, . . . , d), so they split in a product of d monomials of multidegree (1, . . . , 1).

In other words, by the definition of the Segre map, each fxu11,i1
· · ·xunn,in de-

termines a homogeneous polynomial Gi1,...,in in the coordinates of the target

space of the Segre embedding. As above it is quite straightforward that these

polynomials vanish exactly on the image of Y .

Example 11.3.7. Let us consider the projective map f : P1 → P2 defined
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by

f(x1, x2) = (x3
1, x

2
1x2 − x1x

2
2, x

3
2).

We can decompose f as the Veronese map v1,3, followed by the linear iso-

morphism g(a, b, c) = (a, b− c, c− d, d) and then followed by the projection

π to the first, second and fourth coordinate.

Namely:

(π ◦ g ◦ v1,3)(x1, x2) = (π ◦ g)(x3
1, x

2
1x2, x1x

2
2, x

3
2) =

= π(x3
1, x

2
1x2 − x1x

2
2, x1x

2
2 − x3

2, x
3
2) = (x3

1, x
2
1x2 − x1x

2
2, x

3
2).

The image of π is a projectve curve in P3, whose equation can be obtained

by elimination theory. One can see that, in the coordinates z0, z1, z2 of P2,

f(P1) is the zero locus of

z3
1 − z0z2(z0 − 3z1 − z2).

Example 11.3.8. Let us consider the subvariety Y of P1 × P1, defined by

the multihomogeneous polynomial f = x0 − x1, of multidegree (1, 0) in the

coordinates (x0, x1), (y0, y1) of P1 × P1. Y corresponds to [1 : 1]× P1.

Take the Segre embedding s : P1 × P1 → P3,

(x0, x1), (y0, y1) = (x0y0, x0y1, x1y0, x1y1).

Then the image s(P1×P1) corresponds to the quadric Q in P3 defined by the

vanishing of the homogeneous polynomial g = z0z3 − z1z2.

The image of Y is a projective subvariety of P3, which is constained in Q, but

it is no longer defined by g and another polynomial: we need two polynomials,

other than g.

Namely, Y is defined also by the two multihomogeneous polynomials, of

multidegree (1, 1), f0 = fy0 = x0y0−x1y0 and f1 = fy1 = x0y1−x1y1. Thus

s(Y ) is defined in P3 by g, g0 = z0 − z1, g1 = z2 − z3. (Indeed, in this case,

g0, g1 alone are sufficient to determine s(Y ), which is a line).



Chapter 12

Dimension Theory

The concept of dimension of a projective variety is a fairly intuitive but

surprisingly delicate invariant, from an algebraic point of view.

If one considers projective varieties over C with their natural structure of

complex or holomorphic varieties, then the algebraic definition of dimension

coincides with the usual (complex) dimension.

On the other hand, for many purposes, it is necessary to deal with the con-

cept from a completely algebraic point of view, so the definition of dimension

that we give below is fundamental for our analysis.

The starting point that we take is simply concerned with geometric, pro-

jective definitions, though at a certain point, for the sake of completeness,

we cannot avoid to invoke some algebraic result, in order to make the theory

self-contained.

12.1 Complements on Irreducible varieties

For many purposes it is natural to

The first step is rather technical, from an algebraic point of view: we

need some algebraic properties of irreducible varieties. We recall that the

definition of irreducible topological spaces, together with examples, can be

found in Definition 1.1.25?? of the first Chapter ??.

125
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So, from now on, dealing with projective varieties, we will always refer to

reducibility or irreducibility with respect to the induced Zariski topology.

Let us start with a characterization of irreducible varieties, in terms of the

associated homogeneous ideal (see Corollary ??1.1.17).

Definition 12.1.1. An ideal J of a polynomial ring R = C[x0, . . . , xn] is a

prime ideal if f1f2 ∈ J implies that either f1 ∈ J or f2 ∈ J .

Equivalently, J is prime if and only if the quotient ring R/J is a domain,

i.e. a, b ∈ R/J , ab = 0 implies that either a = 0 or b = 0.

Proposition 12.1.2. Let Y ⊂ Pn be a projective variety and call J the

homogeneous ideal defined by Y . Then Y is irreducible if and only if J is a

prime ideal.

Proof. Assume Y = Y1 ∪ Y2, where the Yi’s are proper closed subsets. Then

there exist polynomials f1, f2 such that fi vanishes on Yi but not on Y . Thus

f1, f2 /∈ J , while f1f2 vanishes at any point of Y , i.e. f1f2 ∈ J .

The previous argument can be inverted to show that the existence of f1, f2 /∈
J such that f1f2 ∈ J implies that Y is reducible.

Definition 12.1.3. Let Y ⊂ Pn be an irreducible projective variety and let

J ⊂ C[x0, . . . , xn] be its homogeneous ideal. Then J is a prime ideal and

RY = C[x0, . . . , xn]/J is a domain. So, one can construct the quotient field

k(RY ) as the field of all quotients {a
b

: a, b ∈ Ry, b 6= 0}, where a
b

= a′

b′
if and

only if ab′ = a′b.

We call k(RY ) the function field of Y .

The following topological property is elementary, and we leave it to the

reader as an exercise.

Proposition 12.1.4. The image of an irreducible subset under a continuous

map, is irreducible.

X is infinite iff KX is not C.
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12.2 Dimension

There are several definitions of dimension of an irreducible varieties. All of

them have some difficult aspect. In some case it is laborious even to prove

that the definition itself makes sense. For more technical approach, it is not

immediate to see that the geometric näıve notion of dimension corresponds

to the algebraic notion.

Our choice is to make use, as far as possible, of the geometric approach, en-

tering deeply in the algebraic background just to justify some computational

aspect.

The final target is the theorem on the dimension of general fibers (Theorem

??), which allows to manage the notion of dimension quite completely.

Definition 12.2.1. Given a projective map f : X → Y we call fibers of f

the inverse images of points f−1(P ), P ∈ Y .

Remark 12.2.2. Since projective maps are continuous in the Zariski topol-

ogy, and singletons are projective varieties, then the fiber over any point

P ∈ Y is closed in the Zariski topology, hence it is a projective variety.

Now we arrive to the starting definition of dimension

Definition 12.2.3. We say that an irreducible projective variety X has

dimension n if there exists a projective surjective map X → Pn, whose fibers

are all finite sets.

We assign dimension −1 to the emptyset.

The identity makes it obvious that a projective space Pn has dimension n.

Example 12.2.4. Since P0 has just one point, clearly singletons have a

surjective map to P0, with finite fibers. So singletons have dimension 0.

Finite projective varieties are reducible, unless they are singleton. Thus, by

definition, singletons are the only projective irreducible varieties of dimension

0.
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Example 12.2.5. A linear subspace L ⊂ PN is the projectivization of a

vector subspace V ⊂ Cn+1, thus it has a well defined projective dimension.

The linear subspace Ln in PN defined by tn+1 = · · · = tN = 0 is isomorphic

to Pn. Base changes provide isomorphisms between any linear variety of

projective dimension n and Ln. Thus, for linear subspaces, the projective

dimension is a value for the dimension, as defined above.

Example 12.2.6. Let C be a projective variety in P2, defined by the van-

ishing of one irreducible homogeneous polynomial g 6= 0. Then C is an

irreducible variety (Example ??1.1.36) and it contains infinitely many points

(Example ?? ).

By Lemma ??1.1.5, there exists a point P0 ∈ P2 which does not belong to

C. The projection π from P0 maps C to P1. Every fiber of π is a proper

projective subvariety of a line, since it cannot contain P0. Since the Zariski

topology on a line is the co-finite topology (Example 10.1.12), then every

fiber of π is finite. The image of π, which is a projective subvariety of P1

(Theorem ??) cannot be finite, so it coincides with P1, hence π is surjective.

We have just proved that C has dimension 1.

By now, the dimension of an irreducible projective variety is not uniquely

defined, since we did not exclude the existence of two different maps X → Pn

and X → Pm, m 6= n, both with finite fibers.

It is not easy to face the problem directly. Instead, we show that the

existence of a map X → Pn with finite fibers is related with a numerical

invariant of the irreducible variety X.

Proposition 12.2.7. For every projective variety X ∈ Pr there exists a

projective surjective map f : X → Pm whose fibers are finite.

Proof. We make induction on r. If r = 1 the claim follows immediately since

in this case either X = P1 of X is a finite set.

For R > 1, if X = Pr then the claim is obvious. Otherwise fix a point P /∈ X.

The projection π from P maps X to a subvariety of Pr−1. Since the fibers of
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π are closed subvarieties of a line and do not contain the point P of the line,

the the fibers of π are finite. The claim follows by induction on π(X).

The invariant which defines the dimension is connected with a notion in

the algebraic theory of field extensions: the trascendence degree. We recall

some basis in the following remark. For the proofs, we refer to [ZS][].

Remark 12.2.8. Let K1, K2 be fields, with a non-zero homomorphism φ :

K1 → K2. Then φ is injective, since the kernel is an ideal of K1, hence it is

trivial. So we can consider φ as a inclusion which realizes K2 as an extension

of K1.

The extension is algebraic when K2 is finitely generated as a vector space over

K1. Otherwise the extension is trascendent. If K2 is al algebraic extension

of K1, then for any e ∈ K2 there exists a polynomial p(x), with coefficient in

K1, such that p(e) = 0.

For any e ∈ K2 define K1(e) as the minimal subfield of K2 which contains K1

and e. We say that e is an algebraic element over K1 if K1(e) is an algebraic

extension of K1, otherwise e is a trascendent element.

Since C is algebraically closed, then every element of an extension of C either

belongs to C or it is trascendent over C.

If K2 = K1(x) is the field of fractions of the polynomial ring K[x], then K2

is a trascendent extension. Conversely, if e is any trascendent element over

K1, then K1(e) is isomorphic to K1(x).

A set of elements e1, . . . , en ∈ K2 such that for all i ei is trascendent over

K1(e1, . . . , ei−1) andK2 is an algebraic extension ofK1(e1, . . . , en) is a trascen-

dence basis of the extension. All trascendence basis have the same number

of elements, which is called the trascendence degree of the extension.

Theorem 12.2.9. A projective map f : X → Pn from the irreducible variety

X to a projective space has finite fibers, if and only if the quotient field KX

is an algebraic extension of C(x1, . . . , xn).



130 Cristiano Bocci, Luca Chiantini and Anthony V. Geramita

Proof. Assume in the proof that X ⊂ PN .

If n = 0, then the map exists if and only if X is one point, and the claim

follows by ??. So we can make induction on n.

Assume there exists an element e ∈ KX which is trascendent over KPn =

C(x1, . . . , xn). Then e 6= 0 is the quotient of two equivalence classes of

homogeneous polynomials f, g ∈ C[y0, . . . , yN ], both not vanishing on the

whole X. Fix a point P ∈ X where f, g does not vanish and consider the

fiber X ′ = f−1(f(P )). The restriction f|X′ : X ′ → f(p) determines an

inclusion

Consider the point P ∈ Pn, with coordinates [a0 : · · · : an], where we may

assume a0 6= 0 without loss of generality.

Example 12.2.10. Hypersurfaces X in Pn have dimension n− 1.

Indeed take a points P /∈ X and consider the projection π of X from P

to Pn−1. The fibers of the projection are closed proper subvarieties of lines,

hence they are finite. Moreover, the projection is surjective, by ??. The

claim follows.

For reducible varieties, the definition of dimension is straightforward.

Definition 12.2.11. Let X1, . . . , Xm be the irreducible components of a

variety X. Then we define:

dim(X) = max{dim(Xi)}.

Theorem 12.2.12. Let X ⊂ PN be an irreducible variety and let g ∈
C[y0, . . . , yN ] be a homogeneous polynomial which does not belong to the ideal

of X. Then dim(X ∩ V (g)) = dim(X)− 1.

Proof. We prove the theorem in several steps.

First if n = 0 then X is a point and X ∩ V (g) = ∅, so the claim follows.
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If the resultant of f,g is trivial, then one divides the other.

Dim n-1 only for hypersurfaces.

Definition of inductivity.

12.3 Fibers of maps
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