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1 Poisson Random Measures

Let
(

X ,F , ν(dx)
)

be a σ-finite measure space. One way to construct a random measure H(dx) ∼
Po(ν) on (X ,F) with mean ν, so H(A) ∼ Po

(

ν(A)
)

for each A ∈ F , is:

• Partition X = ∪Λj into J ≤ ∞ disjoint sets Λj ∈ F of positive finite measure λj := ν(Λj) ∈
(0,∞), for 0 ≤ j < J ;

• Draw independent Poisson random variables nj ∼ Po(λj);

• Set νj(A) := ν(A ∩ Λj)/λj for A ∈ F , the probability measure arising from restricting ν to

Λj and normalizing. Then draw independent random samples {xij : 0 ≤ i < nj} iid∼ νj(dx)
on each Λj ;

• Set H(dx) :=
∑

i,j δxij
(dx) (the sum of a unit point mass at each xij) or, equivalently, for

A ∈ F set H(A) =
∑

j<J # [A ∩ {xij : i < nj}].

Another (more abstract) approach is simply to note that the assignment of probability distributions
A 7→ Po

(

ν(A)
)

to elements A ∈ F of finite measure ν(A) <∞ is consistent in Kolmogorov’s sense,
so there exists some probability space (Ω,F ,P) and an assignment A 7→ H(A) ∼ Po

(

ν(A)
)

of
random variables on that space with the specified distributions.

Let’s begin with such a random Poisson measure H ∼ Po
(

ν(dx)
)

on (X ,F , ν). Of course the
characteristic function (chf) of H(A) is

E

[

eiωH[A]
]

=

∞
∑

k=0

eiωk
{

ν(A)k

k!
e−ν(A)

}

= exp
{(

eiω − 1
)

ν(A)
}

.

1.1 Musielak-Orlicz spaces I

By linearity, the “stochastic integral” of a simple function

f =
∑

an1{An}

(finite sum, with Am ∩An = ∅ for m 6= n) has to be

H[f ] :=

∫

X
f(x)H(dx) =

∑

anH(An) =
∑

f(xj)

1
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where {xj} = spt(H) ⊂ X is the (random and countable) support of H. By independence of
{H(An)} the chf will be a product, with log chf

log E
[

eiωH[f ]
]

=
∑

n

[

eiωan − 1
]

ν(An)

=

∫

X

[

eiωf(x) − 1
]

ν(dx). (1)

Of course we can extend H[f ] to limits f ∈ L1(X ,F , ν) of simple functions by L1-continuity, since
E
[

|H[f ] −H[g]
∣

∣ ≤
∫

X |f(x) − g(x)| ν(dx), but we can go further. We can extend the definition of
H[f ], and continue to satisfy Eqn (1), to any f for which the integral in (1) is well-defined— i.e.,
to f in the space

Ψ0∧1 :=

{

f :

∫

X

(

1 ∧ |f(x)|
)

ν(dx) <∞
}

. (2)

For more details on “Musielak-Orlicz” (M-O) spaces like this, see (Rajput and Rosiński, 1989, Thm.
3.3) and (Kallenberg, 2002); also (Gaigalas, 2004a,b). The mean and variance, when they exist,
are given by

EH[f ] =

∫

X
f(x)ν(dx) VH[f ] =

∫

X
f(x)2ν(dx).

1.2 Infinitely-Divisible Distributions

A distribution µ on R
d is called infinitely divisible or simply ID if, for each n ∈ N, µ = (µn)

∗n

is the n-fold convolution of some other distribution µn— or, equivalently, if any random variable
X ∼ µ(dx) may be written for each n ∈ N as the sum

X = X1 + · · ·+Xn

of n iid random variables Xj . Familiar examples include the Normal, Poisson, Gamma, Negative
Binomial, Inverse Gaussian, and α-Stable distributions. Khinchine and Lévy (1936) showed that
each such distribution has a log characteristic function of the form

log Eeiω
′X = log

∫

Rd

eiω
′uµ(du)

=iω′m− 1
2ω

′Σω +

∫

Rd

(

eiω
′u − 1

)

ν(du) (3a)

for some m ∈ R
d, positive definite d×d matrix Σ, and σ-finite Borel measure ν(du) (called the

“Lévy measure”) satisfying

∫

Rd

(

1 ∧ |u|
)

ν(du) <∞ (3b)

or, more generally (ignore this part until Section (3)),

log EeiωX =iω′m− 1
2ω

′Σω +

∫

Rd

[

eiω
′u − 1− iω′h(u)

]

ν(du) (4a)
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with σ-finite Lévy measure ν(du) satisfying the weaker condition

∫

Rd

(

1 ∧ u2
)

ν(du) <∞ (4b)

and bounded function h(u) = u + O(|u|2). We’ll return to Eqn (4) below; let’s consider Eqn (3)
first.

The case ν ≡ 0 is simply the multivariate normal X ∼ No(m,Σ); by Eqn (3) or Eqn (4), any ID
random variable may be written as the sum of an independent normal random variable with the
No(m,Σ) distribution, and an ID random variable with both m and Σ zero. To simplify formulas
we’ll take m = 0 and Σ = 0 in the sequel and omit them. Denote by ID(ν) the distribution µ with
Lévy measure ν, so µ ∼ ID(ν) means that (∀ω ∈ R

d),

∫

Rd

eiω
′x µ(dx) = exp

{
∫

Rd

(

eiω
′u − 1

)

ν(du)

}

. (5)

1.2.1 Examples

The Poisson distribution Po(µ) with mean µ is ID, since any X ∼ Po(µ) may be written as the

sum of n random variables Xj
iid∼ Po(µ/n). Its chf

EeiωX =
∞
∑

k=0

eiωk
{

µk e−µ/k!
}

= exp
[

(eiω − 1)µ
]

is of the form Eqn (3a) for Lévy measure ν(du) = µ δ1(du), a point mass of magnitude µ > 0 at
u = 1. This clearly satisfies Eqn (3b) in dimension d = 1, so Po(µ) = ID(µδ1).

The Gamma distribution Ga(α, β) with shape parameter α and rate parameter β has chf

EeiωX =

∫ ∞

0
eiωx

{

βα xα−1e−βx/Γ(α)
}

dx = (1− iω/β)−α

which will be of form Eqn (3a) if some measure ν satisfies

∫

R

(

eiωu − 1
)

ν(du)
?
= α log β − α log(β − iω).

If ν(du) has density ν(u), upon differentiating wrt ω, the requirement becomes

∫

R

eiωu {iuν(u)} du =
iα

β − iω
.

By Fourier inversion,

uν(u) =
1

2π

∫

R

e−iωu α

β − iω
dω = α e−βu1{u>0},

so ν(du) = αu−1 e−βu du on R+. This again satisfies Eqn (3b), so Ga(α, β) = ID
(

αu−1e−βu1{u>0}du
)

.
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TheNegative Binomial distribution NB(α, p) with shape parameter α and success probability
p = (1−q) ∈ (0, 1) has chf

EeiωX =
∞
∑

k=0

eiωk
{(

k + α− 1

k

)

pαqk
}

=
∞
∑

k=0

eiωk
{(−α

k

)

pα(−q)k
}

= pα
(

1− q eiω
)−α

which will be of form Eqn (3a) if for some ν

∫

R

(

eiωu − 1
)

ν(du) = α log p− α log(1− q eiω).

If ν(du) has a point mass of size νk at each integer k ∈ N, write z = eiω and differentiate wrt z to
get:

∞
∑

k=1

zk−1 {kνk} =
α q

1− qz
= α q

∞
∑

j=0

(qz)j .

Upon matching powers of z (for j = k−1), we have νk = αqk/k so ν(du) =
∑

k∈N
αqk

k δk(du), which
obviously satisfies Eqn (3b).

The Symmetric α-Stable (or SαS) distribution StA(α, 0, γ, 0) has chf

EeiωX = e−γ|ω|α

for some 0 < α ≤ 2 and γ > 0; the best-known examples are the Cauchy (with α = 1) and Normal
(with α = 2 and σ2 = 2γ). The SαS would be of form Eqn (3a) with absolutely continuous Lévy
measure ν(du) = ν(u) du if

∫

R

(

eiωu − 1
)

ν(u) du =− γ|ω|α. (6)

This is an even function of ω, so ν(u) = ν(−u) for all u ∈ R and

−γ|ω|α =

∫

R

[

cos(ωu)− 1
]

ν(u) du. (7)

Setting ω = 1 and then changing variables u |ω|u, this gives

−γ =

∫

R

[

cos(u)− 1
]

ν(u) du =

∫

R

[

cos(ωu)− 1
]

ν(ωu) |ω| du

Multiplying by |ω|α and comparing to Eqn (7),

∫

R

[

cos(ωu)− 1
]

ν(u) du =

∫

R

[

cos(ωu)− 1
]

ν(ωu) |ω|α+1 du
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for all ω and hence ν(u) ≡ ν(ωu) |ω|α+1 or, setting ω = 1/u,

ν(u) =ν(1)|u|−α−1

for all u ∈ R. We can evaluate ν(1) by taking the limit as ǫ → 0 of Eqn (6) with ω = 1 + iǫ. First
multiply by α, and integrate by parts:

−γα = lim
ǫց0

ℜ
{
∫

R

[e−(ǫ−i)u − 1]α|u|−α−1 du

}

ν(1)

= ν(1) lim
ǫց0

ℜ{(ǫ− i)α} 2
∫ ∞

0
[e−x − 1]αx−α−1 dx

= ν(1) cos
(

πα
2

)

{

−2

∫ ∞

0

(

−e−x
) (

−x−α
)

}

dx

= ν(1) cos
(

πα
2

)

{−2Γ(1− α)} .
Using the identities zΓ(z)Γ(−z) sin(πz) ≡ −π and sin(πα) = 2 sin(πα2 ) cos(πα2 ), we can compute
ν(1) = γ

παΓ(α) sin
πα
2 so finally StA(α, 0, γ, 0) = ID(ν) for

ν(du) =
γ

π
Γ(α) sin(πα2 )α|u|−α−1 du = γcαα|u|−α−1 du (8)

where we introduce cα := 1
πΓ(α) sin

πα
2 to simplify formulas. For this to satisfy Eqn (3b) we would

need finiteness for
∫

R

(

1 ∧ |u|
)

ν(du) =2cα

∫ 1

0
αu−α du+ 2cα

∫ ∞

1
αu−α−1 du

=2cα/(1− α) if 0 < α < 1, otherwise ∞,

i.e., we would need 0 < α < 1— and, in particular, the Cauchy distribution with α = 1 and
ν(du) = (γ/π)u−2 du is not quite included.

1.3 Aside on the Connection between ν and µ

Any ID distribution µ(dx) = ID(ν) with Lévy measure ν(du), may be viewed as µ1(dx) in an additive
convolution semigroup {µθ(dx)}θ≥0 of distributions µθ ∼ ID(θ ν) with Lévy measure θν(du). For
X ∼ µ(dx) and large n ∈ N, we have

E
[

eiωX
]

=

∫

eiωx µ1(dx)

=

[
∫

eiωx µ1/n(dx)

]n

=

[

1 +

∫

{

eiωx − 1
}

µ1/n(dx)

]n

=

[

1 +
1

n

∫

{

eiωx − 1
}

nµ1/n(dx)

]n

≈ exp

(
∫

{

eiωx − 1
}

nµ1/n(dx)

)

and also

E
[

eiωX
]

= exp

(
∫

{

eiωu − 1
}

ν(du).

)
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It follows (under suitable regularity conditions) that

nµ1/n ⇒ ν (9)

and often the pdfs or pmfs converge. For example, if µ = NB(α, p) then µ1/n = NB(α/n, p) and

n µ1/n({k}) = n

(

k + α/n − 1

k

)

pα/nqk

= n
Γ(k + α/n)

k! Γ(α/n)
pα/nqk → (α/k) qk = ν({k})

as n→ ∞ or, for the Gamma Ga(α, β) distribution,

n µ1/n(dx) = n
βα/n x(α/n)−1

Γ(α/n)
e−βx1{x>0} dx

→ αx−1e−βx1{x>0} dx = ν(dx)

and for the Cauchy Ca(m,γ),

n µ1/n(dx) = n
γ/nπ

(γ/n)2 + (x−m/n)2
dx→ γ

π x2
dx = ν(dx).

While this argument is informal, and a little hard to tighten up, it’s often a good way to work
out what the Lévy measure is for some distribution you know (or just suspect) is ID, if you know
the pdf or pmf for µ1/n. You can then confirm relation if necessary.

2 Constructions

2.1 ID Random Variables

Let ν be a positive measure on R
d that satisfies Eqn (3b) and let H(du) ∼ Po

(

ν(du)
)

be a Poisson
random Borel measure on (Rd,Bd) with mean ν. Then the function f(u) = u lies in Ψ0∧1 so

H[f ] =

∫

Rd

uH(du) =
∑

uj (10)

is well-defined, equal to the sum of the countably-many elements of the (random) support spt(H) =
{uj} ⊂ R

d of H(du). Its chf is

E

[

eiωH[f ]
]

= exp

{
∫

Rd

(

eiωu − 1
)

ν(du)

}

,

so H[f ] ∼ ID(ν). Thus we can construct random variables with any ID distribution satisfying
Eqn (3b) as Poisson random integrals.
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2.2 SII Stochastic Processes

But more is true. We can construct a stochastic process with stationary independent increments
(SII) just as easily: let H be a Poisson random measure on the space X = R

d × R+ with intensity
measure ν(du) ds, the product measure of ν(du) on R

d and and Lebesgue measure ds on R+, and
set ft(u, s) := u1{0<s≤t}. Then for 0 < r < t

Xt := H[ft] =
∑

{uj : 0 < sj ≤ t}

(where {(uj , sj)} = spt(H)) satisfies

log E
[

eiω(Xt−Xr)
]

=

∫

Rd×R+

(

eiω[ft−fr ] − 1
)

ν(du) ds

=

∫

Rd×R+

(

eiωu − 1
)

1{r<s≤t} ν(du) ds

= (t− r)

∫

Rd

(

eiωu − 1
)

ν(du).

Thus Xt is an SII process with X0 = 0 and (Xt −Xr) ∼ ID
(

(t− r)ν
)

.

2.3 SII Random Fields & Stochastic Integrals

Even more generally— if m(dσ) is a σ-finite measure on any measurable space (Σ,F), we can
construct a d-dimensional ID-valued random measure Γ(dσ) on Σ by letting H ∼ Po

(

ν(du)m(dσ)
)

be a Poisson random measure on R
d × Σ with product intensity measure ν ⊗m and setting

Γ(A) := H
[

u1A(σ)
]

=
∑

{uj : σj ∈ A}

for each A ∈ F with m(A) < ∞. By linearity and continuity, this determines stochastic integrals
of suitable functions φ(σ) on Σ, i.e., those φ : Σ → R for which the function f(u, σ) := uφ(σ) is in
Ψ0∧1:

Γ[φ] :=

∫

Rd×Σ
uφ(σ)H(du dσ) =

∑

{ujφ(σj)}

where {(uj , σj)} = spt(H). In this way we can construct stochastic integrals of random measures
that assign independent random variables Γ(Ai) ∼ ID

(

m(Ai)ν(du)
)

to disjoint sets {Ai} with ID
distributions from any ID family (Gamma, Negative Binomial, SαS with α < 1, etc.) that satisfies
Eqn (3b). In Section (3) we consider going beyond that condition.

2.4 Truncation Algorithm

In Section (2.2) the SII process Xt ∼ ID(tν) with Lévy measure ν on R
d satisfying Eqn (3b) was

expressed in the form

Xt := H[ft] =
∑

{uj : 0 < sj ≤ t} (11)
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for ft(u, s) := u1{0<s≤t} and H ∼ Po
(

ν(du) ds
)

. Since spt(H) = {(uj , sj)} is infinite whenever

ν(Rd) = ∞ (the usual case), some sort of approximation is necessary for any practical implementa-
tion and some sort of convergence must be established. In this section we present one such method
and study its convergence.

For each ǫ > 0 let Bǫ denote the ball of radius ǫ in R
d, and Bc

ǫ its complement. Since

1{|u|>ǫ} ≤
(

1 ∧ |u|
)(

1 ∨ 1

ǫ

)

for all u ∈ R
d, Eqn (3b) implies that ν(Bc

ǫ ) <∞ and so that the measure

νǫ(du) := 1{|u|>ǫ}ν(du)

on R
d is finite. If ν+ǫ := ν(Bc

ǫ) > 0 then νǫ(du)/ν
+
ǫ is a probability measure on R

d. One approach
to constructing Xt explicitly on an interval 0 < t ≤ T is to replace ft with f

ǫ
t := u1{|u|>ǫ}1{0<s≤t}

in Eqn (11):

Truncation Algorithm:

1. Fix ǫ > 0;
2. Draw Jǫ ∼ Po

(

Tν+ǫ
)

;

3. Draw Jǫ iid variates {sj} iid∼ Un(0, T ) and {uj} iid∼ νǫ(du)/ν
+
ǫ ;

4. Set

Xǫ
t :=

∑

{uj : 0 < sj ≤ t} (12)

for 0 ≤ t ≤ T . The sum has at most Jǫ <∞ terms.

Truncation Error Estimates

The truncation error satisfies

(Xt −Xǫ
t ) = H[ft]−H[f ǫt ] = H[ft − f ǫt ]

with L1 norm bounded for 0 ≤ t ≤ T by

E|Xt −Xǫ
t | = t

∣

∣

∣

∫

Bǫ

uν(du)
∣

∣

∣
≤ T

∫

Rd

|u|1{|u|≤ǫ}ν(du)

which tends to zero as ǫ→ 0 uniformly in t ≤ T by Lebesgue’s DCT, since |u1{|u|≤ǫ}| ≤ (1∨ 1
ǫ )(1∧

|u|) ∈ L1(R
d,Bd, dν) and |u1|u|≤ǫ| ≤ ǫ→ 0.

If we set µǫ :=
∫

Bǫ
uν(du), thenM ǫ

t := [Xt−Xǫ
t−tµǫ] is a square-integrable Rd-valued martingale

with quadratic variation (see Appendix A)

[M ]t =

∫

Bǫ×(0,t]
uu′H(du ds)

and predictable quadratic variation 〈M〉t = tΣǫ where

Σǫ :=

∫

Bǫ

uu′ ν(du).
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The covariance is also Cov(Xt −Xǫ
t ) = EMtM

′
t = tΣǫ. For any ω ∈ R

d, ω′Mt is a one-dimensional
L2 martingale and, by the martingale maximal inequality (34c),

E

[

sup
0<s≤t

|ω′Ms|2
]

= E

[

sup
0<s≤t

|ω′(Xs −Xǫ
s − sµǫ)|2

]

≤ 4E|ω′Mt|2 = 4t ω′Σǫω, and so

E

[

sup
0<s≤t

|ω′(Xs −Xǫ
s)|2

]

≤ t2|ω′µǫ|2 + 4tω′Σǫω

or, summing over unit vectors ω in the coordinate directions in R
d,

E

[

sup
0<s≤t

|Xs −Xǫ
s|2

]

≤ t2|µǫ|2 + 4t tr
(

Σǫ

)

.

Pointwise bounds are also available, such as

E|Xt −Xǫ
t |2 = t2|µǫ|2 + t tr(Σǫ).

Example: α-Stable
For example, in d = 1 dimension, let Xt ∼ StA(α, β, γt, δt) be the α-stable SII process for some

0 < α < 1. Then

µǫ =

∫ ǫ

−ǫ
u ν(du) =

∫ ǫ

−ǫ
u γcα(1 + β sgnu)α|u|−α−1 du

= 2αβγcα

∫ ǫ

0
u−α du =

2αβγcα
1− α

ǫ1−α

(note this diverges as αր 1 and would be ±∞ for α ≥ 1), and

Σǫ =

∫ ǫ

−ǫ
u2 ν(du) =

∫ ǫ

−ǫ
u2 γcα(1 + β sgnu)α|u|−α−1 du

= 2αγcα

∫ ǫ

0
u1−α du =

2αγcα
2− α

ǫ2−α.

For α = 1
2 , β = 1, and γ = 1 (the Inverse Gaussian process), µǫ =

√

2ǫ/π and Σǫ =
√

2ǫ3/9π so
the pointwise bounds are

E|Xt −Xǫ
t |2 ≤

2ǫt2

π
+ t

√

2ǫ3/9π

and the L2 martingale bounds

E

[

sup
0<s≤t

∣

∣

∣
Xs −Xǫ

s − s
√

2ǫ/π
∣

∣

∣

2
]

≤ 4t
√

2ǫ3/9π

E

[

sup
0<s≤t

∣

∣Xs −Xǫ
s

∣

∣

2
]

≤ 2ǫt2

π
+ 4t

√

2ǫ3/9π.

Exceedance probability bounds (34a) are available as well, such as:

P

[

sup
0<s≤t

{

Xs −Xǫ
s − s

√

2ǫ/π
}

≥ λ

]

≤ λ−1
EM+

t ≤ tλ−1
√

8ǫ/π.

In applications, these may be used to help inform the choice of ǫ > 0 in a trade-off of accuracy vs.
computational complexity (see Section (3.5.1)).
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2.5 The ILM Algorithm

One shortcoming of the Truncation Algorithm is that ǫ is specified at the outset. In some prob-
lems it may be preferable to balance the costs of overly coarse approximations (ǫ too large) vs.
computational complexity (ǫ too small) dynamically. The “Inverse Lévy Measure” (or ILM) al-
gorithm introduced in (Wolpert and Ickstadt, 1998a,b) generates the mass points {(un, sn)} of H
successively in decreasing order of |un|, supporting dynamic stopping rules.

The starting point is the recognition that, as a function of r > 0 decreasing from r = ∞ down
to r = 0, the increments

H
(

Bc
u × (0, T ]

)

−H
(

Bc
r × (0, T ]

)

= H
(

(Br\Bs)× (0, T ]
)

for ∞ > r > u ≥ 0 are the independent Poisson random variables that H assigns to disjoint annular
cylinders— so H(Bc

r × (0, T ]) is an independent-increment Poisson process in the (decreasing) r
variable and may be written in the form H

(

Bc
r×(0, T ]

)

= P
(

Tν+r
)

for some non-increasing function
r 7→ ν+r : R+ → R+ and a standard unit-rate Poisson process P (·). By matching means,

Tν+r = E
[

H(Bc
r × (0, T ])

]

= Tν
(

Bc
r

)

so ν+r = ν
(

Bc
r

)

and the successively smaller moduli rn := |un| of the mass points {(un, sn)} may
be generated by taking the event times {τn} of the unit-rate Poisson process and setting

rn := sup
{

r ≥ 0 : Tν+r ≥ τn
}

.

Now we turn to the angular part σn = un/|un|. Write the measure ν(dx) in polar form on
(0,∞) × Sd−1 as the semidirect product

ν(du) = νr(dr) νσ(dσ | r)

of a σ-finite positive measure νr on R+ and a “regular conditional probability distribution” (rcpd)
νσ(dσ | r) on Sd−1 × (0,∞) (an rcpd is a kernel such that for each fixed Borel A ⊂ Sd−1, the
function r  νσ(A | r) is Borel measurable and, for each fixed r > 0, νσ(· | r) is a Borel probability
measure on Sd−1). The radial measure νr(dr) is determined uniquely by νr

(

(r,∞)
)

= ν+r := ν(Bc
r),

while the existence and uniqueness of νr are ensured by Rokhlin’s (1949) “disintegration theorem”
(Hoffmann-Jørgensen, 1971) since R+ and Sd−1 are Polish and hence Radon spaces.

If ν is absolutely-continuous wrt Lebesgue measure in R
d with density function ν(u), then νr

and νσ will also be absolutely continuous, with

νr(dr) =

{
∫

Sd−1

ν(rσ̃) dσ̃

}

2πd/2

Γ(d/2)
rd−1 dr νσ(dσ | r) = ν(rσ)

∫

Sd−1 ν(rσ̃) dσ̃
dσ

where dr denotes Lebesgue measure on R+ and dσ is uniform measure on Sd−1, respectively, but
(since R

+ and Sd−1 are Radon spaces) such a decomposition is available for any σ-finite ν, even if
not absolutely continuous. In most of our applications νσ(dσ | r) will not depend on r.

The SII process Xt ∼ ID(tν) can now be constructed using the ILM algorithm from successive
Poisson event times {τn} as

Xt =
∑

n<∞

un1{0<sn≤t} (13)
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where un = rnσn for n ∈ N with

rn = sup
{

r ≥ 0 : Tν+r ≥ τn
}

σn
ind∼ νσ(dσ | rn) sn

iid∼ Un(0, T ).

For finite Lévy measures with ν+0 < ∞, the number of terms N ∼ Po(Tν+0 ) in Eqn (13) is finite,
and rn = 0 for all n > N since Tν+r < τn for all r ≥ 0.

2.5.1 Example: Gamma

The polar representation of the Ga(α, β) Lévy measure ν(du) = αu−1e−β1{u>0} is simply νr(dr) =

αr−1e−βrdr on (0,∞) and νσ(dσ) = δ1(dσ), a point mass at +1 ∈ S0 = {−1,+1}. The {rn} are
determined by the relation

τn = Tν+rn = T

∫ ∞

rn

αu−1e−βu du = αTE1(βrn)

for the exponential integral function E1(z) :=
∫∞
z e−tt−1dt (Abramowitz and Stegun, 1964, p. 218),

so Xt =
∑

un1{sn≤t} with un = rn given by

un = E1
−1(τn/αT )/β.

The exponential integral function E1 is included as gsl sf expint E1() in the GSL scientific
library and its inverse can be computed by Newton’s method; alternately, both E1 and E1

−1 may
be approximated very well within R as limits of the complimentary CDF and quantile functions of
the gamma distribution as the shape parameter α→ 0:

E1 <- function(x, alp=1e-9) {pgamma(x, alp, lower=F)/alp};

E1inv <- function(y, alp=1e-9) {qgamma(alp*y, alp, lower=F)};

2.5.2 Example: Poisson

The ILM algorithm works even for discrete Lévy measures. For the Poisson with rate λ > 0, for
example, ν(du) = λδ1(du) and so νr(dr) = λδ1(dr) and νσ(dσ) = δ1(dσ), so ν

+
r = λ for r < 1 and

zero for r ≥ 1. Thus σn ≡ 1 and

un = rn = sup
{

r > 0 : Tλ1{r<1} ≥ τn
}

is one if τn ≤ λT and otherwise zero, i.e., is one for n ≤ N where

N := # {n : τn ≤ λT} ∼ Po(λT ).

The number of those with sn ≤ t (where {sn} iid∼ Un(0, T )),

Xt =
∑

un1{sn≤t} = # {n ≤ N : sn ≤ t} ,

is the sum of N iid Bernoulli random variables with means t/T , so it has a Po(λt) distribution as
required.
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2.5.3 Example: α-Stable

The Lévy measure density ν(u) = ν(−u) = γcαα|u|−α−1 for the symmetric α-stable distribution
StA(α, 0, γ, 0) = ID(ν) was given in Eqn (8). More generally, for −1 ≤ β ≤ 1 the asymmetric or
skewed (if β 6= 0) α-stable distribution StA(α, β, γ, 0) is ID(ν) for Lévy measure ν(du) = ν(u) du
with density function

ν(u) = γcαα
(

1 + β sgnu
)

|u|−α−1 (14)

proportional to |u|−α−1 for all u, but with different coefficients for u > 0 and u < 0. The polar
representation of ν(du) is a product measure ν(du) = νr(dr)νσ(dσ) with ν

+
r = 2γcαr

−α and hence

νr(dr) = 2γcααr
−α−1 dr, r > 0

νσ({σ}) = (1 + βσ)/2, σ ∈ S0 = {±1}

and so the ILM construction sets

Xt =
∑

un 1{sn≤t} (15)

with un = rnσn and

rn = (2γTcα/τn)
1/α σn = (2Zn − 1) sn

iid∼ Un(0, T )

Zn
iid∼ Bi

(

1, 1+β
2

)

with random signs σn = ±1 (here expressed in terms of Bernoullis Zn). The chf (21) is found for
this distribution in Section (3.3). Typically τn ≈ n ± √

n and hence rn ≍ n−1/α ± n−2/α, so we
cannot expect the sum in Eqn (15) to converge absolutely for α ≥ 1. For the Cauchy, for example,
with α = 1 and cα = 1/π,

Xt =
2γT

π

∞
∑

n=1

σn
τn

(with σn = ±1 with probabilities 1
2 each) converges in L2, but not absolutely.

3 Compensation

Again let
(

X ,F , ν(dx)
)

be a σ-finite measure space, and H(dx) ∼ Po(ν) a random measure assign-
ing independent Poisson-distributed random variables H(An) ∼ Po

(

ν(An)
)

to disjoint sets An ∈ F
of finite measure ν(An) <∞. Define the (fully) Compensated Poisson measure to be

H̃(A) := H(A)− ν(A)

for any set A ∈ F with finite measure ν(A) <∞, simplyH(A) minus its mean. Again the stochastic
integral of simple functions

f =
∑

an1{An}
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has to be

H̃[f ] :=

∫

X
f(x) H̃(dx) =

∑

an[H(An)− ν(An)]

=
∑

f(xn)−
∫

f(x)ν(dx)

for {xn} = spt(H) and again the log chf can be computed easily:

log E
[

eiωH̃ [f ]
]

=
∑

n

[

eiωan − 1− iωan
]

ν(An)

=

∫

X

[

eiωf(x) − 1− iωf(x)
]

ν(dx). (16)

Again f 7→ H[f ] can be extended by continuity to L1(X ,F , ν), and this time also to L2(X ,F , ν)
(the mapping is an isometry from L2 into the space of square-integrable random variables). Again
we can do more.

3.1 Musielak-Orlicz spaces II

This time we can extend the definition of H̃[f ] to limits f of simple functions provided the integral in
(16) is well-defined. The “compensation” (subtracting the mean ofH) has changed the requirements
on f , however, in two ways: it is less restrictive in that the term in braces is now O(f2) near f ≈ 0,
so ν(dx) can be more singular near the zeros of f , but it is more restrictive in that the term in
braces is no longer bounded, so ν(dx) mustn’t grow too fast in places where f is unbounded. The
exact requirement is that f must lie in the M-O space

Ψ1∧2 :=

{

f :

∫

X

(

|f(x)| ∧ |f(x)|2
)

ν(dx) <∞
}

. (17)

This contains L1(X ,F , ν) and also L2(X ,F , ν), but it is larger than their union.
We’re still a step or two away from being able to construct random variables and stochastic

processes with Cauchy (and other α-Stable distributions with α ≥ 1) by a scheme analogous to

Eqn (10). An attempt to set X :
?
= H̃[f ] for ν(du) = (γ/π)u−2du and f(u) = u still fails, just as

setting X :
?
= H[f ] did, but for a different reason— f /∈ Ψ0∧1 because

(

1 ∧ |f(u)|
)

≍ |u| isn’t ν-
integrable at zero, while f /∈ Ψ1∧2 because

(

|f(u)| ∧ |f(u)|2
)

f(u) ≍ |u| isn’t ν-integrable at infinity.
What is needed is a way to “compensate” (by subtracting the Poisson mean) only near zero, and
not at infinity.

3.2 Partial Compensation

Let ν be a σ-finite measure on R
d satisfying

∫

Rd

(

1 ∧ u2
)

ν(du) <∞ (4b)

and let h : Rd → R
d be a Borel function that is
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• uniformly bounded, and satisfies
• h(u) = u+O(|u|2) near u ≈ 0.

One common choice is h1(u) = u1{|u|<1}, but for studying and constructing α-stable random
variables and processes a better choice is h(u) = u

|u| sin |u| or, for d = 1, simply h(u) = sinu.

Heuristically what we would like to do now to generate X ∼ ID(ν) is to set f(u) = u and look at
∫

Rd

uH(du) −
∫

Rd

h(u)ν(du),

but neither of those two integrals converges for ν that satisfy the local L2 condition (4b) but not
the local L1 condition (3b) (for example, the SαS measure ν(du) = cαα|u|−α−1 du for 1 ≤ α < 2).
What does work (Wolpert and Taqqu, 2005), consistent with that intuition, is to set f(u) := u and

X = H[f − h] + H̃[h]. (18)

This is well-defined because |f(u) − h(u)| is O(u2) near zero and O(|u|) near infinity so [f − h] ∈
Ψ0∧1 (so H[f − h] is well-defined), while h(u) is O(|u|) near zero and bounded near infinity, so
h ∈ L2(X ,F , ν) ⊂ Ψ1∧2 (so H̃[h] is well-defined). For functions f, h ∈ L1(R,B, ν), (18) would be

X =

∫

Rd

[f(u)− h(u)]H(du) +

∫

Rd

h(u)[H(du) − ν(du)]

=

∫

Rd

f(u)H(du) −
∫

Rd

h(u)ν(du),

with log chf

log EeiωX =

∫

Rd

[

eiωf(u) − 1− iωh(u)
]

ν(du). (19)

Eqn (19) remains true for all f and h for which the integral is well-defined, and in particular
for f(u) = u. For the choice h(u) = sinu (or any other odd function) in R

1 and ν of (8),
X = H[f − h] + H̃[h] has log chf

log EeiωX = γcα

∫

R

[

eiωu − 1− iω sinu
]

α|u|−α−1 du = −γ|ω|α

for any 0 < α < 2, so we have succeeded in constructing SαS random variables with arbitrary shape
parameters, including the Cauchy for α = 1.

Once again we can extend this immediately to SII processes Xt = H[ft−ht]+ H̃[ht] with incre-
ments [Xt−Xs] ∼ StA(α, 0, γ|t− s|, 0) by setting ft(u, s) = u1{0<s≤t} and ht(u, s) = (sinu)1{0<s≤t}

on X = R×R+ with H ∼ Po
(

ν(du) ds
)

, or to SαS-valued random fields Γ(dσ) ∼ StA(α, 0, γ(dσ), 0)

on any σ-finite measure space
(

Σ,F , γ
)

by setting Γ[A] = H[fA−hA]+H̃[hA] for fA(u, σ) = u1A(σ)
and hA(u, σ) = sinu1A(σ) with Poisson random measure H ∼ Po

(

cαα|u|−α−1du γ(dσ)
)

on R× Σ.

3.3 Skewed α-Stable Processes

Fix 0 < α < 2, −1 ≤ β ≤ 1, and γ > 0; set cα = 1
πΓ(α) sin

πα
2 and

ν(du) = γcα
(

1 + β sgnu
)

α|u|−α−1 du. (20)
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For 0 < α < 1 this satisfies Eqn (3b) so we can construct (as we did in Section (2.5.3)) random
variables and processes with log chf

logχ(ω) =

∫

R

(

eiωu − 1
)

ν(du)

= c−

∫ 0

−∞

(

eiωu − 1
)

(−u)−α−1 du+ c+

∫ ∞

0

(

eiωu − 1
)

(u)−α−1 du

= c−

∫ ∞

0

(

e−iωu − 1
)

(u)−α−1 du+ c+

∫ ∞

0

(

eiωu − 1
)

(u)−α−1 du

= −γ|ω|α
{

1− iβ tan πα
2 sgnω

}

,

where c± = γcα(1± β)α.
This chf χ is, in fact, valid for all α 6= 1 in the interval (0, 2). Adding a location δ ∈ R to a

random variable with this chf leads to one with chf

χ(ω) = exp
[

iδω − γ|ω|α
{

1− iβ tan πα
2 sgnω

}]

. (21)

This is the so-called “Zolotarev (A)” parametrization of the α-stable family of distributions (Zolo-
tarev, 1986, pp. 9), which we’ll denote StA(α, β, γ, δ), with four parameters: shape α, asymmetry
β, intensity γ, and location δ. There is a (pretty funny) checkered history of parametrizations
of the α-stable distributions (Hall, 1981). While everyone agrees on α (both the letter and its
role), authors have disagreed about both letters and roles of the other three. Early authors got
the sign of β “wrong” (in the sense that their β > 0 was associated with a ν(du) heaviest on the
negative half-line). Many authors prefer a scale parameter σ rather than intensity; they’re related
by γ = σα. And Zolotarev in fact uses γδ as his location, while most other authors use δ (including
me, for reasons we’ll see later). In most arguments δ = 0, where we can all agree.

The chf Eqn (21) is well-defined and valid for all 0 < α ≤ 2, −1 ≤ β ≤ 1, γ ≥ 0, and δ ∈ R

except for α = 1 with β 6= 0— where the tangent function approaches +∞ as α ր 1, or −∞ as
αց 1, so χ can’t be extended by continuity to α = 1, β 6= 0 (at least, not directly).

3.3.1 Compensation: The (M) Parametrization

By an entertaining use of analytic continuation and the Gamma reflection identity, we can evalu-
ate the log chf for the partially-compensated α-stable distribution with Lévy measure ν given in
Eqn (20), with an offset δ ∈ R:

log χα(ω) = iδω +

∫

R

[

eiωu − 1− iω sinu
]

ν(du)

= iδω − γ|ω|α − iβγ tan πα
2 ω

(

1− |ω|α−1
)

(22a)

for α 6= 1. This expression is continuous, so can be extended by continuity to α = 1 (by L’Hôspital’s
rule, for example):

log χ1(ω) = iδω − γ|ω| − iβγ
2

π
ω log |ω| (22b)
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For δ = 0 and β = 0 these reduce to the SαS solution −γ|ω|α, but for β 6= 0 they’re new. This
continuous parametrization is called the “Zolotarev (M)” parametrization StM(α, β, γ, δ) of the
α-stable family.1

By consolidating factors of ω in (22a), we see that the chf for a random variableX ∼ StM(α, β, γ, δ)
can be re-written

log χα(ω) = i
(

δ − βγ tan πα
2

)

ω − γ|ω|α + iβγ tan πα
2 ω|ω|α−1

= iδ∗ω − γ|ω|α
{

1− iβ tan πα
2 sgnω

}

,

the StA(α, β, γ, δ
∗) chf of Eqn (21) with a different location parameter δ∗ = [δ − βγ tan πα

2 ]— effec-
tively, the (M) parametrization adds an α-dependent constant offset (δ∗ − δ) = −β γ tan πα

2 to X
in such a way that the distribution becomes a continuous function of α ∈ (0, 2). For 1 < α < 2,
EX = δ∗ and we have simply subtracted the mean, but for 0 < α ≤ 1 the mean is undefined.
For β 6= 0 the constant becomes infinite as α → 1, of sign sgn(β(α − 1)) that reverses at α = 1.
Both StA and StM parametrizations are convenient, at different times— for example, for α < 1 the
fully-skewed StA(α, 1, γ, 0) is a well-defined distribution taking only positive values 0 < X < ∞,
making StA more convenient, while StM is better for skewed stables with α ≥ 1, or any time α is
close to one.

3.4 Important Example: Inverse Gaussian Distribution

The skewed stable SII processes Xt ∼ StA(α, 1, γt, 0) for 0 < α < 1 are called subordinators. They
have non-decreasing paths with independent increments. They are commonly used as random
time-changes for other SII processes (Brownian motion, for example), since the composition is once
again SII. The most important of these is the case α = 1

2 (sometimes called the Wald process),
because (a) its pdf is available in closed form, and (b) it has a beautiful connection with the Wiener
process.

For α = 1
2 , cα = 1/

√
2π and the Lévy measure of Eqn (20) is

ν(du) =
γ√
2π
u−3/21{u>0} du. (23)

Compensation is unnecessary and an increasing process Xt ∼ StA(
1
2 , 1, γt, 0) for 0 < s ≤ T may be

constructed with Lévy measure tν(du) by the ILM algorithm as the absolutely convergent sum

Xt = γT
√

2/π
∞
∑

j=1

1
√
τj
1{sj≤t}

where {τj} are the event times of a standard Poisson process and {sj} iid∼ Un(0, T ).

3.4.1 Brownian Hitting Times

Let W (t) be a standard Wiener process starting at zero, and for θ > 0 set

τθ := inf {t ≥ 0 : W (t) ≥ θ} .
1except that, again, Zolotarev used δγ as location instead of δ.
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We’ll see below that τθ <∞ almost-surely. By the strong Markov property, the processW (t+τθ)−θ
is also a standard Wiener process; it follows that the stochastic process θ  τθ is SII. By Brownian
scaling, for any real c 6= 0 the process B(t) = W (c2t)/c is also a standard Wiener process, so for
c > 0,

τθ = inf {t ≥ 0 : B(t) ≥ θ}
= inf

{

t ≥ 0 : W (c2t) ≥ cθ
}

= c−2 inf {s ≥ 0 : W (s) ≥ cθ}
d≡ τcθ/c

2 or, for c = 1/θ,

τθ
d≡ θ2τ1. (24)

By the SII property the log characteristic function ψθ(ω) of τθ must satisfy ψθ(ω) ≡ θψ1(ω),
and by (24) also ψθ(ω) = ψ1(ωθ

2), so

ψθ(ω) = θ|ω| 12ψ1(sgnω)

and τθ has an α-stable distribution with α = 1
2 . Since it’s positive and starts at zero, also β = 1

and δ = 0. For that reason, StA(
1
2 , 1, γ, 0) is called the “inverse Gaussian distribution”. The CDF

and pdf are available from the reflection principle— conditional on τθ < t, B(s) := [W (s+ τθ)− θ]
is a standard Wiener process with P[B(s) > 0] = 1

2 for every s > 0, so for t > 0,

P[W (t) ≥ θ] = P[W (t) ≥ θ, τθ < t]

= P[W (t) ≥ θ | τθ < t] P[τθ < t]

= P[B(t− τθ) ≥ 0 | τθ < t] P[τθ < t]

= 1
2P[τθ < t] and so

P[τθ ≤ t] = 2P[W (t) ≥ θ] = 2Φ
(

− θt−
1
2

)

.

Since this tends to one as t → ∞, τθ < ∞ a.s. as claimed for any θ ≥ 0. Taking a derivative, the
pdf at t > 0 for τθ is

fθ(t) = θt−3/2φ
( θ√

t

)

=
θ√
2π
t−3/2e−θ2/2t,

making conventional likelihood-based inference possible.
Surprisingly, by a “tilting” argument (Steele, 2000, Ch. 13), the hitting time τ := inf {s ≥ 0 : W (t) ≥ θ − λt}

of a linear boundary is not much harder to find. For λ ≥ 0 it has pdf

fθ(t) = θt−3/2φ
(θ − λt√

t

)

=
θ√
2π
t−3/2eθλ−(λ2t+θ2/t)/2, (25)

a special case (p = −1
2 , a = λ2, b = θ2) of the GiG distribution discussed in Section (3.4.2) below.

The probability P[τ <∞] of ever hitting the boundary is just the integral over R+ of fθ in Eqn (25).
This is one for λ ≥ 0, but e2λθ < 1 for λ < 0, so it is then possible that W (t) will never exceed
θ − λt, making τ infinite. For negative λ the conditional distribution of τ , given that it is finite, is
proportional to fθ.
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For λ > 0 the mean is Eτ = θ/λ <∞ and the characteristic function is

E[eiωτ ] = exp
{

θλ− θ
√

λ2 − 2iω
}

,

while for λ = 0 the mean is infinite and the chf reduces to

= exp
{

−θ|ω| 12 (1− i sgnω)
}

.

In both cases it is of course not real, because the distribution of τ is not symmetric about zero.

3.4.2 Generalized Inverse Gaussian Distribution

The Generalized Inverse Gaussian GiG(p; a, b) distribution for a ≥ 0, b ≥ 0, p ∈ R has pdf

f(x | p, a, b) = (a/b)p/2

2Kp

(√
ab
) xp−1 e−(ax+b/x)/21{x>0} (26)

where Kp(z) is a modified Bessel function of the third kind (Watson, 1944, p. 185), available in R

as bessselK():

K±ν(z) =
Γ(ν + 1

2 ) (2z)
ν

√
π

∫ ∞

0

cos t

(t2 + z2)ν+
1
2

dt ν ≥ 0

= 1
2

∫ ∞

0
xν−1 e−z(x+x−1)/2 dx.

For half-odd-integer ν the integral can be evaluated in closed form (Abramowitz and Stegun, 1964,
§10.2.17):

Kν(z) =























e−z
√

π/2z ν = 1/2

e−z
√

π/2z (1 + z−1) ν = 3/2

e−z
√

π/2z (1 + 3z−1 + 3z−2) ν = 5/2

e−z
√

π/2z
∑n

0≤k<ν

(ν
k

)

(2z)−k ν ∈ N0 +
1
2

(27)

For p = −1
2 the GiG (26) reduces to the Inverse Gaussian (and to the Wald distribution StA(

1
2 , 1, γ, 0)

for a = 0 and b = γ2); for b = 0 and a > 0 it is just the Gamma Ga(p, a/2) distribution (note
zνKν(z) → 2ν−1Γ(ν) as z → 0). For all parameter values it is ID, with chf (see Jørgensen (1982)
or Seshadri (1999))

χ(ω) = ap/2(a− 2iω)−p/2Kp

(
√

b(a− 2iω)
)

/

Kp

(
√
ab
)

or, for p = −1
2 ,

f(x | a, b) =
√

b/2π x−3/2 exp
{√

ab− (ax+ b/x)/2
}

, x > 0

χ(ω) = exp
{√

b
(√
a−

√
a− 2iω

)

}

. (28)
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For a = 0 this is the α-stable chf

χ(ω) = exp
{

−
√
2b(ωe−iπ/2)

1
2

}

= exp
{

−
√
b|ω| 12

(

1− i sgnω
)

}

,

chf of the fully-skewed StA(
1
2 , 1,

√
b, 0) distribution with γ =

√
b. After noting this is a convolution

semigroup in the parameter γ =
√
b, the method of Section (1.3) can be applied to find the Lévy

measure density for p = −1
2 :

ν(u) = lim
n→0

n
(a/b)−1/4 n−

1
2

2K 1
2

(
√
ab/n

) u−3/2e−(au+b/n2u)/21{u>0}

=
√

b/2π u−3/2e−au/21{u>0},

reducing for a = 0 and b = γ2 to γcαα|u|−α−11{u>0} for α = 1
2 , as in Eqn (23) for the StA(

1
2 , 1, γ, 0)

distribution.
If X ∼ GiG(p; a, b) then X−1 ∼ GiG(−p; b, a), so the family is closed under the operation of

multiplicative inverse. It is also a three-parameter exponential family, with canonical parameter
(p,−a/2,−b/2) and sufficient statistic

T (~t) =
(

∑

log tj ,
∑

tj,
∑

t−1
j

)

.

3.5 Truncation Algorithm with Compensation

Compensation will enable us to construct an SII process whose Lévy measure satisfies the local-L2

condition (4b), but perhaps not the local-L1 condition (3b). Fix a bounded compensator function
h(u) = u+O(|u|2) and consider the problem of constructing an approximation to a process Xt for
which X1 has the chf of Eqn (4a) (with m = 0 and Σ = 0).

The truncation algorithm of Section (2.4) gets just one new step: we must subtract an ǫ-
dependent offset. The most obvious choice for the offset would be t

∫

Bc
ǫ
h(u) ν(du), but this is

difficult to compute exactly in examples so instead we do a variation on this.
For ǫ > 0 the function hǫ : R

d → R
d given by hǫ(u) := u1{|u|≤ǫ} is a valid compensator. Thus

the difference h− hǫ is bounded and O(|u|2) near zero, and so is ν-integrable by (4b). Set

µǫ :=

∫

Rd

[

h(u)− hǫ(u)
]

ν(du) (29a)

This differs from
∫

Bc
ǫ
h(u) ν(du) only by

∫

Bǫ
[h(u)−u] ν(du) = o(ǫ). Now construct an approximation

Xǫ
t to Xt by:

Truncation Algorithm with Compensation:

1. Fix ǫ > 0, and set ν+ǫ := ν
(

Bc
ǫ

)

;
2. Fix T > 0, and draw Jǫ ∼ Po

(

Tν+ǫ
)

;

3. Draw Jǫ iid variates {sj} iid∼ Un(0, T ) and {uj} iid∼ νǫ(du)/ν
+
ǫ ;

4. For 0 ≤ t ≤ T , set

Xǫ
t :=

∑

j≤Jǫ

{uj : 0 < sj ≤ t} − t µǫ (29b)

where µǫ was given in (29a).
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3.5.1 Truncation Error Estimates

The truncation error can be evaluated from

Xt = H[(u− h)1{s≤t}] + H̃[h1{s≤t}]

= H[(u− hǫ)1{s≤t}] + H̃[hǫ1{s≤t}] + t

∫

[

hǫ − h]ν(du)

while

Xǫ
t = H[(u− hǫ)1{s≤t}] + t

∫

[

hǫ − h]ν(du)

so the truncation error

Mt =
[

Xt −Xǫ
t

]

= H̃[hǫ1{s≤t}]

is the L2 martingale Mt =
[

Xt −Xǫ
t

]

with quadratic variation

[M ]t =

∫

Bǫ×(0,t]
uu′H(du ds)

〈M〉t = tΣǫ for

Σǫ =

∫

Bǫ

uu′ ν(du).

As before, we have bounds such as

E
[

sup
0<s≤t

|Xs −Xǫ
s|2

]

≤ 4 t tr
(

Σǫ

)

.

3.5.2 Specific Examples

1. Skewed α-Stable

ConsiderXt ∼ StM(α, β, γt, δt) with Lévy measure ν(du) = γcαα
(

1+β sgnu
)

|u|−α−1 du of Eqn (14).
With h(u) = sinu and cα = 1

πΓ(α) sin
πα
2 , we have

µǫ =

∫

[

sinu− u1Bǫ

]

ν(du)

= 2αβγcα

{
∫ ǫ

0
[sin(u)− u]u−α−1du+

∫ ∞

ǫ
sin(u)u−α−1du

}

=







2βγΓ(α) sin
πα
2

π

[

αǫ1−α

α−1 + Γ(1− α) sin πα
2

]

α 6= 1,
2βγ
π

[

1− γe + log 1
ǫ

]

α = 1
(30)

where γe ≡ −Γ′(1) ≈ 0.577216 denotes the Euler-Mascheroni constant. The iid summands {uj} for
the truncated process will have pdf

uj ∼ νǫ(du)/ν
+
ǫ = ǫα

{

1+β sgnu
2

}

α|u|−α−11{|u|>ǫ} du,
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i.e., {uj = rjσj} with iid Pareto magnitudes {rj} iid∼ Pa(α, ǫ) and random signs {σj = ±1} with
probabilities (1± β)/2. For 0 ≤ t ≤ T we have

Xǫ
t :=

∑

j≤Jǫ

{uj : 0 < sj ≤ t}+ t (δ − µǫ). (29b)

The truncation error Mt = [Xt −Xǫ
t ] is an L2 martingale with predictable quadratic variation

EM2
t = 〈M〉t = tΣǫ for real-valued

Σǫ :=

∫

Bǫ

uu′ ν(du)

=
2αγΓ(α) sin πα

2

π

∫ ǫ

0
u1−α du

=
2αγΓ(α) sin πα

2

π(2− α)
ǫ2−α,

so by (34c),

E

[

sup
0<s≤t

|Xs −Xǫ
s|2

]

≤ 4 tΣǫ.

2. Cauchy

For the standard Cauchy process Xt ∼ StM(1, 0, t, 0), β = 0 and hence µǫ = 0 (see Eqn (30)),
while ν+ǫ = ν

(

Bc
ǫ

)

= 2/πǫ. Thus the truncation algorithm construction on [0, T ] for ǫ > 0 is:

1. Draw Jǫ ∼ Po
(

2T/πǫ
)

;

2. Draw Jǫ iid variates {sj} iid∼ Un(0, T ), {rj} iid∼ Pa(ǫ, 1), and Bernoulli {σj} = ±1 with proba-
bility 1

2 each;
3. Set

Xǫ
t :=

∑

j≤Jǫ

{σjrj : 0 < sj ≤ t}

for 0 ≤ t ≤ T .

The predictable variation of the truncation error Mt is tΣǫ for Σǫ =
∫

|u|≤ǫ u
2 ν(du) = 2ǫ/π, so the

L2 error bound of (34c) is

E

[

sup
0<s≤T

|Xs −Xǫ
s |2

]

≤ 8 T ǫ

π

and by Markov’s inequality, for any λ > 0,

P

{[

sup
0<s≤T

|Xs −Xǫ
s |
]

≥ λ

}

≤ 8 T ǫ

π λ2
.

For T = 10, for example, taking ǫ ≤ 1.96 · 10−5 will ensure that the error bound |Xs −Xǫ
s | ≤ 0.10

holds uniformly for 0 ≤ s ≤ 10 with probability 95%, requiring on average Jǫ ≈ Tν+ǫ ≈ 324, 000
terms in the summation.
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3. Half-Cauchy

For the fully-skewed process Xt ∼ StM(1, 1, t, 0), the offset of Eqn (30) is

µǫ =
2

π

[

1− γe + log
1

ǫ

]

while again Σǫ = 2ǫ/π, so all the σj ≡ 1 and

Xǫ
t :=

∑

j≤Jǫ

{rj : 0 < sj ≤ t} − t µǫ

for Jǫ ∼ Po
(

ν+ǫ
)

with ν+ǫ = 2/πǫ and {rj} iid∼ Pa(α, ǫ). As before the martingale maximal bounds
are

E

[

sup
0<s≤T

|Xs −Xǫ
s|2

]

≤ 8T ǫ

π
P

{

sup
0<s≤T

|Xs −Xǫ
s | ≥ λ

}

≤ 8T ǫ

π λ2
.

4. Gamma

The function f(u) = u is integrable for the Lévy measure ν(du) = αu−1e−βu1{u>0} of the
Gamma process Xt ∼ Ga(αt, β) at both zero and infinity, so we have a variety of choices about
compensation. We can choose h = sin as we did for the α-stable, or h = hǫ; or, ignoring for the
moment our usual rules for compensators (boundedness and h(u) = u + O(|u|2)), we can omit
compensation entirely (i.e., take h(u) ≡ 0) or we can fully compensate (so h(u) ≡ u). Each leads
to the identical algorithm, except for the value of

µǫ =

∫

[

h(u)− u1Bǫ

]

ν(du) =























α atan(1/β) − α
β

(

1− e−βǫ
)

h(u) = sinu

−α
β

(

1− e−βǫ
)

h(u) ≡ 0

(α/β)e−βǫ h(u) = u

0 h(u) = hǫ(u)

with error bounds arising from 〈X − Xǫ〉t = (αt/β2)γ(ǫ, βǫ) ≤ αtǫ2/2 (Abramowitz and Stegun,
1964, §6.5.2), leading to much tighter bounds than for α-stables:

E

[

sup
0<s≤T

|Xs −Xǫ
s|2

]

≤ 2αTǫ2 P

{

sup
0<s≤T

|Xs −Xǫ
s | ≥ λ

}

≤ 2αTǫ2

λ2
,

requiring ǫ = 0.005 and only Jǫ ≈ Tν+ǫ = αTE1(βǫ) ≈ 47 terms to ensure |Xt − Xǫ
t | ≤ 0.10 for

0 ≤ t ≤ 10 with probability 95% for α = β = 1, while just ν+ǫ = 170 terms will give 99% chance of
an error smaller than 10−6.

3.6 Multivariate α-Stable Processes

Let Λ(dσ) be a finite positive measure on the unit sphere Sd−1 in R
d, let 0 < α < 2, and fix δ ∈ R

d.
An R

d-value random variable X has the multivariate α-stable X ∼ StM(α,Λ, δ) distribution if its
log chf log E[eiω

′X ] is of the form:

iω′δ −
∫

Sd−1

{

|ω′σ|α
[

1− i tan πα
2 sgnω′σ

]

+ i ω′σ tan πα
2

}

Λ(dσ) (31a)
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for α 6= 1 or, for α = 1,

iω′δ −
∫

Sd−1

{

|ω′σ|+ i
2

π
ω′σ log |ω′σ|

}

Λ(dσ). (31b)

Each of these has Lévy-Khinchine form

E[eiω
′X ] = iω′δ +

∫

Sd−1×R+

{

eiω
′σ r − 1− i ω′σ sin r

}

2cααr
−α−1 drΛ(dσ)

with product Lévy measure ν(dr dσ) = 2cααr
−α−1 drΛ(dσ), for the same constant cα := 1

πΓ(α) sin
πα
2

as in Eqn (20). For 0 < α < 1 it is possible to dispense with compensation, removing the red terms
in the displayed equations, leading to the StA(α,Λ, δ) parametrization.

The measure Λ determines both the intensity γ = Λ(Sd−1) of the process and its degree
of asymmetry β =

∫

Sd−1 σΛ(dσ)/γ (and in d = 1 dimension would coincide with the usual
StM(α, β, γ, δ) distribution). In d ≥ 2 dimensions the α-stable family of distributions is much richer
than in d = 1 dimension, though, because it entails an arbitrary angular distribution on Sd−1

while probability distributions on the two-point S0 = {±1} are determined by a single number
β =

∫

S0 σΛ(dσ) = (p+ − p−) ∈ [−1, 1].

One specific example is the Independent α-StablesX = (X1, ...,Xd) withXj
ind∼ StM(α, βj , γj , δj),

all with the same shape parameter α. In this case the vector X ∼ StM(α,Λ, δ) with Λ the sum of
2d point masses of magnitude γj(1± βj)/2 at ±ej, the unit vector in the j’th coordinate direction,
and δ = (δ1, . . . , δd).

A second specific example is the d-dimensional Symmetric α-Stable distributionX ∼ StM(α,Λ, 0)
with Λ(dσ) proportional to the uniform distribution on Sd−1. In this case for any ω ∈ R

d the inner
product ω′X ∼ StM(α, 0, γ

∗, 0) has a univariate SαS distribution with

γ∗ = |ω|α
∫

Sd−1

|σ1|αΛ(dσ) = |ω|αΓ(
α+1
2 )Γ(d2 )

Γ(α+d
2 )

√
π

Λ(Sd−1).

3.6.1 Generating the Multivariate α-Stable

To generate an SII process Xt ∼ StM(α,Λt, δ), begin by computing for r > 0

ν+r = ν
(

Bc
r

)

= Λ(Sd−1)

∫ ∞

r
2cααx

−α−1 dx

=
2γ

π
Γ(α) sin πα

2 r
−α (32a)

µǫ =

∫

Rd

[h(u)− hǫ(u)] ν(du)

=

∫

Sd−1×R+

[

σ sinu− σu1{r<ǫ}

]

2cααr
−α−1drΛ(dσ)

= γβ

∫

R+

[

sinu− u1{r<ǫ}

]

2cααr
−α−1dr

=
2γβ

π

{

[

αΓ(α) sin πα
2

ǫ1−α

α−1− tan πα
2

]

α 6= 1
[

1− γe + log 1
ǫ

]

α = 1.
(32b)
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For α < 1 it is possible to skip compensation; in that case, omit the “tan πα
2 ” term in (32b). Now

the Truncation Algorithm steps are:

1. Fix ǫ > 0 and T > 0, and draw Jǫ ∼ Po
(

Tν+ǫ
)

;

2. Draw Jǫ iid variates {sj} iid∼ Un(0, T ), {rj} iid∼ Pa(α, ǫ), and {σj} iid∼ Λ(dσ)/γ;
3. For 0 ≤ t ≤ T , set

Xǫ
t :=

∑

j≤Jǫ

{rjσj : 0 < sj ≤ t}+ t (δ − µǫ). (33)

Just as in one dimension, this is tolerably efficient for 0 < α < 1 but the number of terms required
for an adequate approximation becomes excessive for α ≥ 1, with martingale-based error estimates
readily available.

The ILM algorithm is similar; since ν is a product measure, the magnitudes {rn} and directions
{σn} are independent for both algorithms.

3.7 Multivariate Extreme Value Theory

Multivariate α-stables are a great source of explicit examples.

4 Numerical Methods

4.1 Prior and Posterior distributions

4.2 Gamma/Poisson and Gibbs

4.3 Reversible Jump MCMC

5 Applications

5.1 Biodiversity

Estimating the latent mean intensity (in trees/m2) for eight species of trees in Duke Forest (Wolpert
and Ickstadt, 1998a).

5.2 Proteomics

Identifying and quantifying proteins in serum samples based on the time-of-flight of charged molec-
ular fragments in an electric field (Clyde et al., 2006; House et al., 2011).

5.3 Nitrate Concentrations

Estimating the unmeasured concentrations of nitrates at locations in the eastern US, based on
irregularly-spaced measurements (Woodard et al., 2010).

5.4 Epidemiology

Exploring the etiology of “severe wheeze” (childhood asthma), by modeling excess disease rate
(cases per 100 at-risk individuals per year) after adjusting for known risk factors as a latent (and
possibly zero) function of space (Best et al., 2000a,b, 2002).
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5.5 Gamma Ray Bursts

Go see Mary Beth’s 395 presentation on 2012-03-12, 4:25pm, 116 Old Chem Building.

6 Stationary ID Processes

6.1 MISTI

Characterizing all integer-valued time-reversible stationary Markov processes with infinitely-divisible
distributions (Wolpert and Brown, 2011).

6.2 Six AR(1)-like Gamma Processes

Count ’em. All with identical univariate marginals and auto-correlation functions, but all different.
Some are ID, some are Markov, some are time-reversible, one is a diffusion.

6.3 α-Stable AR(1) Processes

A Appendix: Martingales

Let {Ft} ⊂ F be an increasing family of sub-σ-algebras on a probability space (Ω,F ,P), indexed by
t ∈ T for an ordered set T (usually all or a subset of R or Z). such a family is called a filtration. A
martingale is a family {Mt} ⊂ L1(Ω,F ,P) of integrable random variables (also indexed by t ∈ T )
taking values in some vector space E (usually R or Rd) and for all s < t ∈ T satisfying the property

Ms = E[Mt | Fs].

In particular this implies Mt is Ft-measurable for all t ∈ T ; if the filtration isn’t specified, then
implicitly it is taken to be σ {Ms : s ≤ t}, the smallest σ-algebra with this property.

The quadratic variation of a square-integrable R
d-valued martingale Mt is the d × d-matrix-

valued process given by the limit

[M ]t := lim
∑

0≤i<n

(Mti+1
−Mti) (Mti+1

−Mti)
′

where the limit is taken over sequences 0 = t0 < t1 < · · · < tn = t as n→ ∞ with max |ti+1−ti| → 0.
For two L2 martingales M1 and M2, the cross-variation is

[M1,M2]t := lim
∑

0≤i<n

(M1
ti+1

−M1
ti) (M

2
ti+1

−M2
ti)

′

=
1

4

(

[M1 +M2]t − [M1 −M2]t

)

.

The quadratic variation [M ]t for most martingales Mt associated with Lévy processes are random
processes with jumps. The “previsible projection” of [M ]t can be expressed

〈M〉t := lim
∑

0≤i<n

E
[

(Mti+1
−Mti) (Mti+1

−Mti)
′
∣

∣Fti

]

,
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often a deterministic function for Lévy-related martingales. Writing

Mt =M0 +
∑

0≤i<n

(Mti+1
−Mti)

as a telescoping sum and squaring, we find

EM2
t = EM2

0 + E[M ]t = EM2
0 + E〈M〉t

for all t. In the applications in these notes, M0 ≡ 0 and 〈M〉t is non-random, making this a
convenient way to calculate EM2

t = 〈M〉t.
For example, if Xt ∼ Po(λt) is an SII Poisson process with rate λ > 0, then Mt := [Xt − λt] is

an L2 martingale, with
[M ]t = Xt and 〈M〉t = λt

and
E(Xt − λt)2 = EXt = λt.

Doob’s Maximal Inequalities

Joseph Doob (1990, Ch. VII) proved a number of exceptionally useful bounds for the maxima
over time intervals of real-valued martingales. Let M denote a real-valued martingale, and define

M∗
t := sup

0≤s≤t
Ms

|M |∗t := sup
0≤s≤t

|Ms|

For λ > 0 and p > 1, Doob’s inequalities include:

P
[

M∗
t ≥ λ

]

≤ EM+
t

λ
(34a)

P
[

|M |∗t ≥ λ
]

≤ E|Mt|
λ

(34b)

E
[

(|M |∗t )p
]

≤
[

p

p− 1

]p

E|Mt|p (34c)

where M+ := (0 ∨M). Equation (34b) is a strong extension of Markov’s inequality, which would
have asserted the same bound merely for P

[

|Mt| ≥ λ
]

. For p = 2, Eqn (34c) bounds the L2 norm
of the sample path maximum |M |∗t by twice that of Mt, the process at a single point.

Here’s a sketch of the proofs. Fix λ > 0 and a martingale M . Define the stopping time
τ := inf {t ≥ 0 : Mt ≥ λ} (or infinity if Mt never exceeds λ). By the optional sampling theorem,
Mt∧τ is also a martingale, and for all t ≥ 0, EMt = EMt∧τ = EM0, so

E[Mt] = E[Mt∧τ ] = E[Mτ1{τ≤t}] + E[Mt1{τ>t}]

≥ E[λ1{τ≤t}] + E[Mt1{τ>t}]

= λP[τ ≤ t] + E[Mt]− E[Mt1{τ≤t}]

λP[τ ≤ t] ≤ E[Mt1{τ≤t}] ≤ E[M+
t 1{τ≤t}] ≤ E[M+

t ],
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proving Eqn (34a) since the event [τ ≤ t] is the same as [M∗
t ≥ λ].

Since [−Mt] is also a martingale and [−Mt]
+ = [0 ∨ (−Mt)] =M−

t ,

P[ sup
0≤s≤t

|Ms| ≥ λ] ≤ P[ sup
0≤s≤t

Ms ≥ λ] + P[ inf
0≤s≤t

Ms ≤ −λ]

≤ EM+
t

λ
+

EM−
t

λ
=

E|Mt|
λ

,

proving Eqn (34b). In fact we proved something slightly stronger, that we’ll need below:

P [|M |∗t ≥ λ] ≤ 1

λ
E

[

|Mt|1{|M |∗t≥λ}

]

.

Finally, by Fubini’s theorem, the nonnegative random variable Y := |M |∗t satisfies

E[Y p] =

∫ ∞

0
pλp−1

P[Y ≥ λ] dλ ≤
∫ ∞

0
pλp−1 1

λ
E
[

|Mt|1{Y≥λ}

]

dλ

= E |Mt|
∫ Y

0
pλp−2 dλ =

p

p− 1
E
[

|Mt|Y p−1
]

.

Hölder’s inequality asserts that E[AB] ≤ E[Ap](1/p) E[Bq](1/q) for any positive random variables A
and B, for conjugate exponent p > 1 and q = p

p−1 . Applying this with A = |Mt| and B = Y p−1,

and noting (p− 1)q = p and 1− 1
q = 1

p ,

E[Y p] ≤ p

p− 1
[E|Mt|p]1/p [EY p]1/q

E[Y p]1/p ≤ p

p− 1
[E|Mt|p]1/p ,

proving Eqn (34c).
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