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Abstract

Design and Performance of High-Speed Communication

Systems over Time-Varying Radio Channels

by

Andrea Goldsmith

Doctor of Philosophy in Engineering

Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Pravin P. Varaiya, Chair

The next generation of wireless networks will require more efficient use of the

underlying time-varying channel to accommodate the demand for voice, video, and data

transmission. In this thesis, we investigate methods to increase the spectral efficiency

of point-to-point and multiuser communication systems operating over time-varying radio

channels. We begin by developing several models for the time-varying channel. Specif

ically, we model both deterministic and stochastic multipath channels, cellular channels,

and state space channels. Next, we propose spectrally-efficient communication techniques

for time-varying channels when the channel is estimated and this estimate fed back to the

transmitter. We determine the maximum spectral efficiency under this assumption, and

show that this maximum is achieved when three parameters are adapted to the channel

variation: transmit power, data rate, and coding scheme.

When a feedback path is not available, the receiver can use a priori knowledge

about the channel statistics to decode the input sequence. For a discrete-time channel with

Markov variation, wepropose a decision-feedback decoding algorithm that uses the channel's

Markovian structure to determine the maximum-likelihood input sequence. We calculate

the capacity and cutoff rate of this decoding scheme, and compare them to the inherent

rate limits of the channel. Finally, we discuss some multiresolution coding techniques for

the case when no a priori channel information is available. This type of coding allows some

loss of nonessential data in order to achieve overall higher data rates.

We then consider performance of multiuser systems, where interference limits the



total number of users and their respective data rates. We determine the achievable rate re

gions of multiuser time-varying channels with channel estimation and transmitter feedback

under CDMA, FDMA, and TDM A spectrum-sharing techniques. We also discuss several

uses for power control beyond traditional interference balancing. In particular, we propose

a hybrid power/rate control scheme which adapts to the system traffic load and the channel

characteristics of each user. This policy maintains fairness in the network while taking

advantage of favorable propagation conditions. Finally, we propose an architecture and

protocol suite for interconnecting wireless subnets with different specifications and require

ments.

Professor Pravin P. Varaiya, unair Date
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Chapter 1

Introduction

The vision of wireless communication providing high-speed high-quality informa

tion exchange between two portable devices located anywhere in the world is the commu

nications frontier of the next century. The great popularity of cordless telephones, cellular

telephones, radio paging, and other emerging portable communication technologies demon

strates a great demand for such services. The network infrastructure must support all of

these services, and will likely encompass wirehne networks as well. Efficient interconnection

of the subnetworks, each with different protocols and requirements, will require standardiza

tion of interfaces and internetworking protocols, as well as intelligent networking capabilities

to exchange information across subnet boundaries.

What has emerged from worldwide research and development activity in this area

is the need for the following technological advances to implement this wireless vision:

• Hardware for low-power handheld computer and communication terminals.

• Techniques to improve the quality and spectral efficiency of communication over wire

less channels.

• Better means of sharing the limited spectrum to accommodate the different wireless

applications.

• An architecture and protocol suite to integrate the various subnetworks and systems

into an interconnected network.

We now give a more complete overview of the proposed integrated wireless com

munication network, and the technical issues involved in its implementation. Many of these



technical issues will be carefully examined in the thesis chapters, where we propose and eval

uate new methods to approach them, and compare these methods with other techniques

that are currently being implemented or suggested in the literature.

1.1 Global Wireless Networks

The current network architecture of cellular and cordless phone systems is shown

in Figure 1.1. The local base of the cordless phone connects into the Pubhc Switched

Telephone Network (PSTN) in the same way as a wirehne telephone, with communication

between the base station and wireless handset via low power radio. The cellular system has

a similar architecture, except that the base stations are controlled by an intermediate mobile

telephone switching office (MTSO), which provides central control of all the base station

and mobile units (call routing, transfer between base stations, etc.). Calls that are initiated

and terminated within the same cellular system do not go through the local exchange;

they are routed directly by the MTSO. All other calls go through the local exchange. The

inefficiency, cost, and bottlenecks associated with this centralized control scheme has led to

more decentralized proposals for future-generation architectures.

CORDLESS

PHONE

LOCAL

BASE

LOCAL

EXCHANGE LONG-DISTANCE
NETWORK

LONG-DISTANCE
NETWORK

Figure 1.1: Current Network Architecture

The architecture for a global wireless infrastructure is still under development, as
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AREA NETWORK

(MAN)
A

Figure 1.2: Interconnection of Wireless Communication Subsystems

we will discuss in more detail in Chapter 6. For the near future, however, it is likely that

wireless communication subsystems will be connected to existing wide-area voiceand data

networks either directly (as the current systems are connected to the PSTN), or through a

metropolitanarea network,asshown in Figure 1.2. In eithercase, gateways willbe necessary

for routing and protocol conversion between the wireless subsystems and the networks

that support their interconnection. This will provide backward compatibility with existing

systems, however, it will impede the development of an architecture that is optimized to

fully integrate the emerging personal communication technologies. The conflicting goals

of maintaining backward compatibility while optimizing for an emerging system is not

new; however, it presents a challenge for the design of a wireless infrastructure, given the

diverging standards for the different wireless technologies and the desire to interconnect

them through a single global network. Research and design of the global infrastructure

have not yet received much attention in academic or industrial circles, probably because

the wireless subsystems are still under development, and the economic potential of the

infrastructure design is less immediate than that of the wireless subsystems. However,

addressing the issue now will provide subsystem developers with standardization guidelines



that will significantly ease subsystem integration. It is unlikely that the goal of global

wireless internetworking can be implemented if all the wireless subsystems are designed

independently, as is currently the case.

1.2 Technical Issues

In addition to the internetworking difficulties, the physical limitations of the wire

less communication link present a fundamental technical challenge for reliable high-speed

communication equivalent to that currently available on wirehne networks. The channel is

susceptible to time-varying noise, interference, and multipath. Moreover, the radio spec

trum is a limited resource, and even with the recent increase in spectrum allocation for

wireless applications, this resource will be stretched to its capacity to accommodate the

various wireless services. Techniques to increase spectral efficiency and effectively share the

radio resource are the main focus of this thesis.

Limitations in the powerand sizeof the communication and computing devices also

present a major design consideration. Vehicular communication devices have few power or

size limitations. However, most personal communication devices are meant to be carried in

a briefcase, purse, or pocket. These devices must be small and lightweight,which translates

to low power requirements, since small batteries must be used. However, many of the signal

processing techniquesrequired for efficient spectral utiUzation and networkingdemand much

processing power, precluding the use of low power devices. Hardware advances for low power

circuits with high processing ability will relieve some of this conflict; however, placing the

processing burden on fixed location sites with large power resources has and will continue

to dominate wireless system designs. The associated bottlenecks and single points-of-failure

are clearly undesirable for the overall system.

1.3 Thesis Outline

The overall approach of each thesis chapter is to first present the theoretical ca

pacity limits of the channel under consideration. We then use the capacity analysis as a

foundation for deriving novel communication techniques that come close to this theoretical

upper bound. Since optimal performance generally implies more hardware complexity and

sensitivity, we also consider suboptimal techniques which aremore robust and practical for



actual implementation.

The thesis outline is as follows. We begin in Chapter 2 with a detailed description

of time-varying radio channels. We first develop both deterministic and statistical models for

multipath channels. We then combine the multipath model with shadowing and interference

to obtain two models for urban cellular radio channels: the macrocell model for large

coverage areas and the microcell model for small coverage areas. We conclude the chapter

with the general state space channel, which models almost any type of channel variation,

including time-varying impulse response channels and channels which vary arbitrarily.

Chapter 3 describes techniques for spectrally-efficient communication over time-

varying channels when the channel is estimated and this estimate fed back to the trans

mitter. This allows the transmitter to adapt to the changing channel. We first determine

the performance limits, in terms of channel capacity, of such channels. We then propose

an adaptive power control and coded-modulation technique for narrowband fading channels

which comes close to achieving this performance limit. We conclude the chapter with a dis

cussion of channel estimation. In particular, we compute the effect of estimation error on

our adaptive coded-modulation technique. We also bound the capacity loss resulting from

periodic channel estimation, where no data is transmitted during this estimation time. The

consequent loss in data rate is more than just the fraction of time spent estimating the

channel, since the periodic estimation sequence restricts the data encoding.

In many cases, a feedback path between the receiver and transmitter is not avail

able. In Chapter 4 we develop receiver processing techniques to increase spectral efficiency

in this case. We first derive the Shannon capacity of time-varying channels without feedback

when the channel variation is Markov. We then propose a maximum-likelihood decision-

feedback decoder for this channel. Our decoding scheme achieves a higher spectral efficiency

than the interleaving and memoryless encoding method typically used on this channel with

out a significant increase in complexity. We conclude the chapter with a discussion of

unequal error protection codes. These codes prioritize the source encoded bit stream to

ensure that high-priority bits are received even under worst-case channel conditions.

We then turn to spectrum sharing for multiuser systems. In Chapter 5 we first

discuss the performance limits of multiuser systems in the context of multiuser information

theory. We then evaluate several spectrum-sharing techniques; in particular, we compare

the two competing technologies for the North American digital cellular standard: CDMA

and FDMA. Power control was originally proposed for CDMA systems to eliminate the near-



far problem1. However, this type of power control, which equahzes the received power of all

users, tends to waste power to compensate for bad channels, and also increases interference

to other receivers. We therefore propose a hybrid power control technique which equalizes

the power of all users, then incrementally increases power and data rates of the users with

the best channels. This technique alleviates the near-far problem while taking advantage

of good propagation conditions to increase spectral efficiency.

Wireless networks will be examined in Chapter 6. We first propose an architecture

using a hierarchical cellular structure, and show howit integrates with existing wireless and

wireline networks. We then describe someof the protocols necessary for routing and mobility

management within this heterogeneous network infrastructure. We alsp outline the other

protocols required for network operation, including security, pricing, and network control.

Conclusions and extensions to this thesis are discussed in the final chapter.

The near-far problem arises in multiuser systems when twotransmitters using the same frequency band,
but with different channel characteristics, access the same receiver. The transmitter with the good channel
will tend to overpower the other transmitter.



Chapter 2

Time-Varying Channels

The wireless radio channel poses a severe challenge as a medium for reliable high

speed communication. Not only is it susceptible to noise, interference, and multipath,

but because the users are presumed to be moving, these channel impediments change over

time in unpredictable ways. In this chapter, we will characterize channel variations for

several different types of channels. We first define the additive noise channel. Since receiver

hardware always introduces some noise, models for any time-varying channel should include

an additive noise term, unless the noise is negligible relative to other channel impediments.

We then consider multipath effects, which can cause two types of signal degradation: the

amplitude of the received signal may varyovertime, and the received signal may be distorted

or spread in time, resulting in intersymbol interference.

Next, we discuss models for urban ceUular channels, both macrocells (one to five

mile coverage area) and microcells (one thousand foot coverage). For cellular channels,

interference resulting from spatial reuse of the same frequency band adds to the other

channel impediments. Moreover, the propagation characteristics of cellular systems change

with cell size. We conclude the chapter with an abstract state space model, where the

channelvariation between states is governed by a stationary stochastic process. This model

is applied to both discrete and continuous channels.

2.1 Additive Noise Channels

The additive noise channel models noise introduced by hardware components at

the receiver front end. The channel model is illustrated in Figure 2.1, where the noise term
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n(1) is a stochastic process. Receiver noise is commonly modeled as a zero-mean Gaussian

process. When the noise is white, the channel is referred to as an additive white Gaussian

noise (AWGN) channel. Performance and communication techniques for the additive noise

channel have been studied in depth since the late 1940s; we will consider additive noise

effects only in conjunction with other channel impediments, such as multipath fading and

interference.

Figure 2.1: Additive Noise Channel.

2.2 Multipath Channels

In a typical urban environment, a radio signal transmitted from a fixed source to a

mobile receiver experiences extreme variation in both amplitude and phase. This variation

is due to multipath, which arises when the transmitted signal is reflected, diffracted, or

scattered by an object. These additional copies of the transmitted signal can be attenuated

in power, delayed in time, and shifted in phase and/or frequency from the line-of-sight

(LOS) signal path1. Multipath affects the receivedsignal in two ways: the constructive and

destructive interference of the multiple paths causes the received signal amplitude to vary,

and the time delay of each path causes intersymbol interference if the signal bandwidth is

larger than the inverse of the delay spread. We will discuss both of these phenomena for

several different multipath models in the subsections below.

We assume that the distances are small enough not to be affected by the earth's

curvature [1]. If the transmitter, receiver, and reflectors are all immobile, then the construc

tive and destructive interference of the multiple paths, and their delays relative to the LOS

*The line-of-sight path is the straight linepath between the transmitterand receiver. This path may also
be blocked or attenuated.



path, are fixed. However, if the source orreceiver are moving, then the characteristics of the

multiple paths vary with time. These time variations are deterministic when the number,

location, and characteristics of the reflectors are known, otherwise, statistical models must
be used.

In §2.2.1, we describe propagation models which assume a finite number of reflec

tors withknown location and dielectric properties. The details of the multipath propagation

in this case can be solved using Maxwell's equations with appropriate boundary conditions.

However, the computational complexity of this solution makes it impractical as a general

modeling tool [2]. Ray-tracing techniques approximate the propagation of electromagnetic

waves by representing the wavefronts as simple particles: the model determines the re

flection and refraction effects on the wavefront but ignores the more complex scattering

phenomenon predicted by Maxwell's coupled differential equations. The error of the ray

tracing approximation is smallest when the receiver is many wavelengths from the nearest

scatterer, and all the scatterers are large relative to a wavelength and fairly smooth, as with

window reflections. Comparison of the ray tracing method with empirical data shows it to

be a good model for signal propagation in rural areas, or along city streets where both the

transmitter and receiver are close to the ground [3].

We conclude §2.2.1 with a general ray tracing model that has attenuated, diffracted,

and scattered multipath components. This model uses all of the geometrical and dielec

tric properties of the buildings surrounding the transmitter and receiver, and therefore the

model almost always requires on-site empirical measurements. Computer programs based

on this model, which use a local building database for calculations, are currently available

[4]; these programs are now widely used for system planning in both indoor and outdoor

environments.

If the number of reflectors is large, or the reflector surfaces are not smooth, then

we can use statistical approximations based on the law of large numbers. The fading model

described in §2.2.2 yields the propagation statistics in this case, which vary depending on

the signal bandwidth. Much work has been done on statistical modeling of radio propa

gation over a large urban area [1, 5, 6, 7]; we will derive and summarize the commonly

used statistical models for both wideband and narrowband signals. Hybrid models, which

combine ray tracing and statistical fading, can also be found in the literature [8, 9], however

we will not describe them here.
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2.2.1 Ray Tracing Models

This section describes several ray tracing models of increasing complexity. We

start with a simple two-path model,which predicts signalvariation resulting from a ground

reflection interfering with the LOS path. This model characterizes signal propagation in

isolated areas with few reflectors, such as rural roads or highways. We then present a ten-

ray reflection model, which predicts the variation of a signal propagating along a straight,

building-lined street with the transmit and receive antennas placed below the skyline. Fi

nally, we describe a general model which predicts signal propagation for any building and

transceiver configuration. The two-ray model only requires information about the antenna

heights, while the ten-ray model requires antenna height and street width information,

and the general model requires these parameters as well as detailed information about the

geometry and dielectric properties of the surrounding buildings.

We assume that the transmitted signal is given by

s(t) = u(t)e?l2*tt+*>\ (2.1)

where u{t) is a complex baseband signal with bandwidth Bu and power Pu, / is the carrier

frequency, and <fo is an arbitrary initial phase. Throughout this section, we will suppress

the additive receiver noise as defined in §2.1, since it is added to the sum of multipath

components. Similarly, we suppress the phase term e^2lt^^°\ since it is a constant multi

plier of all the multipath components. In addition to the random phase, there is a doppler

frequency shift of each multipath component equal to v cos ip/X,where tp is the arrival angle

of the multipath ray, v is the receiver velocity, and A= c/f is the signal wavelength. Thus,

vm = v cos V> is the relative velocity between the transmitter and receiver. We will ignore

this doppler term in the ray tracing models of this section, since for typical urban vehicle

speeds (60mph) and frequencies (900 MHz), it is less 70Hz [1, 5]. However, we will include

doppler effects in the statistical models of §2.2.2.

Two-Path Model

The two-path model is used when a single ground reflection dominates the mul

tipath effect, as illustrated in Figure 2.2. The received signal consists of two components:

the direct or LOS component, which is just the transmitted signal propagating through free

space, and a reflected component, which is the transmitted signal reflected off the ground.
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Figure 2.2: Two-Path Model.

The received LOS component is determined from the free-space propagation loss

formula:

ru)s(t) = u{t)
AG/eJ'(27r'/A)

4wi
(2.2)

where / is the length of the LOS path and Gi is the product of the transmit and receive

antenna field radiation patterns in the LOS direction. The reflected ray is shown in Fig

ure 2.2 by the segments r and r'. If we ignore the effect of surface wave attenuation2, then

by superposition, the received signal for the two-path model is

T2path{t) = ^ Gtu(t)e>lMM RGru(t + T)ei2*(r+r')/x
I r + r'

(2.3)

where r = (r-|-r'-/)/Acis the time delay of the ground reflection, R is the ground reflection

coefficient, and Gr is the product of the transmit and receive antenna field radiation patterns

corresponding to rays r and r', respectively. If the transmitted signal is narrowband relative

to the time delay (r << B~1), then u(t) » u(t + r). Thus, the received power of the two-

path model for narrowband transmission is

Pr = Pu
.47T I + r-f-r' (2.4)

where A<f> is the phase difference between the two received signal components. If d denotes

the horizontal separation of the antennas, ht denotes the transmitter height, and hr denotes

the receiver height, then this phase difference is given by

i/2-

A0 =
27r(r; + r -/) 2tt

A m*-] -(vh (2.5)

'This is a valid approximation for antennas located more than a few wavelengths from the ground.
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Equation (2.4) has been shown to agree very closely with empirical data [10]. The delay

spread of the two-path model is just the excess delay of the ground reflection: (r+ r' - /)/c.

When d > bhthr, r + r' - I « 2hthr/d, and thus A<j> « 4whthr/Xd.

The ground reflection coefficient is given by [1, 11]

n sm6-Z , x
& = -r—7i—7;, (2.6)sin0 + £' v ;

where

_ I y/iT - cos2 0Ur for vertical polarization
Z= \ , (2.7)

( V-€r - cos2 6 for horizontal polarization

and €r is the dielectric constant of the ground, which for earth or road surfaces is approxi
mately that of a pure dielectric (cr = 15).

From (2.5), if d > bhthr, then r + r' - I « 2hthr/d, and thus

A<p %Anhthrl\d. (2.8)

For asymptotically large d, r+ r' %/ « d, 0« 0, (?/ « Gr, and R« -1. Substituting these
approximations into (2.4), we see that in this asymptotic limit, the received signal power is
approximately

'A'Khthr
P ~
±r ~

XGi

4ird \d
(2.9)

Thus, in the asymptotic limit of large d, the received power falls off inversely with the
fourth power of d. In [10], plots of (2.4) as a function ofdistance illustrate this asymptotic
limit; up to a certain critical distance dc, the wave experiences constructive and destructive

interference of the two rays, resulting in a wave pattern with a sequence of maxima and

minima. At distance dc, the final maximum is reached, after which the signal power falls
off proportionally to d~4. An approximation for dc can be obtained by setting A<t> to win
(2.8), obtaining dc = 4hthr/\. The critical distance is used in the design ofcellular systems
to determine optimal cell size, as we will discuss in §2.3.

Ifwe average out the local maxima and minima in (2.4), theresulting average power
loss can be approximated by dividing the power loss curve into two regions. For d < dc,
the average power falloff with distance corresponds to free space loss. For d > dc, the falloff
with distance is approximated by the fourth-power law in (2.9). These approximations are
captured with the following simplified model for average received power [12, 13], which
assumes that G/ « GT\
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where

Ud)t (2.11)

is a hnear approximation for the power falloff. For this approximation, m = 4 is the

exponent of the power falloff in the asymptotic hmit of large rf, do is an empirical constant

that reflects the constructive addition of the two paths before the transition region, and q is

a parameter that determines the smoothness of the path loss at the transition region close

to dc.

Dielectric Canyon (Ten-Ray Model)

We now examine a model for urban area transmissions developed by Amitay [3].

This model assumes rectilinear streets3 with buildings along both sides of the street and

transmitter and receiver antenna heights that are well below the tops of the buildings. The

building-lined streets act as a dielectric canyon to the propagating signal. Theoretically, an

infinite number of rays can be reflected off the building fronts to arrive at the receiver; in

addition, rays may also be back-reflected from buildings behind the transmitter or receiver.

However, since some of the signal energy is dissipated with each reflection, signal paths

corresponding to more than three reflections can generally be ignored. When the street

layout is relatively straight, back reflections are usually negligible also. Experimental data

shows that a model of ten reflection rays closely approximates signal propagation through

the dielectric canyon [3]. The ten rays incorporate all paths with one, two, or three re

flections: specifically, there is the LOS, the ground-reflected (GR), the single-wall reflected

(SW), the double-wall reflected (DW), the triple-wall (TW) reflected, the wall-ground

{WG) reflected and the ground-wall (GW) reflected paths. There are two of each type of

wall-reflected path, one for each side of the street. An overhead view of the LOS, ground,

single-wall, double-wall, and triple-wall reflected rays is shown in Figure 2.3. Rays reflected

off vehicles are not included in this model.

For the ten-ray model, the received signal is given by

riOray(t) =^
Giu{i)e*2*l)lx JU RjGrMt+ rt)e'(2*r')/A

»=i

(2.12)

3A rectilinear city is flat, with linear streets that intersect at 90° angles, as in midtown Manhattan.
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Transmitter

Receiver

Figure 2.3: Eight Rays of the Ten-Ray Model.

where r, denotes the path length of the ith. reflected ray, r,- = (r,- —/)/Ac, and Gri is the

product of the transmit and receive antenna gains corresponding to the ith ray. For each

reflection path, the coefficient R{ is either a single reflection coefficient given by (2.6) or,

if the path corresponds to multiple reflections, the product of the reflection coefficients

corresponding to each reflection. The dielectric constants used in (2.6) are approximately

the same as the ground dielectric, so ir = 15 is used for all the calculations of R{. If we

again assume that u(t) « u(t + r,) for all ?', then the received power corresponding to (2.12)

is

A"'2
Pr = Pu

47T r n
(2.13)

where A<j>, = 27r(rt- - /)/A. The delay spread for this model is max,-[(rt- - l)/c].

Power falloff with distance in both the ten-ray model (2.13) and urban empirical

data [10, 14, 15] is proportional to rf~2, even at relatively large distances. Moreover, this

falloffexponent is relatively insensitive to the transmitter height, as long as the transmitter

is significantly below the building skyline. This falloff with distance squared is due to

the dominance of the wall-reflected rays, which decay as d~2, over the combination of

the LOS and ground-reflected rays (the two-path model), which decays as d~4. Other

empirical studies [12,16,17] have obtained power falloff with distance proportional to d-7,

where 7 lies anywhere between twoand four. The difference in falloff exponents among the

various empirical studies indicates the difficulty in obtaining a single model to encompass

all the vagaries of urban signal propagation. However, we can generalize (2.10) by using

an expression for L(d) with a more general falloff exponent than (2.11). Two different

expressions for L(d) have been used in the literature:

^4+r (2.14)
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is used in [12], where the falloff parameter m, the critical distance dCy and the smoothing
parameter q are derived empirically for different streets. In [18], the expression

m=A +B* +Cd* ' <'2'15>
is used, where the (4, B, C) coefficients are derived from empirical data. The two modelsare

quite similar: (2.14) is more general since it can encorporate more values for the distance

falloff, however (2.15) can be used over a variety of street layouts with different falloff

characteristics [18]. For this reason we use (2.15) as our falloff model in later sections.

General Ray Tracing

General RayTracing (GRT) can be used to predict field strength and delay spread

for any building configuration and antenna placement [4,19, 20]. For this model, the build

ing database (height, location, and dielectric properties) and the transmitter and receiver

locations relative to the buildings must be specified exactly. Since this information is site-

specific, the GRT model is not used to obtain general theories about system performance

and layout; rather, it explains the basic mechanism of urban propagation, and can be used

to obtain delay and signal strength information for a particular transmitter and receiver

configuration.

The GRT method uses geometrical optics to trace the propagation of the LOS

and reflected signal components, as well as signal components from building diffraction

and diffuse scattering. There is no hmit to the number of multipath components at a given

receiver location: the strength of each component is derivedexplicitly based on the building

locations and dielectric properties. In general, the LOS and reflected paths provide the

dominant components of the received signal, since diffraction and scattering losses are high.

However, in regions close to scattering or diffracting surfaces, which are typically blocked

from the LOS and reflecting rays, these other multipath components may dominate.

The propagation model for direct and reflected paths was outlined in the previous

section. Wedge diffraction provides an accurate model for the mechanism by which signals

are diffracted around street corners [20, 21, 22], although the knife-edge diffraction model

is sometimes preferred for its simplicity [1,11]. The geometry of wedge diffraction is shown

in Figure 2.4. The geometrical theory of diffraction (GTD) yields the following formula for
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the received diffracted signal:

where Gd is the antenna gain, and D represents the diffraction coefficient, which depends

on the signal polarization, the wedge angle, and the angles of incidence and diffraction

(<•> and <f>'). Theoretical and heuristic expressions for D can be found in [22] and [21],

respectively. The latter reference obtains numerical results for the' diffraction coefficient,

yielding losses that exceed lOOdB for some incident angles. Calculation of the diffraction

coefficient generally requires a computer, although simple approximations have also been

derived [23].

Transmitter • 1___j\±^-—' j'
d

Figure 2.4: Wedge Diffraction.

In addition to the wedge-diffracted ray, there may also be multiply diffracted rays,

or rays that are both reflected and diffracted. Models exist for including all possible permu

tations of reflection and diffraction [23, 24]; however, the attenuation of the corresponding

signal components is generally so large that these components are negligible relative to the

noise.

A scattered ray, shown in Figure 2.5 by the segments s' and $, has a path loss

proportional to the product of s and 5'. This multiphcative dependence is due to the

additional spreading loss the ray experiences after scattering. The received signal due to a

scattered ray is given by the bistatic radar equation [25]:

^-^-hs?—• (2-17)
where a is the radar cross section of the scattering object, and G8 is the antenna gain. The

value of a depends on the roughness, size, and shape of the scattering object. Empirical

values of a were determined in [26] for different buildings in several cities.

The total received electric field is determined from the superposition of all the

components due to the multiple paths. Thus, if we have a LOS ray, JVr reflected waves, JVj

Receiver
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Figure 2.5: Scattering.

diffracted rays, and Ars diffusely scattered rays, the total received signal is

A

- ^i— + .
1=1

rtotal(t) =
47T

GMQe*2*')/* ^RiGriu(t-n)eX2irr>tx)
I + 2^

y* DiGdlu(i!- r,)e->(2^+<))/*

«'=i
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(2.18)

where r, is the time delay of the given multipath component. The corresponding received
power is Ptotal = £|r,ola/(/.)|2.

Any of these multipath components may have an additional attenuation factor if

its propagation path is blocked by buildings or other objects. In this case, the attenuation

factor of the obstructing object multiplies the component's path loss term in (2.18). This

attenuation loss will vary widely, depending on the material and depth of the object. An

attenuation loss of 12dB is commonly used as an average of empirical measurements [27].

2.2.2 Statistical Fading Models

The models of the previous sections all require detailed information about the

number and nature of the multipath components. In this section, we describe a statistical

model for the received signal. There are generally two phenomena that cause fluctuations in

the received signal as the receiver or transmitter moves. First, as discussed in the previous

section, multiple signal reflections arrive at the receiver shifted in phase, which causes

constructive and destructive interference. The resulting variations in the signal amplitude,

called signalfading, vary over distances proportional to a signal wavelength; thus, this type
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of fading is referred to as fast fading. When the number of multipath components is large,

the law of large numbers can be used to approximate the fast fading effects with Gaussian

statistics. We first describe this approximation, which results in Rayleigh statistics of the

short-term signal envelope variation. As in the previous section, we exclude the noise term

introduced at the receiver front end in the equations below.

In addition to interference effects, the LOS and reflected paths may also be at

tenuated by buildings or other objects. This type of fading, or shadowing, varies over

distances that are proportional to the size of the buildings, and is thus referred to as slow

fading. When the number of signal attenuators is large, a Gaussian approximation for the

attenuation distance can be used for the slow fading statistics; this results in a log-normal

distribution for the signal variation over large distances.

The fast and slow fading phenomena give rise to a multiphcative model for the

received power:

p(t) = r(t)s(t)y (2.19)

where r(t) is the value of the Rayleigh fading, s(t) isthe value of the'log-normal shadowing,

and the two processes are statistically independent. From this independence, p = rs. If P,

R, and 5 denote the dB values of p, r, and s, respectively, then the received power has the

additive form P(t) = R(t) + S(t).

The Rayleigh fading model applies to both satellite and terrestrial communication

systems: multipath is generated in satellite systems from tropospheric scatter [28], and

in terrestrial systems from building reflections. Slow log-normal shadowing is unique to

terrestrial urban communication systems when the transmitter or receiver is placed above

the building skyline [1, 11, 29]. For rural, semiurban, and urban propagation with both

the transmitter and receiver below the skyline, the ray tracing techniques of the previous

section better characterize both fast and slow fading of the received signal.

Short-Term Fluctuations

The statistical model for short-term multipath fluctuation of the received signal

amplitude is based on a physical propagation environment consisting of a large number of

isolated reflectors with unknown locations and reflection properties. Let the transmitted

signal be given by (2.1). If we initially assume that the LOS component is obstructed, the
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corresponding received signal is the sum of all multipath components:

rW =£ ^TRiGrMt +r,y2*C-W('+*'). (2.20)

The unknowns in this expression are the multipath component delays (r; = r{/c), doppler
shifts (<5/i), reflection coefficients (#,), and antenna gains (<£„•). These parameters change

with time, and we assume that their variation is stationary. In general, omnidirectional

antennas are used, so the antenna gains are approximately equal. We also assume that the

path length spread, defined by

S = maxr, - min r,-, (2.21)
t «'

is small relative to the carrier wavelength: thus, the attenuation with distance, ^-, will be
approximately the same for each reflected path. However, since r, >> A, small differences

in r, can lead to extreme phase differences in the received components. This suggests that

6{ = 27r/r, should be modeled as an i.i.d. random variable uniformly distributed on [-7r,7r]:

this phase model has been confirmed by empirical measurements [7].

Under these assumptions, the received signal is approximated by

r(t) ^A^2RMt - Ti)ej2^-6^t+6'-6^\ (2.22)
t

where A equals the product of the distance loss and antenna gain, which is the same for all

i. If we assume that the R{S are also i.i.d. and independent of the 0,s, then the first and

second moments of the received process are

E[r(*)] = 0, (2.23)

E[r(t)r(s)] = J2 ^~R2u(t - Ti)u'(S - Ti)*2*"-"**1-) (2.24)

where x denotes the expectation of a, and x* denotes its complex conjugate.

If the received process is Gaussian, then the first and second order statistics specify

it completely. The process will be Gaussian if the J2,s are Rayleigh distributed, or will

approach the Gaussian distribution for any R{ distribution as the number of scatterers

becomes large [7].

When the doppler spread is zero (i.e., the channel is static), we say that the channel

is time dispersive. There are three types of signal distortion caused by the time dispersive

channel: incoherent combining (fading), distortion, and time spreading.
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If the multipath delay spread, defined by L = S/c, is small relative to the inverse

signal bandwidth (L << B'1), then u(t -f 77) « u(t), and we can rewrite (2.22) as

r(t) «u(t) fa ARie*2*rMx J. (2.25)
Equation (2.25) differs from the original transmitted signal by the complex scale factor in

parentheses. It can be shown that, under the assumptions stated above, this scale factor is

Rayleigh distributed [7], so the variation of the received signal envelope is Rayleigh. This

has also been confirmed experimentally [5, 6]. An approximation for the autocorrelation of

r(1) for narrowband transmission is [1]

At(t) £ E[(r(t) - r)(r(t +r) - r)] = a2J2(27r/mr), (2.26)

where a2 is the variance of r(r), Jo denotes a 0th order Bessel function, and fm = vm/X.

When the LOS component is not blocked, the envelope variation follows a Rician distri

bution [30]. Either Rayleigh or Rician amplitude variations can cause severe performance

degradation of narrowband modulation techniques [31].

Another form of distortion occurs due to the multipath delay spread L. A short

transmitted pulse will result in a received signal that is at least as long as the multipath

delay spread. Thus, the duration of the received signal may be significantly increased. If

we transmit short data pulses sequentially, this time spreading will result in intersymbol

interference. Equalization techniques, which basically invert the channel impulse response,

may be used to counter this effect [31].

As Bu increases so that L as B"1, the approximation ti(/ —r,) w u(t) is no longer

valid. Thus, the received signal is a sum of copies of the original signal, where each copy is

delayed in time by rt- and shifted in phase by 0,. The signal copies will combine destructively

when their phase terms differ significantly, and will distort the direct path signal when

u(t - T{) differs from u(t). However, wideband signal modulation techniques can be used to

counter the distortion and fading effects of the time dispersive channel. Spread spectrum

[32] is one such method. The basic idea is to multiply the narrowband information signal
with a wideband modulating sequence such that the approximation u(t - r,-) « u(t) is no

longer valid. This modulation technique allows the receiver to separate out the delayed

multipath components [6]. All but one path is eliminated by a matched filter, hence there is

no multipath interference. The receiver may also use a bank offilters matched to u(t - rt)
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for all i. The matched filter outputs are coherently combined, resulting in a higher effective

SNR than would be obtained with just one of the multiple paths.

Wideband signals can be approximated using Turin's model [6] if the incoming

paths form subpath clusters. In this model, paths that are approximately the same length

(\r{-rj\ « B'1) are not resolvable at the receiver. Thus, they are combined intoa single

subpath. A finite number of resolvable subpaths is assumed. The received signal is then

r(t) = Y,Aiu(t-Ti)eM, (2.27)
t=i

where I is the number of resolvable subpaths, and A,, r,, and 0, are, respectively, the

subpath amplitude, delay, and phase.

A discrete-time version of this model is obtained by dividing the time axis into

equal intervals from zero to the maximum expected multipath delay spread [6]. The interval

width is less than the receiver resolution, and each subpath is restricted to he in one of these

time interval "bins." We define the random variable ipi to be one if a subpath falls in the

it\\ bin, and zero otherwise. The statistics of A, and 0,, conditioned on ipi = 1, can then be

taken from the narrowband Rayleigh fading model, or derived from empirical measurements.

This completes the discrete-time approximation for a single channel impulse re

sponse. As the channel impulse response changes, a sequence of these models is required.

Thus, the time-varying wideband channel model must include both the first order statistics

of (/, T{,pi, 0,) for each instantaneous channel, as well as the temporal and spatial corre

lations (assumed Markov) between them. More details on the model and the empirically-

derived distributions for (J, rt-,p,,0t) can be found in [33].

Long-Term Fluctuations

The signal fading described in the previous section results from out-of-phase com

bining of the multipath components. Since these phases rotate it degrees every half wave

length, the signal amplitude changes rapidly over short distances (approximately every foot

for a 900 MHz signal). If these local variations are averaged out, the local mean will also

vary with distance due to two effects: the propagation loss with distance described above

for the ray tracing models, and the changing configuration of surrounding buildings and

obstacles which attenuate both the LOS and the multipath components. Based on the

two- and ten-ray models, it is generally assumed that the propagation loss with distance
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is proportional to d~4 in a rural environment, and d~2 in an urban environment. The

more complex models described above (e.g., (2.11), (2.14),and (2.15)) may also be used to

determine propagation loss with distance.

Empirical data is commonlyused to predict the expected powerloss versus distance

from building attenuation [1,19, 34]. Although these loss measurements vary depending on

the test location, the distribution of the mean received signal is approximately log-normal

in most empirical studies. Thus, the dB value of the mean received signal is Gaussian. This

statistical model can be justified by the following attenuation model [35].

The attenuation of a signal as it travels through a building of depth d is approxi

mately equal to

s(d) = ce-°d, (2.28)

where c is an adjustment constant and a is an attenuation constant that depends on the

building materials and interior. If we assume that a is approximately equal for all buildings

in a given region, then the attenuation of a signal as it propagates through this region is

s(dt) = ce-Qdt, (2.29)

where dt is the sum of the building widths through which the signal travels. If there are

many buildings between the transmitter and receiver, then we can approximate dt by a

Gaussian random variable. Thus, logs(d) = logc - adt will have a Gaussian distribution

with mean \i and standard deviation a. The value of a will depend on the environment,

and usually ranges between four and twelve dB [1, 18, 36].

The autocorrelation function for the fluctuation of the signal attenuation about

this mean is not welldocumented in the literature. However, measurements in [36] support

an autoregressive autocorrelation model of the form

As(r) = o2e-VTlx% (2.30)

where S = log 5 is wide-sense stationary, a is the standard deviation of the mean value,

v is the vehicle velocity, and Xc is the decorrelation distance, which is a function of the

surrounding building sizes and layout. Values of Xc for various measurement conditions are

reported in [36].
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2.3 Cellular Channels

In order to accommodate the demand for wireless communication, efficient use of

the limited available frequency spectrum is essential. Cellular systems exploit the power
falloff with distance of a transmitted signal to reuse the same frequency channel or time

slot at another spatially separated location [37]. The coverage area is divided into cells

where, in each cell, only one user is assigned to a particular channel or time slot. With

frequency division, the total system bandwidth is divided into orthogonal channels centered

around a frequency /,, and each frequency channel is reused at a spatiallyseparated cell, as

illustrated in Figure 2.6. With time division, the signal occupies the entire frequency band,

and is divided into time slots /, which are reused in distant cells. Time division is depicted

by Figure 2.6 if the /,-s are replaced by /,s.

Figure 2.6: Cellular Systems.

Operation within a cell is controlled by a central base station, and the base stations

connect to a high-bandwidth wide-area network such as the pubhc telephone system. When

a mobile user crosses the boundary between two cells, its communication channel is switched,
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or handed off, to the base station in the new cell. The shape of the cell is determined by
the power footprint of the transmitting base station, which is circular if the transmit and

receive antennas are isotropic and propagation follows a free-space loss model. However,
urban propagation does not follow the free-space model, so blockage and multipath fading
cause significant distortion of this circular shape.

The spatial separation of cells that share the same frequency band or time slot
should be as small as possible to cover the largest possible area'with a single channel.
However, as the spatial reuse distance shrinks, the interference from cells operating in the
same frequency or time slot grows. To complicate matters further, both the transmitted

and interfering signals experience thelong- and short-term multipath fluctuations described
in the previous section. To help determine the spatial reuse, data rates, and system layout,
accurate models for cellular transmission are required.

Coverage areas can also be divided using spread spectrum code division techniques
[38]. For this method, each user within a cell modulates the information signal with a
wideband semi-orthogonal coding sequence. The base station can separate each of the
received signals by separately decoding each spreading sequence. However, since the codes
are semi-orthogonal, the users within acell interfere with each other (intracell interference),
and codes that are reused in other cells also cause interference (intercell interference). Both
the intracell and intercell interference power is reduced by the spreading gain of the code.
Moreover, interference in spread spectrum systems can be further reduced through multiuser
detection and interference cancellation. We will compare code division with the other
spectrum-sharing techniques in Chapter 5.

In this section, we consider models for two types of urban cellular systems, based
on the size of the cell. Since propagation conditions in suburban and rural areas are more
favorable than in cities, these urban models generally reflect worst-case propagation con
ditions. The first model is for urban macrocells. Macrocells correspond to cells where the
base stations are placed on the tops of tall buildings, and transmit enough power to cover
one to five miles. These cells are used in the current analog cellular telephone systems of
the United States, Europe, and Japan.

If all parameters scale with distance then by shrinking the size of a cell by afactor
of N we can accommodate N times more users in agiven area, since each cell accommodates
the same number of users in asmaller area. However, in order to shrink the size of the cells,
the base stations transmit at a much lower power than in macrocells, and therefore must
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be placed closer to the ground. From the previous section, we know that lower antenna

placement fundamentally changes the mechanism of signal propagation. We therefore use

a microcell model for the case when the transmitters are less than fifty feet high. Transmit

power in microcells is generally sufficient to cover about a thousand feet; this cell diameter

is chosen since it corresponds to the point at which the power falloff of a transmitted signal

versus distance increases from d"2 to d"4, thereby significantly reducing the power from

distant interferers.

We will refer to the transmission link from the mobile to the base station as

the forward link, and the link from the base station to the mobile as the reverse link. The

forward links are separated in frequency from the reverse links, so the base stations interfere

with each other, but not with the mobiles, and vice versa. Based on both empirical and

analytical models, the interference is generally much greater than the receiver noise, so

receiver noise will be neglected in our cellular models and analysis.

2.3.1 Macrocells

Macrocell models have been well documented in [1,11], and the references therein;

in this section we summarize these results. The macrocell model requires propagation

characteristics of both the transmitted signal within the cell, and the interference from

other cells. Since the building concentration in an urban environment is quite dense, both

the transmitted signal and the interferers are blocked or reflected from numerous objects.

Thus, the statistical propagation model of §2.2.2 applies. When isotropic antennas are used,

the long-term received signal variation in both the forward and reverse hnks are closely

approximated by a free-space propagation model with additional log-normal shadowing.

Based on empirical measurements, the variance of the log-normal shadowing for typical

urban environments ranges from three to eight dB. With this model, energy radiates out

from each antenna in a uniform circular pattern. In order to cover a given area with

nonoverlapping (tesseUating) cells, a hexagonal cell shape is used as the closest tessalating

shape to a circle, as shown in Figure 2.7.

For narrowband transmissions, the short-term fluctuation of the desired and inter

fering signal envelopes generally follows a Rayleigh distribution. If the transmitted signal

has a LOS path to the receiver then the fluctuation of the desired signal is Rician4. The

*The macrocell model generally uses Rayleigh fading as a worst-case assumption.
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Figure 2.7: Hexagonal CeU Geometry.



27

number of interfering signals is random, but usually only the interferers in the closest ring

of cells are taken into account; these interferers are shown in Figure 2.7 for a cluster size

of seven, where the cluster size refers to the number of available reuse frequencies or time

slots. Since code division has better intercell interference rejection than time or frequency

division [37], a cluster size of one is generally used with this technique. For the reverse

link, the distance between an interfering and the transmitting base station (and therefore

the maximum interference power) is known. However, since the mobiles may be anywhere

within a cell, the average interference power on the forward hnk is a random variable, with

its maximum value determined by placing all of the interfering mobiles on the closest cell

boundary, as in Figure 2.7. This figure depicts the interference for time or frequency divi

sion. With code division, there are many more interferers both within the same cell, and

in adjacent cells, however their interference power is reduced by the spreading gain of the

code.

The long-term variation of a wideband signal is characterized by the same log-

normal shadowing as in the narrowband case. The short-term fluctuation of both transmit

ted and interfering wideband signals are characterized by Turin's subpath model (§2.2.2).

However, if spread spectrum techniques are used, the number of intracell and intercell in

terferers is quite large, so we can apply a Central Limit Theorem approximation to the

interference and model it as Gaussian noise.

2.3.2 Microcells

In microcells, there are two types of signal propagation: LOS propagation, which

refers to propagation between base stations and mobiles with a direct path between them,

and non-LOS propagation, which refers to the case where there is no LOS path. In the

latter case, the signal must "bend" around one or more corners via diffraction, scattering,

or reflection to reach the intended receiver, as shown in Figure 2.8.

The LOS propagation in microcells is accurately modeled with the ten-ray model

described in §2.2.1 [3]. However, using ray tracing to model non-LOS propagation requires

detailed information about the building and street layout, geometry, and dielectric proper

ties. This information requires field measurements for the particular cell of interest, and

the resulting model only applies for that particular site. A more general non-LOS model for

cities with rectilinear street layouts is developed in [18]. This measurement-based model is
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Main Street

Figure 2.8: Microcell Propagation.

obtained from data collected in Manhattan at 900.MHz [10]. The model includes a predic
tion method for the mean average power, and a statistical model for both short-term and

long-term variations about this mean.

For the microcell geometry of Figure 2.8, within a particular cell the street con

tainingthe cell transmitter is called the main street, streetsperpendicular to the mainstreet

are called cross streets, and streets parallel to themain street are called parallelstreets. We

will use x to denote the distance variable along a main street, and y to denote the distance

variable along a cross street. The model doesn't explicitly determine the power loss on
parallel streets, since cross street data can be interpolated to obtain these values.

Constant Average Power

In [18], empirical contours ofconstant average power with both the long- and short-
term fluctuations averaged out have the shape ofconcave diamonds which are elongated
along the main street inboth directions. The concave nature ofthese diamonds suggests that
the mechanism by which the signal energy couples into cross streets is via scattering since,
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if reflections were the dominant mechanism, the attenuation along any cross street point

(x, y) would be a function of x + y, where x is the distance traveled along the main street

before turning the corner, and y is the subsequent distance traveled along the cross street.

This would result in constant power contours with straight sides. However, if the signal

couples into the cross street via scattering, the attenuation at (x, y) would be proportional

to the product of f(x) and g(y), where / and g are functions that characterize the power

loss versus distance along the main and cross streets, respectively. This product form for

the power at (x,y) leads to a concave shape for the constant power contours.

If the signal propagates along the main and cross streets according to the free-space

loss formula, then the functions / and g would just be hnear equations of x~2 and y~2,

respectively. The path loss model can be generalized to urban propagation using the fitting

function of (2.15): for the main street, the path loss at a distance x from the transmitter is

approximated by

M=Am +Bml> +CmX<- <2-31>
Similarly, for the cross street, the path loss at distance y from the intersection with the

main street is approximated by

M-At +Bc* +W (2-32)
The set of coefficients (Am,Bm,Cm) are chosen to minimize the mean-squared

error (MSE) between (2.31) and the empirical path loss data on the main street, and the

set (Ac, BC,CC) minimizes the MSE between (2.32) and the path loss data for a given cross

street [18]. These forms for / and g include power falloff with distance of both d~2 and

d~4, since both have been observed in urban empirical measurements.

Let L(x,y) denote the path loss at a particular point within a cell, where (0,0)

denotes the coordinates of the transmitter. Consider a particular cross street located x o

feet from the transmitter. Assuming that / and g predict the path loss perfectly, then the

dB path loss at the intersection of the main street and this cross street is given by

£(0,*o) = -101og(4m + Bmxl + Cmxt). (2.33)

Similarly, from (2.32), the dB path loss at any point y along the cross street is given by

L(y,x0) = -10\og(Ac -r Bcy2 + Ccy4). (2.34)
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Setting y = 0 in (2.34) and equating it to (2.33) yields

- 10log Ac = -10\og(Am -r Bmx2Q + Cmxl). (2.35)

If we now factor out Ac in (2.34) and substitute the right side of (2.35), we get that the

attenuation at the point (y,xo) is

L(y,x0) =-10log [[^m +Bmx2 +Cmxt] [l +|V+̂y4]] . (2.36)
The attenuation equation (2.36) uses the coefficients (AC,BC',CC) derived for a

particular cross street. However, in [18] it was found that for every cross street in the data

set, the fourth power falloff with distance dominated the other terms, so

^V»1 +|V. (2.37)
Moreover, the ratio Cc/Ac was approximately constant over all cross street measurements.

If we denote the mean of this ratio by Ca<> then substituting this approximation and (2.37)

into (2.36) yields an attenuation model for all cross streets in the cell:

L(y,x0) =-101ogC4y4 [Am +Bmx20 +Cmrrj] . (2.38)

Assume now that Cc/Ac ss Ca for cross streets in any rectilinear city, where Ca is

derived from the Manhattan data. Then the model (2.38) can be applied to any rectilinear

city to predict the path loss on cross streets. However, the model still requires a method

to obtain the main street propagation coefficients (Am, Bm,Cm) for the cell site of interest.

But from [3], the ten-ray model predicts path loss as a function of distance within a 2dB

margin of error along the main street. If we use this model instead of empirical data to

obtain the (Am,Bm,Cm) coefficients, then we only requireknowledge of the base and mobile

antenna locations and the width of the main street to predict signal attenuation throughout

the cell.

We saw that for macrocells, the tessalating shape which approximated the circular

constant power contours was a hexagon. Since constant power contours for microcells form

concave diamonds, it is possible to inscribe a square inside each of the diamonds to form

tessalating cells covering the area of interest. Thus, square cells form the building blocks

for microcellular geometries.
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Short-Term Fluctuations

The short term fluctuations in microcells are caused by the same phenomenon as

in macrocells: the constructive and destructive interference ofthe multiple paths. The main

street usually has an unblocked LOS path, so its short-term fluctuation follows a Rician

distribution. The cross streets have no LOS path, and the statistics of the short-term

fluctuation on these streets was found in [18] to be approximately Rayleigh.

Long-Term Fluctuations

The long-term signal fluctuation in the microcell model reflects variations in the

average path loss formulas of (2.31) and (2.32). For the Manhattan measurements of [18],

the statistics of these variations were shown to be log-normal, with an rms value of three

to five dB. Thus, the statistics of the long-term signal strength variation in microcells is

the same as in macrocells (with a lower variance). However, the cause of this variation is

quite different. In macrocells the long-term variation is caused by building blockage. Since

microcell signals propagate around buildings, there is no such phenomenon. The long-term

fluctuation in microcells has been shown, both empirically and using the ten-ray model, to

be caused by multipath [10]. Thus, in microcells multipath gives rise to both the long-term

and the short-term fluctuations.

2.4 State Space Channels

The state space channel model applies to general discrete and continuous time-

varying channels, whose variation is governed by a stochastic process taking values over

a state space of time-invariant channels. We first describe the discrete-time state space

channel model, then extend it to continuous-time.

2.4.1 Discrete-Time Model

The variation of the discrete-time state space channel is determined by a discrete-

time stochastic process {Sn>n > 0} with state space C. The state space is a set of discrete

memoryless channels (DMCs) with common input and output alphabets, denoted by X

and y, respectively. We call 5„ the channel state at time n. The input and output of

the channel at time n are denoted by xn and yn, respectively, and we assume that the
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channel inputs are independent of its states. We will use the notation rn = (ri,..., rn) and

rn+m _ (rm^ _} rn+m) for r = x, y, or S.

The discrete-time channel is defined by its conditional input/output probability

at time n, which is determined by the channel state at time n,

p(yn\xn,Sn) =^2pc(yn\xn)I[Sn = c], (2.39)
c€C

where pc(y\x) = p(y\x,S = c), and I[«] denotes the indicator function. The memory of the

state space channel is due to the correlation structure of the process {5n}. We assume that

the state at any point in time is independent of past input/output pairs, when conditioned

on past states:

p(Sn+1\S\xn,yn) = p(Sn+l\Sn). (2.40)

In addition, since the channels in C are memoryless,

p(yN\xN,SN)=J[p(yn\xmSn). (2.41)
n=l

If the inputs are also independent, then

N

p(yN,xN\SN) = J] P(yn,xn\Sn), (2.42)
n=l

and

p(yN\SN)=T[p(yn\Sn). (2.43)
n=l

The state space model places no restrictions on the stochastic process {5n}. We now define

two classes of discrete state space channels with particular characteristics for {5„}.

Finite-State Markov Channels

If the stochastic process {£„} is Markov with stationary transition probabilities,

and its state space C is finite, then we call the state space model a Finite-State Markov

channel. Let P be the matrix of transition probabihties for S, so

Pkm = p(Sn+i = cm\Sn = c/t), (2.44)

and is independent of n. We also assume that the process {5n} is irreducible and aperiodic.

Since the state space is finite, this implies that {Sn} is also positive recurrent, ergodic, and
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has a unique invariant distribution tt0. If the initial distribution of 50 is tt0, then {£„} is
also a stationary process. The Finite-State Markov Channel is illustrated in Figure 2.9.
Since the state transitions are Markov, (2.40) becomes . •

p(Sn+1\Sn,xn,yn) = p(Sn+1\Sn). (2.45)

P2(ylx) r X22

k) 7kk

Pk(y'x)

K >—S rKK

Figure 2.9: Finite-State Markov Channel.

Arbitrarily Varying Channels

The Arbitrarily Varying Channel is a state space channel where the stochastic

structure p(Sn\Sn~1) of the Sns is unknown for all n. It is also assumed that every state
can reach every other state in one step. The channel output probability is thus given by

P(y"\xN,SN)=]lp(yn\xn,Sn), (2.46)
n=l

where for each n, Sn is chosen at random from the set C.

2.4.2 Continuous-Time Model

Variation ofthe continuous-time state space channel isgoverned by a continuous-
time stochastic process {St,t > 0} with state space C. Each c GCindexes a time-invariant
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continuous-time channel, and St is called the channel state at time t. The channels in C

need not be memoryless; however, even if they are memoryless, the time-varying channel

still has memory due to the correlation of {5J. We now describe two examples of the

continuous state space model which apply to wireless radio channels.

Narrowband Fading Channels

Narrowband fading can be modeled using the continuous-time state space model.

Specifically, for an input x(t), the channel output is given by

y(t) = Stx(t) + n(t), (2.47)

where n(t) is an additive noise term which is independent of St. The channel gain at a

particular time instant is determined by a stochastic process {St} overthe set of all positive

real numbers, and the transition probabilities of St are determined by the autocorrelation

of the fading statistics. This autocorrelation was given by (2.26) and (2.30) for Rayleigh

and log-normal fading, respectively.

Impulse Response Channels

The continuous state space model also applies to channels with a time-varying

impulse response. In this case, c € C indexes a time-invariant impulse response hc(t) with

additive noise. The channel response at time / to an impulse at time r is given by

h(t, r) = £ hc(* ~ r)l[Sr = c]. (2.48)
c€C

Thus, for an input x(t), the channel output at time t is

y(t) = / x(T)h(t-T,ST)dT +n(t), (2.49)
J—CO

where

h(t - r, ST) = J2 hc(t - t)\[St = c]. (2.50)
c€C

The transition probabilities for St may be determined, for example, using a data-

based model such as Turin's discrete-time wideband multipath channel model [6]. The

model for the time-varying impulse response channel is illustrated in Figure 2.10.
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CHANNEL

Figure 2.10: Time-Varying Impulse Response Channel.

2.5 Summary

We have outlined the main properties of several different types of time-varying

channels. The first model, the additive noise channel, has been studied for quite some time;

in the subsequence chapters we will include the effectsof additive noiseonly as an additional

impediment to other time-varying factors. The most significant impediments to reliable

communication over radio channels are multipath, shadowing, and interference. Multipath

has traditionally been characterized statistically with fast Rayleigh fading and slow log-

normal shadowing. However, these statistical models break down in urban areas where the

transmitter is placed below the building skyline. We therefore also described ray tracing

techniques, which specifically calculate the attenuation and phase of each received signal

path based on the geometrical configuration of the transmitter, receiver, and surrounding

buildings.

Interference is introduced when different signals transmit within the same fre

quency band. In general, the spectrum is regulated to avoid this overlap. However, cellular

systems deliberately introduce interference to reuse their available spectrum at spatially

separated points, thereby accommodating more users. We described two types of urban cel

lular systems, macrocell systems and microcell systems, and showed that the propagation

characteristics of both the data signals and the interference are different for each type.

We concluded the chapter with a more abstract model for channel variation: the

state space channel. This model characterizes a channel that varies over a set of time-

invariant channels, where the variation is governed by a stochastic process. The time-

invariant channels, and the governing stochastic process, may be continuous or discrete. We
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will see in the following chapters that for this channel model, knowledge of the stochastic

process governing the channel variation can be used at the transmitter and receiver to

increase the communication rate and reliability.
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Chapter 3

Spectrally-Efficient Techniques for

Time-Varying Feedback Channels

In this chapter we outline methods for communication over point-to-point time-

varying channels, assuming that the channel can be estimated and this information fed

back to the transmitter. Thus, the transmitter can adapt to the channel variation. We first

derive the maximum spectral efficiency of these channels in terms of their Shannon capacity,

and show that this maximum is achieved when three parameters are adapted to the channel

variation: transmit power,data rate, and codingscheme. For time-varying impulse response

channels, this optimal scheme can be interpreted as a "water-filling" in time and frequency.

Variable rate, power, and coding is fairly complex to implement; we therefore compare the

spectral efficiency of this optimal pohcy with that of the constant received power scheme

currently proposed for fading cellular channels [38]. Our numerical results show that the

constant power policy has a significantly lower spectral efficiency than the optimal pohcy.

We also develop an adaptive trelhs-coded modulation scheme for M-QAM, and calculate

the spectral efficiency and maximum possible coding gain of this technique. We conclude

the chapter with some discussion about the effects of estimation time and error.

3.1 Time-Varying Channel Capacity

The capacity of a time-invariant channel was defined by Shannon to be the mu

tual information between the channel input and output maximized over all possibly input
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distributions [41]. The mutual information is defined as

I(X;Y) = EXjylog\p(x,y)/p(x)p(y)], (3.1)

where p(x, y) is the joint distribution of the channel input and output, and p(x) and p(y)

denote the channel input and output distributions, respectively. Shannon also proved that,

for any data rate below capacity, there exists a block code at that rate with an error

probability that goes to zero with block length; however, the block code has no restriction

on its code complexity or delay. In addition, no such coding scheme can achieve data rates

above capacity with an arbitrarily small error probability.

It is somewhat surprising that the purely mathematical definition of channel capac

ity in terms of mutual information yields an upper bound on practical transmission rates for

time-invariant channels. There is, however,no analogous mathematical definition of mutual

information for time-varying channels, since the conditional input/output probabilities of

the channel are time-dependent. Therefore, for time-varying channels we define the channel

capacity to be the maximum achievable data rate with arbitrarily small probability of error

without restriction on the code complexity or delay.

The motivation for determining this capacity in part is to see how close current

modulation and coding techniques come to this maximum rate. To the author's knowledge,

no coding schemes have been proposed specifically for time-varying channelswith estimation

and feedback, and the existence of a large gap between rates that are currently achievable

and theoretically attainable might elicit more development. Moreover, the optimal code

design might suggest effective practical techniques. Indeed, in §3.3 we use the capacity

analysis to determine optimal power control, and in 3.5.2 we propose a coded-modulation

technique based on the optimal code design which achieves rates approaching the capacity

hmit.

We now derive the capacity of the continuous-time state space channel described

in §2.4.2, assuming that the channel variation St is known at time t by both the transmitter

and receiver, and that there is an average power constraint on the input. We also assume

that St is stationary and ergodic, and has a finite number of transitions in any finite time

interval. The capacity analysis with these assumptions also apphes to the discrete-time

model of §2.4.11. Finally, if the channels in C are not memoryless, we assume that if a state

'The discrete-time result without the power constraint is given by Theorem 4.6.1 of [39].
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transition occurs at time t, then the input before / does not effect the channel output after

time t. Equivalently,the channel for the durationof a particular state is a memoryless block.

This assumption is always false if the channels in C are not memoryless. Let pc denote the.

channel memorycorresponding to state c. We can eliminate the effectof channel memory on

subsequent channel states by usinga guard band of duration pc after a transition from state

c, during whichno data is transmitted. Of course, this guard band results in some capacity

loss, since no data is transmitted during this period. We will assess the exact capacity loss

of this guard band in §3.6.3. Based on these results, if pc is small relative to the channel

latency (the average amount of time between state transitions), then the capacity loss due

to the guard band is small. In this sense, our memoryless block assumption is a reasonable

approximation for slowly-varying channels.

With this memoryless block assumption, we can view the channel as a time division

system with multiplexed input and demultiplexed output as in Figure 3.1. There are M =

\C\ pairs of input and output ports, one pair per channel state. When the time-varying

channel is in state c,,i = 1,...,M, the ith pair of ports is connected through the time-

invariant channel ct. We may thus regard the single time-varying channel as M time-

invariant channels in parallel, with the restriction that the ith channel can be operated

only when the channel is in state cf.

x»

x(s)
2

SYSTEM ENCODER

~n

SYSTEM DECODER

Figure 3.1: Time Diversity System.

A (2RT, e, T) codels aset (xi(t),... ,x2^RT\ (t)) ofdistinct input signals (codewords)
over [0, T], and a set (^i,..., y2\xr\) of disjoint sets in the output space such that p(y(t) £
yj\xjW) < €. We will now define a set of codewords for the multiplexed channel, and in

Theorem 3.1 we show that these codes achieve capacity. In Theorem 3.2 we show that no
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channel input can do better than this set of channel codes.

Over a time interval [0,T], let Tt denote the total time that St = c,-. Since St is
stationary and ergodic,

and

=' p[St = Ci] = TT;,

r T«hm — = tt..
T-oo T

(3.2)

(3.3)

Let Ci(P{) denote the Shannon capacity of the time-invariant channel ct- € C with

average power P{. Then from [40], for any R{ < C, there exists a sequence of (2R>T,€T,T)
codes that satisfies the power constraint with €t -*• 0 asT -*• oo. Fix 7\ andfor each c, 6 C,

let ar"(r) denote the code corresponding to the time interval 77. Over the interval [0,T] the
channel is in state c, for duration Tt. We therefore require codewords corresponding to
channel c, oflength T{, not 7^. Since x?(t) is defined on [0,77], we modify these codewords
as follows: if 77 < T{, let

a f xl(t) t <T:
(3.4)

1 0 71, < t < 7;

and if 77 > T,, then a?t-(0 = a*^(i),0 < t < T{.

Suppose now that during [0,T], the channel is in state ct- for sub-intervals of

duration T{j, so T, = Ej^.j. The codeword zt(t),0 < t < T{ can then be broken up into

"fractional" codewords X{j(t) ofduration T,j corresponding to when the channel is in state
C{. as illustrated in Figure 3.2.

12 t

Figure 3.2: Fractional Codewords.

The fractional codewords for all M channels can be time-multiplexed to form a
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single codeword x(t) on [0,T] with power

~£ |x(<)|2d( =I££ \Xi{t)\*dt. (3.5)
The received signal is demultiplexed and the received blocks for each of the i channels

concatenated, which reduces the time-varying channel to M time-invariant channels of

duration Tt, i = 1,..., M.

The decodingdelayof this multiplexed codingscheme wiU generally be much larger

than in the time-invariant case, since to decode the signal corresponding to the tth channel,

the decoder must wait for the total time that the channel spends in state i to equal the

desired block length. The decoding delay corresponding to each of the M channels will

also vary, since the dwell times2 for each state will generally be different. Slowly-varying

channels have long dwell times for each channel state; for these channels, the entire block

code can generally be sent within one dwell time, so the decoding delay is the same as for the

corresponding time-invariant channel. Although our capacity definition places no restriction

on the decoding delay, these delays certainly impact practical code designs, especially for

delay-constrained data.

Suppose codewords for the time-varying channel can have average signal power at

most P. Let

VM = {(Pi,...,PA/): Pi > 0,J2*iPi < P] (3.6)

be the set of power allocation vectors over the M time-invariant channels. The capacity

of a set of independent parallel channels with a mutual power constraint is the sum of the

capacity of each channel maximized over the constraint. For our model, the capacity of

each of the i channels must be weighted by T{jT, which approaches 7rt- as T —• oo. This

motivates the following definition for the capacity of the time-varying channel.

C= max y>,C,(P,), (3.7)

where Ci(Pi) is the capacity of the time-invariant channel c,- with input power P,\ Theorem

3.1 shows that any rate R< C can be achieved with arbitrarily small error probability.

Theorem 3.1 For any R < C there exists a sequence of (2rt,€t,T) codes with proba

bility of error ej —• 0 as T —> oo.

2Average time before transitioning out of a state.
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Proof We first show that we need only consider the case when M is finite. Indeed, since

all the C,s have finite capacity and J2ini = 1, for all € > 0 there exists a finite Nt < M

such that

f; *iG(P)<c. (3.8)
i=N(+l

Let VN< denote the subset of VM with P, = 0 for all i > Nt, and define

CNt= maxM 5>,-C,-(Pi). (3.9)

Combining (3.9) and (3.8), we see that |C-CyvJ < c. Thus, we need only consider the case

when M is finite.

Fix PM = (Pi,. ..,Pa/) € VM. Let the ith channel have impulse response hCi(t).

From the results for time-invariant channels [40, page 430], for R{ < Ci(Pi) there exist

2lfi"J,«J codewords of duration T,- and average power Pt- which can be decoded with error

probability c, -* 0 as T, —• oo. The codewords for each of the M channels can be time-

multiplexed in the manner described above to yield fJ2Lfl,:r,J = 2L,\.R*Ti\ codewords of

duration £ ^» an^ average power

fT,J0' W)i2<ft *tX>1' [xKt)]2dt ~* 2>Pi (3-10)
as T —* oo, since by ergodicity |± —* 1 and & —• tt,. So the new code satisfies the
average power constraint in the hmit as T —• oo. The received signal is demultiplexed and

concatenated for each channel as described above. By the memoryless block assumption,

the concatenated output for the ith channel is the same as the response of the ith channel

to the original codeword x,(i), and the decoding of each of the M channels is decoupled.

The probability of error, er> satisfies

M

*r<5Zc«'"*° as T->oo, (3.11)
t=i

since M is finite and T —* oo implies that T,- —• oo for all i. The rate of the new code is

R=Y£ Rft - H ^ M T- °°. (3-12)

so rates arbitrarily close to £ TtCt(Pt) are achievable. Since this is true for all (Pi,..., Pa/) €

V*1. rates arbitrarily close to the capacity defined in (3.7) are achievable.
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Theorem 3.2 Any sequence of (2RT, eT, T) codes with eT -* 0 must have R<C.

Proof Let W be uniformly distributed on {1,..., I^J}. Consider a sequence of
C2RT,eT,T) codes {xw(t),w =1,..., [2RT\] with eT -• 0 as T -• oo and average power
P. Let 7(A';Yr) denote the mutual information between the input and output of the time-
varying channel on [0,T], and /(*,-;*•) denote the mutual information of the ith time-

invariant channel on [0,Tt]. Define Pf(w) to be the average power'in code xw(t) which is
transmitted while the channel is in state ct:

P?M =¥Jo \xw(t)\2l[St =c{]dt, (3.13)
where 1[«] is the indicator function and w€ (\,...,\2RT\). We then have

RT = H(W)

= H(W\Y) + I(W;Y)

< H(W\Y) + I(X;Y)

< l + eTRT + I(X;Y)

< l + €TRT + J2J(X»Yi)
i

£ l + tTRT +^E^XiMlP^w))

d

< 1+eTRT +£ EwCi(pT(w))Ti
i

< l-r€TRT-rJ2Ci(E^Ph^)])Ti, (3.14)
t

where a follows from Fano's inequality, 6follows from the memoryless property of the TtJ
blocks, cand d follow from the definitions ofmutual information and capacity, respectively,
and e follows from Jensen's inequality.

Define PT =(pf,..., PTM), where pj =Ew[PT(w)]. By construction, Tj satis
fies the average power constraint on [0,T]. Let Tn -> oo be a subsequence such that PTn
converges:

PT" =(F?,...,P%)^ (Jf>,...,Pff). (3.15)
-f;T„

Since P " satisfies the average power constraint, it follows that

jSa,£ y/J" =£ ***r <p, (s.w)
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where the superscript n denotes the dependence of 7} on T„. Dividing (3.14) by T, we get

(3.17)R<^-reTR-r^Ci(pJ).
Taking the hmit of the right-hand side of (3.17) along the subsequence Tn, we have

R^ *™J£'£-Ci(i?") =2><Ci(iT)<c,
i ln i

where the last inequality follows from (3.16) and the definition of C.

(3.18)

3.2 Water-Filling in Time and Frequency

In this section we use the capacity results of §3.1 to determine the optimal input

spectrum for the time-varying impulse response channel of §2.4.2, where the channel varia

tion is stationary and ergodic. The system model, shown in Figure 3.3, operates as follows.

The receiver estimates the channel impulse response (perfectly in zero time) and feeds this

information back to the transmitter. The transmitter then uses the multiplexing coding

technique to adapt its output to the changing channel state.

TRANSMITTER CHANNEL RECEIVER

Figure 3.3: System Model for Impulse Response Channels.

An example of h(t,r), given by (2.48), is plotted in Figure 3.4. The impulse

response is constant for some random time period T\, at which point the channel state

changes. The channel remains in the new state for the random time T2 —T1, then changes

again, and so forth. The statistics of the transition times rf- are determined by the transition

probabilities of 5T. Since we assume that channel has a finite number of transitions in a

finite time interval, r,- - r,_i is strictly positive. In addition, within the dwell time r,- - r,_i

the channel is assumed to be a memoryless block.

Taking the Fourier transform of h(t, r) with respect to t yields

H(f,r)= / J2hc(t-r)l[ST = c]
cec

e-'Wdt =Y, Hc(f)e-j2**Tl[Sr = c], (3.19)
cec



h(t,T)

Figure 3.4: Time-Varying Impulse Response,

where Hc(f) is the Fourier transform ofhc(t). We plot \H(f,r)\ in Figure 3.5.

|H(f,T)

Figure 3.5: Fourier Transform of h(t,r) Relative to t.
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From Gallager [40], the capacity-achieving code ofpower P for a time-invariant ad

ditive Gaussian noise channel with impulse response hc(t) is a zero mean Gaussian stochastic
process with spectrum

Sc(f) = W)
n +

A-
WcU)?.

where Nc(f) is the spectrum of the additive noise and Ais chosen such that Sc(f) does not
exceed the power constraint. Since the noise Nc(f) is usually introduced at the receiver,

we will assume that its spectrum is the same for all c and denote this common spectrum

(3.20)



by N(f). The corresponding channel capacity is given by

Sc(/)|ffc(/)|2
A#> Ilog 1 +

N(f)
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df. (3.21)

The spectrum Sc(f) is generally interpreted geometrically using a water-filling

analogy, as illustrated in Figure 3.6. A fixed amount P of "water" (power) is poured into a

container with the container bottom defined by N(f)/\Hc(f)\2. The water will distribute

itself to maintain a water level of A. Inverting the shaded region of Figure 3.6 then yields

the shape of the optimal input power spectrum.

A r

IHc(f)l2 ^^y^;J/

1 iv

Figure 3.6: Water-Filling for Time-Invariant Channels.

Using the multiplexed coding described in the previous section, we see that the

capacity-achieving code for the time-varying channel has spectrum Sc(f) when the channel

is in state c. Thus, the capacity-achieving code for the time-varying channel, 5(/, r), is the

unique solution to the equation set

S(f,T) = A- W)

T

f) 1+
,^)|21 '

P = lim i / f°° S(f,T)dfdr.
r-»oo 1 Jo J-oo

(3.22)

The spectrum of the capacity-achieving code for the time-varying channel h(t, r) can be

interpreted geometrically as a water-filling in time and frequency. Specifically, the total

input power P over all time and frequency is given by the shaded region under plane A in

Figure 3.7. If we adjust the height of A such that the average power constraint is satisfied,
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then an input power spectrum at time r0 and frequency f0 of A— 5(/0,r0) achieves the

time-varying channel capacity. This can be interpreted as water-filling in two dimensions,

since S(f, r) now defines the container bottom, and wateris poured into the two dimensional

container suchthat the time-average power equals P. Assumingthat the region is connected,

the water will distribute itself in such a way as to achieve capacity.

Figure 3.7: Water-Filling in Time and Frequency.

3.3 Power Control for Narrowband Fading Channels

When the transmitted signal is narrowband, multipath fading introduces a time-

varying power gain G(t), as described in §2.2.2. The system model for this case is shown

in Figure 3.8, where we assume that n(t) is AWGN. In this section we show that based on

the results from §3.1, a policy which adapts the data rate, coding scheme, and power at the

transmitter achieves the maximum zero-error spectral efficiency on a narrowband fading

AWGN channel, where spectral efficiency is defined as the data rate per unit of bandwidth

for a fixed error rate. We also compare the spectral efficiency of this optimal pohcyto that of

two other pohcies which adapt only the transmit power. In order to compare these different

power control schemes, we assume that the encoder output has unity average power, which

is then multiplied by the power control value P(t). The power control is subject to the

average power constraint

&Lfl pW«&<* (3-23)
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We now determine the power control and coding pohcy which maximizes the spectral effi

ciency for this system.

TRANSMITTER CHANNEL RECEIVER

Figure 3.8: System Model for Narrowband Fading Channels.

3.3.1 Maximum Spectral Efficiency

The capacity of a time-invariant, bandlimited, AWGN channel with bandwidth B,

gain G and power P in bits per second is [41, 42]

PG
C = Plog2 1 +

NQB
(3.24)

where 7 = PG/NQB is the signal-to-noise ratio (SNR). If the channel gain G is time-varying,

then the instantaneous SNR for constant transmit power P is *y(t) = PG(t)/N0B. Since we

assume perfect channel estimation in zero time, the transmitter knows 7(i) at time t, and

can adjust its power and code accordingly. Let P(~i) denote the transmit power averaged

over all times t such that i(t) = 7, and let 7r(7) denote the distribution for 7, which is

determined by the fading statistics (e.g. Rayleigh, log-normal, etc.).

Combining (3.7) and (3.24), we see that the maximum zero-error spectral efficiency

for an AWGN channel with time-varying SNR 7(f) and average power P is

/log2 [l
where P(7) is subject to the power constraint

is

C
— — max

B P(7) l+^7 7r(7)d7, (3.25)

/ P(7W7)d7 = P (3.26)

Using Lagrange multipliers, it can be shown that the power control pohcy maximizing (3.25)

J_ _ I 7 > 7o
70 7 ' — /U

0 7 <7o
(3.27)
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for some "cutoff" value 70. If the received signal power is below this level, then no power
is allocated to data transmission, so the outage probability for this pohcy is ^(7 <70). This
power control policy is depicted in Figure 3.9. Since 7 is a function ofG(t), the maximizing
power control policy is a"water-filling" formula in time that depends on the fading statistics
only through the cutoff value 70.

Y=£§ffi
N0B

Figure 3.9: Optimal Power Control Policy.

Substituting (3.27) into (3.26), we can determine 70 by numerically solving

Once 70 is known, we substitute (3.27) into (3.25) to get

Wjog2 (£H7)rfr (3-29)
Equation (3.29) gives the maximum zero-error spectral efficiency of the narrowband fading
channel, with no constraint on the delay or complexity of the coding strategy. Although
the multiplexing code strategy of §3.2 suggests that the decoder delay is a random variable

with distribution determined by the fading statistics, in §3.5 we develop a coding scheme
with rates approaching the capacity hmit where the decoder delay is fixed and independent
of the fading correlation. We now consider constant power control policies, which avoid the
use of variable-rate codes.
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3.3.2 Constant Power Policies

In the previous section we derived a pohcy for maximizing spectral efficiency which
adapts three parameters relative to the channel variations: the transmit power, data rate,
and coding scheme. In this section we consider two pohcies which adapt only the transmit
power to maintain a constant SNR at the receiver. Thus, the transmit power exactly
compensates for the signal fading, as illustrated in Figure 3.10. Specifically, the constant
power control pohcy is

P(7)/P = Pr/i, (3.30)

where PR equals the received signal-to-noise ratio. The channel then appears as a time-
invariant AWGN channel with SNR = PR. The constant PR is determined by the transmit
power constraint (3.26):

1

r(t)

/ Pr t \ 1—tt(7) = 1 Pr =
E[l/7]'

The spectral efficiency with optimal coding for this policy (Ccp) isderived from the capacity
of an AWGN channel with receive power PR:

1^P =log2[l +P*] =log2 1 +
E[l/7]

TRANSMITTER

Encoder —0 x(t)

1/6(0

CHANNEL

Kt)

<±)

Inverter

\ y(t) I

RECEIVER

Decoder

Channel
Estimator

(3.31)

(3.32)

r(t)

fi(0

Figure 3.10: System Model for Constant Power Pohcy.

In severe fading conditions, the constant power policy of (3.30) allocates most of
its power to compensate for deep fades. We therefore modify this pohcy to compensate for
fading above a certain cutofffade depth 70:

^(7) Er
1

7>7o

7<7o
(3.33)
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Since the channel is only used when 7 > 70, the power constraint (3.26) yields Pr =
1/E-u[I/7], where

E^0fl/7]= r^(7)d7. , (.3.34)
Jl0 7

The spectral efficiency with this modified pohcy is then

(-"mop 1

T"= l0& 1+E^lArfJp(7^o)' (3"35)
where ^(7 > 70) = /~ ^(7)^7. To get the maximum efficiency for the modified constant

power policy, we must maximize (3.35) relative to 70. Alternatively, we can specify a

particular outage probability pout, and determine the cutoff 70 which satisfies p(f < 70) =

Pout-

3.3.3 Numerical Results

We now evaluate the spectral efficiency and outage probability of the power con

trol policies in §3.3.1-3.3.2 for both log-normal and Rayleigh narrowband fading channels.

Figure 3.11 shows the spectral efficiencies in log-normal fadingwith a = 8dB for the optimal

(3.29), constant power (3.30), and modified constant power (3.33) control policies, respec

tively. For the modified policy, we calculate the efficiency under two different criterion for

the cutoffvalue 70: the value that maximizes the spectral efficiency for this pohcy, and the

value that achieves the same outage probability as the optimal pohcy.

For Rayleigh fading, E[l/7] is infinite. Thus, the spectral efficiency with the

constant power policy is zero. Figure 3.12 shows the spectral efficiency of the other two

policies in Rayleigh fading. Thereare two observations worth notingin thesefigures. First,

the spectral efficiency of the modified constant power pohcy is close to the optimal policy's

efficiency in both types of fading. Second, for log-normal fading at high SNRs, the constant

power policies (3.30) and (3.33) perform almost the same.

The outage probability of the optimal and modified constant power pohcies is

shown in Figures 3.13 for both log-normal and Rayleigh fading. The cutoff parameter

for these calculations is the value which maximizes the spectral efficiency. In both typesof

fading, the outage probability with the optimalpohcy decreases exponentially. However, for

the modified constantpower policy, the outage probability becomes asymptotically constant

for large SNRs. This behavior is explained by the cutoff values for each policy, which we

plot in Figure 3.14 for both typesoffading. The cutoff values for the optimal policy increase
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Figure 3.11: Spectral Efficiency in Log-Normal Fading.
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Figure 3.12: Spectral Efficiency in Rayleigh Fading.
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Figure 3.13: Outage Probabihty.

very slowly with SNR; thus, at high SNRs the probabihty of falhng below the cutoff value

is small. On the other hand, the cutoff values of the modified pohcy increase exponentially.
Although the higher SNR increases the average value of 7, since the cutoff values are

increasing proportionally, the outage probability remains approximately constant.

3.4 Uncoded Narrowband Modulation: Variable Rate M-

QAM

The spectral efficiency calculated in 3.3.1 placed no constraints on the complexity
or delay ofthechannel codes. We now consider spectral efficiency ofuncoded M-QAM mod
ulation with ideal Nyquist data pulses (smc[t/T]). We will see that the spectral efficiency
in this case depends on the allowable bit error rate (BER), and the pohcy to maximize
efficiency adjusts the transmit power and the number of signal points in the M-QAM con
stellation. We also derive the maximum possible coding gain for M-QAM as a function of
BER.

It has been shown [9, 43] that the BER for uncoded M-QAM can be approximated
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(3.36)

where M is the number of M-QAM constellation points and 7 = P/NqB is the average

received SNR. Let R denote the bit rate, and T denote the duration of each M-QAM

symbol. The number of data bits per symbol is log2 M, and since the M-QAM pulses are

Nyquist (B = 1/T), the spectral efficiency (R/B) is log2 M/BT = log2 M.

Let the fading parameter 7 be as in §3.3.1,and let the power control pohcy adjust

the transmit power to P(7) for fade level 7. For a fixed M, this increases the distance

between points in the signal constellation, thereby reducing the BER. Specifically, the in

stantaneous BER is given by

-1-57 PhYBER(7)« 2 exp
.M-l P

Suppose that in addition to adjusting the transmit power, we also adjust M to maintain

a constant BER. Equivalently, we increase the size of the signal constellation while leaving

the distance between points fixed. We can then rearrange (3.37) to get M in terms of the

(3.37)
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BER,-),P, and P(7):

*w-1+-kCT/affl (3-38)
The values of M may now be continuous. Constellations which transmit a non-integer

number of bits per symbol are discussed in [44]. If we restrict the M-QAM to be a square

constellation, then the following analysis, which assumes no restriction on M, yields opti

mistic results.

3.4.1 Maximum Spectral Efficiency

To maximize the spectral efficiency, we want to maximize

£[,og2 M) =/log, (l +_,og;B^R/2)^) *(7)<*7, (3.39)
subject to the power constraint

JP(iHi)dy =P (3.40)
The power control policy that maximizes (3.39) can be found using Lagrange multipliers,

and is similar in form to (3.27):

Pil) = f i-^T 7>7o/*
P \ 0 7<lo/K

where -,o is the cutoff fade depth, and

(3.41)

Define ik = 70/A'. Substituting (3.41) into (3.39), we get the spectral efficiency

i= D°z*{i)*{y)dr (343)
By substituting (3.41) into (3.40), we can rewrite the power constraint in terms of 7^:

jCOs-^7*-*- (3-44)
The maximum spectral efficiency of uncoded M-QAM is the maximum of (3.43)

subject to the constraint (3.44). This maximization problem is identical to the maximum

efficiency with coding, defined by (3.29) and (3.28), with the transmit power constraint
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reduced by A*. Thus, there is a simple relationship between the spectral efficiencies of

optimal coding and uncoded M-QAM modulation: uncoded M-QAM has an effective power

reduction of K relative to optimal coding. Equivalently, K is the maximum possible coding

gain for M-QAM. Equation (3.43) is the spectral efficiency with optimal power and rate

adaptation; we next consider the constant power pohcy, which only adapts transmit power.

3.4.2 Constant Power Policies

If we again define the constant power pohcy as in (3.30), then the average power

constraint requires that PR = l/E[l/7]. Substituting (3.30) into (3.39), we'get the maxi

mum spectral efficiency of the constant power policy:

| =log2(1+log(BER/2)E[l/7]J' (3'45)
Similarly, using the modified pohcy (3.33) and the corresponding power constraint PR =

E70[l/7], the spectral efficiency (3.39) becomes

R

B
= log2 1+ ^log(BER/2)E70[l/7].

Thus, the maximumspectral efficiency with the modified pohcyis (3.46),maximized relative

to 7o. As in the optimal coding case, we can also set 70 relative to a desired outage

probability.

3.4.3 Numerical Results

We now evaluate the spectral efficiency and outage probabihty of these policies,

and compare them with the coded casesin §3.3.3. Figure 3.15shows the spectral efficiencies

of the optimal (3.29), constant power (3.30), and modified constant power (3.33) control

policies, respectively, for log-normal fading with a = 8dB and a BER of 10"3. For the

modified policy, we determine 70 based on one of two criterion: maximizing the spectral

efficiency, or matching the outage probability to that of the optimal pohcy. The efficiency

of the constant power policy in Rayleigh fading is zero; in Figure3.16 weplot the efficiency

of the other two pohcies in Rayleigh fading. Figures 3.17 and 3.18 compare the efficiencies

for the coded and uncoded cases. In these figures, the modified policy performance is

derived for the 70 which maximizes spectral efficiency. Figures 3.19 and 3.20 compare the
corresponding outage probabilities.

P(l > 7o). (3.46)
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Figure 3.15: Efficiency of Uncoded M-QAM in Log-Normal Fading.
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Figure 3.16: Efficiency of Uncoded M-QAM in Rayleigh Fading.
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In Figure 3.21 we plot K, the maximum possible coding gain for uncoded M-QAM,

as a function of BER. In the next section, we will discuss practical coding techniques to

achieve some of this gain.

Figure 3.21: Maximum Coding Gain.

2 0

LogfBER]

3.5 Coding

The coding strategy required to achieve the gain predicted in Figure 3.21 uses
multiplexing of the capacity-achieving codes for the AWGN channel with bandwidth B

and SNR 7. However, these capacity-achieving codes give little insight into practical code
design [41]. We now discuss some ofthe recent advances in bandwidth-efficient coding for
time-invariant channels. In particular, we review the basic ideas behind coded modulation,
where the source and channel coding schemes are jointly optimized. We then propose an
adaptive variable-rate coded-modulation technique for fading channels with estimation and
transmitter feedback, and calculate the coding gain of this scheme relative to the uncoded
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variable-rate M-QAM of the previous section.

3.5.1 Coded Modulation for Bandlimited AWGN Channels

Although Shannon proved the capacity theorem for AWGN channels in the late

1940s, it wasn't until recently that rates approaching the Shannon hmit on bandlimited

AWGN channels have been attained [44]. Shannon's theorem predicted the possibihty of
reducing both energy and bandwidth simultaneously through coding. However, traditional

error-correction coding schemes, such as block and convolutional codes, reduce transmit

power at the expense of increased bandwidth, since the added code bits increase the bit

rate [45].

The spectrally-efficient coding breakthrough came when Ungerboeck [46] intro

duced a coded-modulation technique to jointly optimize both channel and source (modula

tion) coding. This joint optimization results in significant codinggains without bandwidth

expansion. Ungerboeck's trellis-coded modulation, which uses multilevel/phase signal mod

ulation and simple convolutional coding with mapping by set partitioning, has remained

superior over more recent developments in coded modulation (coset and lattice codes), as

well as more complex trellis codes [48]. We now outline the general principles of this coding

technique. Comprehensive treatments of trellis, lattice, and coset codes can be found in

[47. 44, 48], respectively.

The basic scheme for trellis and lattice coding, or more generally, any type of

coset coding, is depicted in Figure 3.22. There are five elements required to generate the

coded-modulation:

1. A conventional encoder E, block or convolutional, that operates on k uncoded data

bits to produce k + r coded bits.

2. A subset selector, which uses the coded bits to choose one of 2k+r subsets from a

partition of the JV-dimensional signal consteUation.

3. A point selector, which uses n —k additional uncoded bits to choose one of the 2n~k

signal points in the selected subset.

4. A constellation map, which maps the selected point from iV-dimensional space to a

sequence of N/2 points in two-dimensional space.
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Figure 3.22: General Coding Scheme.

5. A QAM modulator.

The first two steps described above are referred to as channel coding, and the remaining steps

are called source codingor modulation. The receiver essentially reverses the modulation and

coding steps: after QAM demodulation and an inverse2/N constellation mapping, decoding

is done in essentially two stages: first, the points within each subset that are closest to the

received signal point are determined; then, the maximum-likelihood subset sequence is

calculated. When the encoder E is a convolutional encoder, this coded-modulation scheme

is refered to as a trellis code; for E a block encoder, it is called a lattice (or block) code.

The steps described above essentially decouple the channel coding gain from the

source (signal-shaping) gain. Specifically, the code distance properties, and thus the channel

coding gain, are determined by the encoder (E) properties and the subset partitioning,

which are essentially decoupled from the source coding. We will discuss the channel coding

gain in more detail below. Optimal shaping of the signal constellation provides up to an

additional 1.53 dB of shape gain (for asymptotically large N), independent of the channel

coding scheme3. However, the performance improvement from shape gain is offset by the
corresponding complexity of the constellation map, which grows exponentially with N. The

size of the transmit constellation is determined by the average power constraint, and doesn't

affect the source (or channel) coding gain.

The channel codinggain results from a selection of all possible sequences of signal

3A square constellation has OdB ofshape gain; a circular constellation, which is the geometrical figure
with the least average energy for a given area, achieves the maximum shape gain for a given N [49].
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points. If we consider a sequence of N input bits as a point in TV-dimensional space (the
sequence space), then this selection is used toguarantee some minimum distance dmin in the
sequence space between possible input sequences. Errors generally occur when a sequence is
mistaken for its closest neighbor, and in AWGN channels this error probabihty isa decreas
ing function of d2min. We can thus decrease the BER by increasing the separation between
each point in the sequence space by a fixed amount ("stretching" the space). However, this
will result in a proportional power increase, so no net coding gain is realized. The effec
tive power gain of the channel code is, therefore, the minimum squared distance between

allowable sequence points (the sequence points obtained through coding), multiplied by the
density of the allowable sequence points. Specifically, if the minimum distance and density

of points in the sequence space are denoted by d0 and A0, respectively, and if the minimum

distance and density of points in the sequence space obtained through coding are denoted

by dmjn and A, respectively, then maximum-likelihood sequence detection yields a channel

coding gain of

The second bracketed term in this expression is also refered to as the constellation expansion

factor, and equals 2~r (per N dimensions) for a redundancy of r bits in the encoder E [48].

Some of the nominal coding gain in (3.47) is lost due to correct sequences having

more than one nearest neighbor in the sequence space, which increases the possibihty of in

correct sequence detection. This loss in coding gain is characterized by the error coefficient,

which is tabulated for most common lattice and trellis codes in [48]. In general, the error

coefficient is larger for lattice codes than for trellis codes with comparable values of Gc-

Channel coding is done using set partitioning of lattices. A lattice is a discrete set

of vectors in real Euclidean AT-space that forms a group under ordinary vector addition, so

the sum or difference of any two vectors in the lattice is also in the lattice. A sub-lattice

is a subset of a lattice that is itself a lattice. The sequence space for uncoded M-QAM

modulation is just the Ar-cube4, so the minimum distance between points is no different

than in the two-dimensional case. By restricting input sequences to he on a lattice in

Ar-space that is denser than the iV-cube, we can increase dmtn while maintaining the same

density (or equivalently, the same average power) in the transmit signal constellation; hence,

4The Cartesian product of two-dimensional rectangular lattices with points at odd integers.
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there is no constellation expansion. The A'-cube is a lattice, however for every N > 1 there

are denser lattices in Af-dimensional space. Finding the densest lattice in N dimensions is

a well-known mathematical problem, and has been solved for all N for which the decoder

complexity is manageable5. Once the densest lattice is known, we can form partioning

subsets, or cosets, of the lattice through translation of any sublattice. The choice of the

partitioning sublattice will determine the size of the partition, i.e. the number of subsets

that the subset selector in Figure 3.22 has to choose from. Data bits are then conveyed

in two ways: through the sequence of cosets from which constellation points are selected,

and through the points selected within each coset. The density of the lattice determines

the distance between points within a coset, while the distance between subset sequences is

essentially determined by the binary code properties of the encoder E, and its redundancy

r. If we let dp denote the minimum distance between points within a coset, and ds denote

the minimum distance between the coset sequences, then the minimum distance code is

dmin = m\n(dp,ds). The effective coding gain is given by

Gc = T*'Ndlin, - (3.48)

where 2~2r/A is the constellation expansion factor (in two dimensions) from the r extra bits
introduced by the binary channel encoder.

Returning to Figure 3.22, suppose that we want to send m = n + r bits per

dimension, so an N sequence conveys mN bits. If we use the densest lattice in N space

that lies within an N sphere, where the radius of the sphere is just large enough to enclose

2mA points, then we achieve a total coding gain which combines the channel gain (resulting
from the lattice density and the encoder properties) with the shape gain of the N sphere

over the Ar rectangle. Clearly, the channel coding gain is decoupled from the shape gain.
An increase in signal power would allow us to use a larger N sphere, and hence transmit

more uncoded bits. We will use this idea in the next section to design a variable-rate

coded-modulation technique for fading channels.

It is possible to generate maximum-density A^-dimensional lattices for N = 4, 8,

16,and 24 using a simple partition of the two-dimensional rectangular lattice combined with

either conventional block or convolutional coding. Details of this type of code construction,

and the corresponding decoding algorithms, can be found in [44] for both lattice and trellis

"The complexity ofthe maximum-likelihood decoder implemented with the Viterbi algorithm is roughly
proportional to N.
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codes. For these constructions, an effective coding gain of approximately 1.5, 3.0, 4.5, and
6.0dB is obtained with lattice codes, for A' = 4, 8, 16, and 24, respectively. Trellis codes
exhibit higher coding gains with comparable complexity.

We conclude this section with an example of coded-modulation: the N = S, 3dB
gain lattice code proposed in [44]. First, the two-dimensional signal constellation is par
titioned into four subsets as shown in Figure 3.23, where the subsets are represented by
the points A0, Ai, B0, and B\, respectively. From this subset partition, we form an 8-
dimensional lattice by taking all sequences of four points in which all points are either A
points or B points and moreover, within a four point sequence, the point subscripts satisfy

the parity check ^ -f i2 + 23 + i4 = 0 (so the sequence subscripts must be codewords in

the (4,3) parity-check code, which has a minimum Hamming distance of two). Thus, three

data bits and one parity check bit are used to determine the lattice subset. The minimum

distance resulting from this subset partition is four times the minimum distance of the un

coded signal constellation, yielding a 6dB gain. However, the extra parity check bit expands

the constellation by 3dB, so the net coding gain is 6 - 3 = 3dB. The remaining data bits

are used to choose a point within the selected subset, so for a data rate of m bits/symbol,

the four lattice subsets must each have 2m~1 points6.

A0 B0 A,, B0 A0 B0 A0 B0 A0 B0

B, A, B, A, B, A, B, A, B, A,

A0 B0 Aq B0 A0 B0 A0 B0 A0 B0

B1 A1 B1 A1 B1 A1 B1 A1 Bl A1

A0 B0 A„ B0 A0 B0 A0 B0 A„ B0

Bt A1 B1 A1 B1 Al B1 A1 B1 A1

A0 B0 Ao B0 A0 B0 A0 BQ A0 BQ

B, A, B, A, B, A1 B, A, B, A,

Aj, B0 Aq B0 Aq B0 A0 B0 A0 B0

Figure 3.23: Subset Partition for an Eight-Dimensional Lattice.

'This yields m - 1 bits/symbol, with the additional bit/symbol conveyed by the channel code.



66

3.5.2 Variable-Rate Coded Modulation for Narrowband Fading Channels

We now propose a variable-rate coded-modulation technique which obtains some

of the coding gain predicted by (3.42). We also calculate the spectral efficiency of this

technique relative to the capacityhmit and the uncoded case. The coded-modulation scheme

is shown in Figure 3.24. The channel code design is the same as it would be for a time-

invariant channel; thus, the lattice structure and conventional encoder are the same as those

in Figure 3.22. From §3.5.1, the channel coding gain, Gc, is independent of the transmit

signal constellation. We can therefore adjust the power and rate (number of levels or signal

points) in the transmit constellation relative to the instantaneous SNR, as described in §3.4,

without affecting the channel coding gain.

Uncoded
Data Bits> Conventional

Encoder

k+rbtta

Coded
Bits

Queue Server

Uncoded \ Y >Uncoded \
Data Bits / A J Date Bits J

| n(r).2k/N Bits

Subset

Selector

050 012"
Subsets

XZ
Projection From

N to 2 Dimensions

N/7

Point Selector
Signal
Points

OneofM(T)
Constellation

Points

'Channel Coding"

"Source Coding*

MO AM

Modulator

Figure 3.24: Variable-Rate Coded-Modulation Scheme.

The source coding (modulation) works as follows. The signal constellation is a

square lattice with an adjustable number of constellation points M. Since we are using the

Ar-cube for our signal constellation, the shape gain is zero. Therefore, we can move the

constellation mapping before the point selection without changing the code performance,

i.e., we project the chosen subset in TV-dimensional space onto a sequence of N/2 subsets

in two-dimensional space from which the M-QAM signal point is selected. The size of the

M-QAM signal constellation is determined by the transmit power, which is adjusted relative

to the instantaneous SNR and the desired BER, as in the uncoded case above.

Specifically, if the BER approximation (3.36) is adjusted for the coding gain, then
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for a particular SNR=7,

BER « 2e~'l'5^G^M-1\ (3.49)

Therefore, the number of constellation points and the signal power can be adjusted relative
to the instantaneous SNR to maintain a fixed BER:

MM = 1+ l'blGc P(7) (Z 50)"™ 1+-log(BER/2) P ' {6'b[))
The number ofuncoded bits required to select thecoset point is n(y)-2k/N = log2 M(y)-
2(k -f r)/N. Since this value varies with time, these uncoded bits must be queued until

needed, as shown in Figure 3.24.

The bit rate per transmission is log2 M(t), and the data rate is log2 M(y) -

2r/N. Therefore, we maximize the data rate by maximizing £[log2M] relative to the

power constraint (3.40). From this maximization, we obtain the optimal power control

policy for this modulation scheme:

P \ 0 7<lolKc
where 70 is the cutoff fade depth, and Kc = KGC. The optimal pohcy is the same "water-

filling" as in the uncoded case, given by (3.44), with K replaced by Kc. Thus, the coded

modulation increases the effective transmit power by Gc relative to the uncoded variable-

rate M-QAM performance. The resulting spectral efficiency is

I = /°° log2 (-I-) 7r(7)d7. (3.52)

If the constellation expansion factor is not included in the coding gain Gc, then we must

subtract 2r/N from (3.52) to get the data rate.

In Figure 3.25 we plot the spectral efficiency given by (3.52) in log-normal fading

over a range of channel coding gains. Lattice codes which achieve these gains are described

in [44]. For comparison we also plot the efficiency of uncoded modulation (3.43) and the

capacity limit (3.29). From this figure, we see that a coding gain of 6dB comes reasonably

close to the capacity limit, and the added complexity required to implement higher-gain

channel codes is probably unwarranted for most applications. Figure 3.26 shows a similar

comparison for Rayleigh fading, where 6dB of channel coding gain again yields close to

optimal performance.
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Most coded modulation techniques for fading channels -do not assume channel

state information at the receiver. Instead, they rely on built-in time diversity in the code
to mitigate the effect of Rayleigh fading. Code designs ofthis type can be found in [50, 51].
Consider a built-in time diversity code ofthis type with coding gain Gc. The system BER
with this code is determined by integrating (3.49) against the fading distribution of the
SNR:

BER =J2e-1^G</M2-1h(j)dr (3.53)
To calculate the spectral efficiency of built-in time diversity codes, we fix the BER

and SNR, and determine the value of M which achieves this BER in (3.53). Figure 3.27

shows the resulting efficiency of time diversity codes with different coding gains, and com

pares their performance with that of the adaptive coded modulation. As expected, the

adaptive technique is far superior. Thus, it appears that when channel state information

is available at the transmitter, using this information for adaptive encoding yields a sig

nificant increase in system performance, as long as the additional complexity of adaptive

constellation sizing is manageable.
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Figure 3.27: Variable-Rate and Time Diversity Codes in Rayleigh Fading.
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3.6 Channel Estimation

We have assumed throughout this chapter that the channel variation is tracked

perfectly at the receiver, and this information is sent to the transmitter via an error-free

feedback path7. We now relax the assumption of perfect channel estimation, and study the

impact of channel estimation errors. First we consider channel estimation in narrowband

multipath channels with Rayleigh fading and log-normal shadowing. Since Rayleigh fading

is usually too fast to measure accurately, we propose an estimation filter to minimize the dB

error of the log-normal estimate while averaging out the Rayleigh fading. We analytically

determine the statistics of the rms dB estimation error, and compute its valueover a range

of fading parameters. A more detailed study, which includes simulation of the estimation

error, the effects of antenna diversity, and design of a fixed filter which is robust over a

range of fading parameters can be found in [52].

Once the statistics of the estimation error is known, we can determine this error's

effect on the power control, modulation, and coding techniques proposed in §§3.4 - 3.5.

Specifically, we calculate the change in average power and data rate of our adaptive pohcies
when the powerestimate used for the adaptation is incorrect.

Although narrowband fading can be estimated concurrently with data detection,

wideband channel variation is usually measured by sending a periodic training sequence
known to both the transmitter and receiver [31]. Longer training sequences generally result
in better channel estimates, but with a corresponding loss in data rate, since no data is

transmitted during the training period. With respect to channel capacity, the periodic
estimation is equivalent to turning the transmitter off periodically. This limits the input
sequences that can be used for channel coding, thus reducing the channel capacity. We
conclude this section bybounding this capacity loss for the periodically estimated, or on-off
channel8.

7We also assume that the feedback path has no delay. Delays in the feedback path will induce errors in
the transmitter channel state information, and these errors will be proportional to the speed of the channel
variation.

The on-ofT channel can also be used to model a timedivision multiaccess system.
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3.6.1 Optimal Filter for Power Estimation

The power control pohcies of §3.3 adapt the transmit power based on the instan
taneous value of the channel fade level. We now consider estimation techniques for the
received signal power. Assuming the statistical fading model of §2.2.2, the received power
experiences two multiplicative forms offading: rapid Rayleigh fading, and slower log-normal
shadowing. In general the Rayleigh fluctuations are too quick to use for the power adapta
tion, so the goal is to track (and adapt to) shadow fading while averaging out the Rayleigh

fading. Therefore, the low pass power measurement filter must be sufficiently narrowband

to average out the Rayleigh fading, yet sufficiently wideband to track the shadow fading.

The received power p(t) is given by the multiplicative form of (2.19), p(t) =

r(t)s(t), where r and s are, respectively, the Rayleigh and log-normal fade levels. We

assume narrowband Rayleigh fading, so the multipath power has an exponential distribu

tion. Since p = r s, we can specify r to be one and use s to characterize the mean received

power. The distribution of r is then

p(r) = e"r; r > 0. (3.54)

Taking natural logs, we get that the distribution for R = logr is

p(R) = eR-e*. (3.55)

We use natural logs throughout the analysis; to get results in dBs, we simply multiply the

natural log results by 10/log 10.

From (2.26), the autocorrelation of r, with a normalized power of one, is given by

At(t) = JI(2*vt/X), (3.56)

where v is the vehicle velocity and Ais the signal wavelength. If there are m independent

samples of the process r(t), as with m-branch space or time diversity receivers with uncor

rected branch signals, then the autocorrelation for the sample average of the m branches

is AT(T)/m.

For the shadow fading, we assume log-normal statistics, so S = log s has a Gaussian

distribution. We denote the mean and standard deviation of S by fi and a, respectively.

From (2.30), the autocorrelation of S is given by

As(r) = c2e-vrlx<.



72

Power Measurement Filter

The power measurement approach is shown in Figure 3.28. The received signal

is passed through a square-law envelope detector and then amplified using a linear or log

amphfier. We consider both types of amphfiers, since the statistics of the Rayleigh fading

are simpler for a linear amphfier, while the statistics of the log-normal fading are simpler

for a log amphfier. Moreover, the log amphfier reduces the estimation problem to classical

parameter estimation in the presence of additive noise, while for the hnear amplifier, the

estimation is done for multiplicative noise. In both cases, the estimation filter w(t) is

designed to minimize the dB error of the shadow fading estimate, denoted by s and S, for

the linear and log amphfiers, respectively. When a log amphfier is used, the measurement

method is refered to as the log-power method; when a hnear amphfier is used, it is called

the linear-power method.

and

p(t)=r(t)s(t)
Square Law
Envelope
Detector

A A
p(t) or P(t)

Estimation
Filter w(t)

s(t) or S(t)

y •

LINEAR

OR LOG

Figure 3.28: Power Measurement Technique.

Arbitrarily choosing the estimation time t = 0, we get the estimation values

f°i(0)= / w(-t)r(t)s(t)dt; Linear-Power Method (3.57)
J—oo

r°5(0)= / w(-t) [R(t) + S(t)]dt\ Log-Power Method. (3.58)
J—oo

We consider two typesofestimation filters: an integrate-and-dump (I&D) filter, and an RC
filter. Thus, w(t) = kg(t), where

J-Rect [^ - 2m] ; I&D filter
(3.59)

For both filter types, k represents the dc value of the filter's frequency response (since g(t)
has unit area), and Tm is the filter's effective averaging time. The filter design then reduces

to optimizing k and Tm to minimize the dB estimation error, assuming that the fading

parameters a and A'c are known.



73

The estimation error is given by

A J log(5(0)/s(0)); Linear-Power Method
€ ~ \ - , . C3.60)[ 5(0)-5(0); Log-Power Method '"

and its dB value is

£ = (10/logl0)e. (3.61)

The estimation filter parameters should be set to minimize the value of 6. However, since

both the Rayleigh and log-normal fading are stochastic processes, 6 is a random variable.

We will show that 6 is approximately Gaussian distributed; therefore, to minimize 6, the

optimal measurement filter should force the mean of 6 to zero, and minimize its standard

deviation.

Linear-Power Method

From (3.60), the value of e for the linear-power method is

•«(*)•s-/:-<-'H"[ .«(0).

Generally speaking, the averaging time of the filter w(t) should be large relative to the decor-

relation time of r(t), and small compared to that of s(t). Therefore, the integral of (3.62)

is approximately equal to a sum over several independent samples of the exponentially-

distributed variable r, which yields an approximate Gamma distribution [31]. Since the

Gamma distribution has the same general shape as the log-normal distribution, with appro

priately chosen parameters we can approximate the distribution of i(0)/s(0) by a log-normal

distribution.

Using this log-normal approximation, we get that c = log[i(0)/s(0)] is Gaussian

distributed. Let a and b denote, respectively, the mean and standard deviation of e. Then

s(0)/s(0)=ea+5b\ (3.63)

and

(i(0)/s(0))2 = e2a+2b2. (3.64)

Using (3.62), w(t) = fc<7(i), and the independence of r and s yields

dt. (3.62)

s(0)/s(0) = kWu (3.65)
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and

(s(0)/5(0))2 = k2W2, (3.66)

where
/•o

Wi = / g(-t)s(t)/s(0)dt (3.67)
«/—oo•oo

and

H'2=/° /° </(-()S(-t'Mr(*-Off^^l**'+/0 f 9(-t)9(-t')
J—oo J—oo L 5 \"y J J—ooJ—oo

s(t)s(t')
S*(0)

dtdt'.

(3.68)

Since log-normality is preserved under multiphcation and division, the variates s(t)/s(0)

and s(f )s(7')/s2(0) are log-normal, and their means and variances can be determined from

As(t) 9. Given these means and variances, the values of W\ and W2 can be computed from

(3.67) and (3.68), respectively.

Combining (3.63)-(3.66) yields

a = \og(kW?), (3.69)

and

b=y/\og(W2/W2). (3.70)
From (3.69) and (3.70), setting the filter gain to .

k= y/Wi/W2 (3.71)

forces the mean of e to zero without affecting the standard deviation. With this choice

for k, the dB measurement error, 6, becomes unbiased and the rms dB error is simply the
standard deviation of 6:

A= (10/\oglO)y/\og(W2/W2). (3.72)

It can be shown that the value of A depends only on three dimensionless param

eters: the standard deviation a of logs, the ratio of shadow fading correlation distance to

wavelength, Xc/X, and the normalized measurement time vTm/X [52]. Since k is given by
(3.71), minimization ofthe dB error reduces to minimizing A relative to Tm. A plot ofthis
minimum A over a range of decorrelation distances and a values is shown in Figure 3.29.

The log-normal approximation for s(0)/s(0) (or equivalently, the Gaussian approximation

for 6) and the rms dB errors of Figure 3.29 have all been verified by simulation in [52].

9Exact expressions for these terms can be found in [52].
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Figure 3.29: Rms dB Error for Linear-Power Method.

Log-Power Method

For the log-power method, e = 5(0) - 5(0) is given by

5(0)-5(0) = / w(-t)[R(t) +S(t)]dt - 5(0)
J—00

= |7° w(-t)R(t)dt\ +\J w(-t)S(t)dt - 5(0)
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(3.73)

We now use (3.73) to approximate the distribution of e. Since the Gaussian distribution is

preserved under addition, the second bracketed term in (3.73) is Gauss-distributecl. For the

first bracketed term, the width of the estimation filter is large relative to the decorrelation

time of R(t). In addition, independent sums of random variables with distribution given by

(3.55) converge rapidly to Gaussian. Therefore, the distribution of the first bracketed term

in (3.73) is also approximately Gaussian, and hence so is e.

Since 5 has mean p and standard deviation a, we can write S(t) as the sum

S(t) = p + ou(t), (3.74)

where u(t) is a zero-mean, unit-variance Gaussian process whose autocorrelation function
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is c-llTl/A'c. Replacing w(t) by kg(t) in (3.73) and taking expectation yields

e = kR+(k-l)p. (3.75)

Two steps are required to drive e to zero. First, since the mean of the shadow fading, p,

is not known, we set k = 1, which removes the second term in (3.75). Then, since we

assume r = 1, it can be shown that R equals Euler's Constant, and this quantity must be

subtracted from the input to the low pass filter, which for k = 1 removes the first bias term

in (3.75).

After these two steps, 7=0, and the mean-square value of c is

T2 = <t2[1 - 2W, +W2a] +W2b, (3.76)

where, using (2.30) for As(t), we get

Wl =/ g{-t)e-W<dt, (3.77)
J—00

W2a = f° f° g(-t)g(-t>)e-»\t-t'\IXcdtdt', (3.78)
«/—00 J—oo

and

W2h =/ / 9(-t)g(-t')AR(t - t')dtdt'. (3.79)
J—00«/—00

Computation of W2\, requires the autocorrelation function of R(t), which is not available in

closed form. However, it can be approximated with high accuracy by [52]

7r2 r tAR(t) =—[.607Jo2(27ri;r/A) +.393J04(27ri;r/A)e-1-283ulTl] . (3.80)

Using this approximation, Wi, W2a, and W2\, can be computed as functions of the fad

ing and filter parameters. These values can be substituted into (3.76) to get t* and the
corresponding rms dB error ofA =(10/log 10) "v/?.

It can be shown that, as in the linear-power case, the value of A depends only on

the parameters a, Xc/X, and vTm/X [52]. Since we require k = 1 for zero mean error, we

can only adjust the value of Tm to minimize the value of A. A plot of this minimum A over

a range of decorrelation distances and a values is shown in Figure 3.30. This rms dB error

was also confirmed by simulation in [52].

Comparing figures 3.29 and 3.30, we see that the rms dB errors for the log power

method tend to be lower than those for thelinear power method, but only by approximately
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Figure 3.30: Rms dB Error for Log-Power Method.

.3dB or less. Therefore, the shape of the measurement filter has httle effect on the rms dB

error, as long as the filter parameters are optimized relative to the fading statistics. This

analysis can be easilyextended to include the effectsof antenna diversity;in [52] it is shown

that two antennas yield a reduction of at least ldB in the rms dB error.

3.6.2 Estimation Error Effects

In §3.6.1 we analyzed power measurement filters to minimize the rms dB mea

surement error. We concluded that even when the fading parameters are known, the dB

measurement error can be as high as 3dB. Moreover, since the fading parameters are not

always known, and the estimation filters must work over a range of vehicle velocities and

propagation environments, the rms dB error will generally exceed this nominal value. We

now determine the effect that these estimation errors have on the variable rate M-QAM

modulation and coding schemes of §§3.4 - 3.5.

We assume the multiphcative Rayleigh /log-normal fading model of the previous

section, so the instantaneous power is given by p(t) = r(t)s(t). Let 7 denote the instan-
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taneous value of the Rayleigh fading and 7 denote its short term average (that is, the

instantaneous shadow fading value). Since Rayleigh fading is relatively fast, power estima

tion techniques generally focus on determining the shadow fading value only (as in §3.6.1).

We therefore assume that 7 can be measured perfectly, but the short-term average 7 cannot.

We denote the estimate for 7 by 7. Using the estimation error statistics derived in §3.6.1,
we have

7 = 10e/107, (3.81)

where e is a zero-mean Gaussian variate with a standard deviation between one and four

dB.

Since 7 is known perfectly, we can still maintain a given BER by adjusting the
power control pohcy ^(7) and the number ofconstellation points Af, as in (3.38):

M(7) =1+ , *-57 ^2).
W; -log(BER/2) P

Recall from (3.41) that the power control policy maximizing the average rate, subject to
the power constraint (P(i)/P) < 1,is

f J_ _ I ^ > -yt,
(3.82)

where 7A- is the "cutoff" fade depth chosen to satisfy the power constraint, and K =
-1.5/ log(BER/2) for uncoded modulation. With coding, K=-1.5Cc/log(BER/2), where
Ge is the coding gain.

As derived in (3.43), the maximum transmission rate equals

p=O^ii)*^^ <3-83)
and from (3.44), the power constraint can be written as

The power control pohcy P(y)/P is optimal for any distribution on 7; however, the pohcy
implicitly depends on tt(7) through the cutoff value yK, which is determined by (3.84).

If the estimation error e=0, then the distribution for 7 is exponential with mean
7. We will denote an exponential distribution for 7 with mean pby Te(y\p). If €^ 0, then
the estimate 7 is known, but 7 is not. The distribution of 7 is then given by

*(7) =]_*e(l\l)p(l\l)dn, (3.85)
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where KTIt) is determined by inverting (3.81) to get 7 as a function of f and e, and then
using the statistics ofe to get the distribution of 7.

We can use one of two techniques to calculate the cutoff value when the estimate
of 7 is imperfect:

1. Calculate 7a from (3.84) using 7r(7) given by (3.85).

2. Assume e = 0 and calculate jx as if 7 = 7.

From §§3.4-3.5, the first approach isoptimal for maximizing the spectral efficiency

under the given power constraint. However, this approach requires knowing the standard

deviation of €, which varies between one and four dB depending on the vehicle speed,

estimation filter, and shadow fading statistics. Since these parameters are usually unknown,

we will consider how the estimation errors impact the average transmit power and data rate

under the second approach.

Using the second approach, the power control pohcy will use the cutoff value 7^

which satisfies

r Gr- i) *(7R)*r =*. (3-86)
Let 7/\ denote the cutoff value which satisfies (3.86) when 6 = 0 (i.e. when 7 = 7). It is

easily shown from (3.86) that if € > 0, then 7A- will be greater than 7#. Using 7^- instead

of 7A- in (3.84) and (3.83) with the true distribution of gamma (^(7) = 7re(7|7)) yields the

average transmit power and data rate under this pohcy. For fK > 7A', both the average

power and rate will be smaller than if 7a* had been used. Conversely, if € < 0, then ~/K

will be less than 7a, resulting in a larger average power and data rate. These effects are

illustrated in Figures 3.31 and 3.32: Figure 3.31 shows the change in averagetransmit power

as a function of the estimation error £, and Figure 3.32 shows the corresponding average

data rate.

We can also consider the same estimation error effects on the modified constant

power policy of §3.3.2, which compensates for fading above a certain cutoff fade depth 70:

P(7) _ J * 7>70
{0 7 < 70

where

PR=\r-Al)d1] \ (3.88)
Uto 7
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The average data rate with this pohcy, assuming a coding gain of Gc, is

R r°°
B= lo«2[l +GcPr) / *c(l\7)dj, (3.89)

•'to

and this expression is maximized relative to 70 to get the maximum data rate10. If the
estimate of 7 is in error, then the modified pohcy will determine 70 by maximizing

log2[l +GCPR] f°° 7Te(7l7)<*7 (3.90)
•'to

relative to 70, where

Pr= \r^*Ml)dT\ • (3-91)
L./'yo 7 J

Let 7q denote this maximizing cutoff value. The average transmit power using 75, PR, and
the true distribution of 7 is

&)=jC°^w'^^ <3-92)
and the corresponding data rate is

= log2ll + G'c/'flJ

We plot the average transmit power and data rate of the modified constant power pohcy

with estimation errors, given by (3.92) and (3.93), respectively, in Figures 3.33 and 3.34.

These curves show global maximum values for both data rate and power, regardless of how

large or small the estimation error may be. This behavior in the average transmit power

is good from an interference and power conservation perspective, since regardless of the

estimation error, the transmit power will not deviate above this global maximum.

3.6.3 Periodic Estimation: The On/Off Channel

The estimation techniques outhned above are for instantaneous power estimation

of narrowband fading channels. These techniques do not apply to wideband channels with

nonzero delay spread, since the channel impulse response cannot be estimated instanta

neously. For wideband channels, a sequence of bits known to both the transmitter and

receiver can be used to learn the channel [31]. This bit sequence is generally refered to

R f°°- =log2[l +GCPR] J97re(7|7)rf7. (3.93)

10This rate is based on a particular log-normal shadowing value 7. Since 7 will vary slowly over time, the
data rate (3.89) will change with this slow variation.
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as a training sequence. After initial training, the channel estimate can be updated by ei
ther using data decisions to modify the channel estimate (decision-feedback equalization),
or sending the training sequence periodically to update the channel estimate. The former

approach has the advantage that after the initial training sequence, data transmission need

not be interrupted to update the channel estimate. However, this approach gives rise to
decision- feedback errors, which may cause the channel estimate to diverge. Moreover, for

time division systems, where users share the same frequency band using periodic time slots,

the channel corresponding to each user slot is different, and therefore the channel must be

re-estimated during each time slot. Periodic channel estimation introduces some capacity

loss, since data transmission is turned off at periodic intervals. We will now precisely bound

this capacity loss, relative to the capacity derived in § 3.1, for the continuous-time state

space channel of § 2.4.2.

In our model, a data sequence is transmitted over the channel for time T and then

a known training sequence is transmitted over the channel for time Te. This is equivalent,

relative to the data rate, to turning the transmitter off for Te seconds after every T seconds

of data transmission. We therefore refer to it as the on/offchannel. This model also applies

to a time division system, where the off time for a given user, user A, equals the time slots

occupied by all the other users.

We assume that the channel state is constant while the data is being transmitted,

only changing during the estimation period. The effect of continuously changing channel

parameters, and the resulting channel estimation errors, are quantified in [53]; we will not

address this issue. We also assume that the channel memory is less than the estimation

time Te. The second assumption implies that data transmitted before the training sequence

does not affect data received after the training sequence. Combining this with the first

assumption, we can model the periodically-estimated time-varying channel using the time

diversity model of Figure 3.1, with the channel input multiplied by a periodic rectangular

wave r(t), as in Figure 3.35. For this channel model, the estimate S is derived during the
training period Te, and is assumed to equal the true channel state. We will let C° denote

the capacity of the time-varying channel depicted in Figure 3.35. We also assume a transmit

power constraint of P.

Consider now a time-invariant channel c,- with impulse response hCi(t), average

power Pi, and periodic off time Te over T seconds of data transmission, as shown in Fig

ure 3.36. Let Cf(Pi) denote the Shannon capacity of this channel. Then by the same
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Figure 3.35: Time Diversity System with Periodic Estimation.

capacity argument in §3.1, the capacity of the time diversity system in Figure 3.35 equals

the weighted sum of the periodically estimated channels Cf:

C°= max YiiCfiPi), (3.94)

where VM and ware defined by (3.6) and (3.2), respectively. We now derive upper and
lower bounds for Cf; upper and lower bounds for C° are then easily derived by using either
all upper or all lower bounds for Cf in (3.94).

,.'-&eH

r(t)

Figure 3.36: On/Off Time-Invariant Channel.

Tocalculate an upper bound for Cf, we introduce a random delay after the multi
plier ofFigure 3.36. This is illustrated in Figure 3.37, where 6is the random delay uniformly
distributed on [0, T+Te]. lix(t) is wide-sense stationary (WSS), the signal after the random
delay, v(t), is also WSS with spectrum

VU) = *U)*S(f), (3.95)

where

X(f) = F[Ex(t)x(t-r)], (3.96)



Figure 3.37: On/Off Channel with Random Delay.

and

S(f) = ?[Es(t-Os(t-T-S)].

The bracketed term in (3.97) is periodic in r, as shown in Figure 3.38.

t/t+t.

T-T/T+Tei

T+T
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(3.97)

Figure 3.38: E^t - £)s(t -t- f ))•

The capacity of the time-invariant on/off channel is the maximum mutual informa

tion between u(t) and y(t) in Figure 3.37, which we denote by C";y. By the data processing

inequality [42], this is less than CJ'!V1 the maximum mutual information between v(t) and

y(t). Since v(t) is WSS, C}"v is given by Gallager's result for time-invariant channels [40,

page 424]. Thus, for average power constraint Pi and spectral noise density N(f), the

capacity Cf = C";y is bounded above by

IW)IW) **(/)]'ct < c\v;y _
max

W):/A'(/)<P,\ J 2
1 +

N(f)
df. (3.98)

We now derive a lowerbound, using a fixed set of codewords and a specific encoding

and decoding scheme. Let hCi(t) be the estimated channel impulseresponse and x(t) be the

corresponding codeword that achieves capacity for the time-invariant channel hCi without

estimation. Assume T > T€. We define a new codeword x(t) as follows.



*(*) = S

x(t) t < T

0 T < t < T + Tc

x(t-2Te) T + Te <t <2T+TC

0 2T4Te<<<2(r-l-Te)

x(i - 2nTe) n(T + Te) < t < (n + 1)T -f nTe

0 (n + 1)T + nTe < t < (n + 1)(T + Te)
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(3.99)

Basically, the new codeword repeats the Te seconds of the original codeword imme

diately proceeding the off timejust after the off time, and doesn't transmitanything during

the off time. This repeating allows the receiver to concatenate the received signal such that

it is equivalent to the original codeword transmitted on the time-invariant channel hCi.
If y(t) is the response of the on/off channel to x(t), then we process y(t) to get

y(t) as follows.

y(t) = v{t)l[t<T\ + ftt-2Te)l[T+2Te<t<2T + Te] + ...+

y(t - 2nTe)l[nT + (n + l)Te) < t < (n + 1)T + nTe] + ... (3.100)

The concatenated output y(t) is equivalent tothe output ofa channel with impulse response
hCi(t) to the input signal x(t). Denote the capacity of the unestimated time-invariant

channel corresponding to /^.(/) with average power P{ as C,(P,)- Due to the concatenation,
the on/off channel requires T+ Te seconds to receive (T - Te)d bits, so the attainable rate
for the on/off channel must be weighted accordingly. On the other hand, if we assume that
the repeated portions of the codeword have the same average power as the entire codeword,
then if P, is the average power of the codeword x, the corresponding codeword x(t) has
average power PiT/T + Te. We can thus increase the power of the original codeword x to
Pi(T+Te)/T without violating the average power constraint for x. Combining these results
we get the following lower bound for Cf:

Co^T-TecJPi(T+Tey. /Pt(T+Te)\
J., Jl^tl ^jy J. (3.101)

In the limit as Te/T -> 0, the upper and lower bounds in (3.98) and (3.101) both
approach the capacity ofthe time-invariant channel Chi. Thus, the effect ofthe off time on
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channel capacity becomes small when the off time is negligible relative to the on time, as
would be the case for estimation of a slowly-varying channel.

3.7 Summary

We have presented several techniques for increasing spectral efficiency on time-
varying channels, where the channel can be estimated and this estimate fed back to the

transmitter. We first calculated the capacity of a general time-varying channel assuming
perfect channel information at the transmitter; this capacity specifies the maximum spectral
efficiency of a channel for an arbitrarily small error probability, with no restriction on the

complexityor delay of the encoder or decoder. We then applied this result to channels with

a time-varying impulse response, and showed that the optimal input power spectrum for

this channel is derived from a water-filling in time and frequency of the channel impulse
response.

Next, we applied the capacity results to narrowband fading channels. We found in

this case that spectral efficiency is maximized when transmit power, data rate, and coding

are all adapted relative to the channel fading. Moreover, the optimal scheme is intuitive

in the sense that it increases power and data rate to take advantage of favorable channels.

We compared this optimal scheme with a common power control policy which inverts the

channel fading; numerical results show that our optimal pohcy is significantly better in

terms of both spectral efficiency and outage probability. The capacity analysis also sug

gested a variable-rate M-QAM modulation technique for fading channels. We determined

the spectral efficiency of this technique, and found a closed-form expression for its maxi

mum coding gain relative to Shannon capacity. Finally, we proposed a variable-rate coded

modulation scheme for M-QAM constellations, and proposed specific coding structures to

achieve near-capacity rates with moderate coding complexity.

All of these techniques assumed perfect channel estimation in zero time. We then

analyzed the impact of channel estimation on capacity. We first proposed a power mea

surement filter for narrowband fading channels, and evaluated its rms dB error. We then

determined the effect of this estimation error on our optimal power control and adaptive

coded modulation scheme. Finally, we bounded the capacity loss from periodic channel

estimation, where no data is transmitted during the estimation sequence. There are sev

eral obvious extensions to the estimation analysis. Power control algorithms which use the
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statistics of the estimation error should be considered. In addition, the spectral efficiency

of joint channel estimation and data transmission should be compared with that of peri

odic estimation. Finally, the impact on spectral efficiency of wideband channel estimation

errors should be evaluated. There is an obvious tradeoff between the amount of time spent

estimating the channel and the corresponding estimation error. We have bounded the ca

pacity loss resulting from the estimation time; if we also determine the impact on capacity

of estimation error, then combining these two results would yield the optimal estimation

time, relative to channel capacity, of a time-varying channel.
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Chapter 4

Spectrally-Efficient Techniques for

Time-Varying Nonfeedback

Channels

The adaptive techniques proposed in the previous chapter assume that the channel

is estimated at the receiver, and this estimate fed back to the transmitter. However, a

reliable feedback path is not always available. Moreover, the feedback path will generally

exhibit a nonzero delay; thus, the channel estimate may be outdated by the time it reaches

the transmitter, especially for rapidly-varying channels. For these reasons, nonfeedback

approaches must also be considered. Therefore, we now explore signal processing and coding

techniques to increase spectral efficiency on time-varying channels without feedback.

We use the discrete-time finite-state Markov channel (FSMC) model of §2.4.1.

First we calculate the capacity of this channel. We then propose a low-complexity decision-

feedback decoder, which uses the Markov transition probabilities for maximum-likelihood

sequence detection. We also calculate the decoder performance for a two-state variable

noise channel.

If the correlation properties of the channel variation are not known, then the chan

nel memory can be dispersed through interleaving to remove burst errors, and memoryless

channel encoding can be used. These techniques are discussed in §4.3. An alternate ap

proach uses unequal error protection codes, described in §4.5. This type of coding prioritizes

the transmitted bit stream, and allows some loss of low-priority data when the channel is
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bad, thus providing robust communication of some data even under adverse channel condi

tions. We will examine both the theoretical performance limits of such coding techniques,

as well as some practical code designs.

4.1 Performance Limits for Finite-State Markov Channels

Our capacity results are an extension of the analysis by Mushkin and Bar-David

[54] for the Gilbert-Elliot channel to the more general Finite-State Markov channel (FSMC)

of §2.4.1.1. The Gilbert-Elliot channel is a stationary two-state Markov chain, where each

state is a binary symmetric channel (BSC), as in Figure 4;1. The transition probabilities

between states are g and b respectively, and the crossover probabilities for the "good" and

"bad" BSCs are pa and pb respectively, where po < Pb-

1-PG

^ CGT TB) i-o

1-P,

Figure 4.1: Gilbert-Elliot Channel

Let xn € {0,1}, yn € {0,1}, and zn = xn © yn denote respectively the channel
input, channel output, and channel error on the nth transmission. In [54], the capacity of
the Gilbert-Elliot channel is derived as

c =£&! - EW«»)] =J!™ l - EWrt)], (4.1)

where h(p) = plogp-f (1 - p)log(l - p), qn =p(zn = l\zn~l), q*n =p(zn = 1|^-1,50), and
So is the initial channel state.

The FSMC is a more general model, since the channels are not necessarily BSCs,
and the input/output alphabets are only required to be finite. If the transmitter and

receiver have perfect state information, then from §3.1, the capacity of the FSMC is just
the statistical average over all states of the corresponding channel capacity. On the other
hand, with no information about the channel state or its transition structure, capacity is
reduced to that ofthe Arbitrarily Varying Channel [55]. We consider the intermediate case,
where the channel transition probabilities of the FSMC are known.
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4.1.1 Conditional State Distribution

The conditional channel state distribution is the key to determining the capacity
ofthe FSMC. It is also a sufficient statistic for the input given all past inputs and outputs,
thus allowing for the reduced complexity ofthe maximum-hkehhood decoder we propose in
§4.3. We now show that the state distribution conditioned on past input/output pairs can
be calculated using a recursive formula. Thus, it is a Markov chain. A similar formula is

derived for the state distribution conditioned on past outputs alone, under the assumption
of independent channel inputs.

Let K be the size of the channel state space. We denote the conditional channel

state distributions by the K dimensional random vectors nn = (7rn(l),. . .,7rn(A')) and

Pn = (/>n(l),-..,pn(A')), where

Pn(k) = p(Sn = ck\yn-'), (4.2)

and

xn(k) = p(Sn = ck\xn-\yn-1). (4.3)

The following recursive formula for 7rn is derived in Appendix 4.A.1:

vis.. ch" u"i E****''5"= «**»)*&• =til'-'.y1)^! ,44)

This expression can be written in the following vector form,

*nD(xr>,yn)P „ ,
*"+1 =^(^)I =/(*",!'n•'r"), (4.5)

where D(xn,yn) is a diagonal A' x A* matrix with fcth diagonal term Pk(yn\xn)t and 1. =

(1,...,1)T is a A* dimensional vector. Equation (4.5) defines a recursive relation for tt„.

Thus, 7rn is a Markov chain with state space A = {a 6 RK\oti > 0,£a, = !}• The chain

has initial value -kq = (p(So = c\),...,p(So = ck)), and transition probabilities

p(7rn+1 = a\wn = (3) = Y, iKxniyn)' f(xn,yn,0) = Q]p(ynWn = (3,xn)p(xn). (4.6)
yney

When the initial state is known (So = c,- for some i), the distribution ir0 is a "delta" function,

f 0 j^i
*o(i) ={ . . • (4.7)

I 1 j = i
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In this case we denote the state distribution irn by nxn, so tt^ = p(Sn\xn~1 ,yn~l,So = ct).

For independent inputs, we can obtain a similar recursive formula for pn:

Pn+1 = P(Sn+l = ci\y ) = — . (4.8)
Eit€KP(2/nPn = CibM^n = CA|yn *)

The derivation is similar to that of Appendix 4.A.1, using (2.43) instead of (2.41) and

removing all x terms. We can also write (4.8) in vector form:

pnB(yn)P i, N ,. ns
PnB(yn)L

where B(yn) is a diagonal K x K matrix with &th diagonal term p(yn\Sn = cjt)1. Thus, pn

is a Markov chain with initial value po = tto and transition probabilities

p(Pn+l = a\pn = /?)=£ l[y„ : f(yn,(3) = a]p(yn\pn = /?). (4.10)
yney

When the initial state is known, we denote pn by p^, where pjj = p(Sn\yn~1,So = c;).

We next show that under some mild constraints on C, the Markov chains 7rn and

pn converge in distribution when the inputs are i.i.d., and the resulting hmit distributions

are independent of the initial states. Moreover, these hmit distributions are continuous

functions of the input distribution p(x).

4.1.2 Convergence of the State Distribution

To obtain the weak convergence of 7rn and pn, we assume that the channel inputs
are i.i.d., then apply convergence results for partially observed Markov chains [56]. Consider
the new stochastic process Un = (Sn,yn,xn) defined on the state space U = C x }> x X.
Since Sn is stationary and ergodic, and x„ is i.i.d., Un is stationary and ergodic. It is easily
checked that Un is Markov.

Let (S,y,x)j denote the jth element ofIf, and J = \U\. Tospecify the individual
components of the vector If, we use the notation

(S(j),y(j),xiJ)) = (S,y,x)j.

The J x J probability transition matrix for U, Pu, is

pkj = P[(Sn+i,Vn+i,*n+i) = (S, y,a?)J-|(5„, yn,xn) = (S,y,x)k)], (4.11)

Note that B(y„) has an implicit dependence on the distribution of x„.
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independent of n. The initial distribution of U, ttJ7, is given by - •

*o = P(S0 = ck, y0 = y,x0 = x) = Tro(k)Pk(yo\x0)p(x0). (4.12)

Let gy,x :U-> y xXand gy :U-> y be the projections gy,x(Sn, yn, xn) = (yn,xn)
and gy(Sn,yn,xn) = (yn), respectively. These projections form the new processes Wn =
9y,x(Un) and Vn = gy(Un). We regard Wn and Vn as partial observations of the Markov
chain Un\ the pairs (Un,Wn) and (Un,Vn) are referred to as partially observed Markov
chains. We denote the distribution of Un conditioned on Wn by 7r^ = (t#(1),...,^(J)),
where

*?(i) = P(^n = (S,y,*)i|WB). (4.13)

Similarly, p% = (/#(1),..., p%(J)) denotes the distribution of Un conditioned on Vn, where

PnU) = P(Un = (S,y,x)j\Vn). (4.14)

Note that

*nU) = p(Un = (S,y,x)j\Wn)

= p(Sn = 5(i)|in,yn)l[xn = rr(j),y„ = y{j)]

= 7r„(^)l[a:ri = a:(i),j/n = y(i)], (4.15)

where Sy) = c/-. Thus if7r^ converges indistribution, 7rn must also converge in distribution.
Similarly, pn converges in distribution if p% does.

W;e will use the following definition for subrectangular matrices in the subsequent

theorem.

Definition Let D = (DtJ) denote a square matrix. If Ditjx # 0 and A2,j2 ^ 0 imphes

that also Diltj2 ^ 0 and A2,ji r^ 0, then D is called a subrectangular matrix.

We can now state the convergence theorem, due to Kaijser [56], for the distribution of a

Markov chain conditioned on partial observations.

Theorem 4.1.2.1 Let Un be a stationary and ergodic Markov chain with transition

matrix Pu and state space U. Let g be a function with domain 14 and range Z. Define a
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new process Zn = g(Un). For z e Z and Uy) the jth element ofIf, define matrix M(z) by

MM-l'V*™-'. (4.16)
I 0 otherwise

Suppose that Pu and g are such that there exists a finite sequence zi,.. ,,zm of elements

in Z that yield a nonzero subrectangular matrix for the matrix product M(z\). ..M(zm).

Then p(Un\Zn) converges in distribution and moreover, the hmit distribution is independent

of the initial distribution of U.

We first apply this" theorem to 7r^.

Assumption 1 Assume that there exists a finite sequence {(yn,xn)}™=l, such that the

matrix product M(yi,X\).. .M(ym,xm) is nonzero and subrectangular, where

MiAy,x)JPt K**K5.».«M =<».«> . (4.17)
y 0 otherwise

With this assumption we can apply Theorem 4.1.2.1* to tt^; thus, tt% converges in distribu

tion to a limit which is independent of its initial distribution. By (4.15), this imphes that

7rn also converges in distribution, and its limit distribution is independent of zro- We thus

get the following lemma.

Lemma 4.1.2.1 For any bounded continuous function /, the following limits exist and

are equal for all i:

nlim £[/(*„)] = Km £[/(<)]. (4.18)

The subrectangularity condition on M is satisfied if for some input x € X there exists a

y € y such that pk(y\x) > 0 for all k. It is also satisfied if all the elements of the matrix P

are nonzero.

From (4.5) and (4.6), the hmit distribution of irn is a function of the i.i.d. input

distribution p(x). Let V(X) denote the set ofall possible distributions on X. The following
lemma, proved in Appendix 4.A.2, shows that the hmit distribution of nn is continuous on
V(X).
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Lemma 4.1.2.2 Let p9 denote the hmit distribution oftt„ as a function ofthe i.i.d. dis
tribution 6€ P(X). Then p6 is acontinuous function of 6, so 0m -+ 0imphes that p9m -* p9.

We now consider the convergence and continuity of pn's distribution. Define the
matrix N by

(^ 0 otherwise
and note that for any y € y and x € X,

Mij(y,x) = Nij(y)I(x{j) = x). (4.20)

To apply Theorem 4.1.2.1 to p^, we must find a sequence y\,...,yi which yields a nonzero

and subrectangular matrixfor the product N(yi). ..N(yi). Consider the projection ontoy

of the sequence {(y„,a:n)}^=1 from Assumption 1. Let {y„}™=1 denote this projection, and

define the matrices M = M(yx,xi). ..M(ym,xm) and N = N(yi)...N(ym). Combining

(4.20) and the fact that all the elements ofM are nonnegative, it iseasily shown that if MtJ-

is nonnegative for a particular i and j, then Nij is nonnegative also. From this we deduce

that if M is nonzero and subrectangular, then N must also be nonzero and subrectangular.

We can now apply Theorem 4.1.2.1 to p%, which yields the convergence in distri

bution of pu and thus pn. Moreover, the hmit distributions of these random vectors are

independent of their initial states. Thus, we get the following result.

Lemma 4-1.2.3 For any bounded continuous function /, the following limits exist and

are equal for all i:

Jim E[f(pn)} = Jim £?[/(^)]. (4.21)

From (4.9) and (4.10), the hmit distribution of/>„ is also a function of p(x). The following

lemma, also proved in Appendix 4.A.2, shows that this hmit distribution is also continuous

on V(X).

Lemma 4-1-2.4 Let u9 denote the hmit distribution of pn as a function of the i.i.d.

distribution 6 € V(X). Then v9 is a continuous function of 0, so 6m —• 0 imphes that
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4.1.3 Entropy, Mutual Information, and Capacity

We now derive the capacity of the FSMC based on the distributions of tt„ and pn-

We also obtain some additional properties of the entropy and mutual information when the

channel inputs are i.i.d.

By definition, the Markov chain Sn is aperiodic and irreducible over the finite

state space, so the effect of its initial state dies away exponentially with time [57]. Thus,

the FSMC is an indecomposable channel [40, page 105]. From [40], the capacity of an

indecomposable channel is independent of the initial state, and is given by

1
C= lim max -J(A'n;Yn),

where /(•; •) denotes mutualinformation and V(Xn) denotes the set ofall input distributions

on Xn. The mutual information can be written as

I(Xn;Yn) = H(Yn) - H(Yn\Xn), (4.23)

where H(Y) = E[- logp(y)], and H(Y\X) = E[- \ogp(y\x)]. It is easily shown [42] that

H(Yn)= j^ H(Ym\Ym-') (4.24)
m=l

and

H(Yn\Xn) =j^ H(Ym\Xm,Ym-\Xm-1). (4.25)
m=l

Lemma 4-1.3.1

(4.22)

H(Yn\Xn,Xn-\Yn-l) = E -\0gJ2 P(yn\xn,Sn =C*)7Tn(fc)
A=l

= H(Yn\Xn,irn), (4.26)

and

H(Yn\Yn~1)) = E

Proof We have

H(Yn\Xn,Xn-\Yn-1) = E[-logp(yn\xn,x»-\y"-*)]

= E

- log J2p(yn\Sn = ck)pn(k)
*=i

K

= H(Yn\Pn). (4.27)

-log]Tp(yn|:rn,Sn = ck)p(Sn = cJt|in-1,y'1-1)

K

= E -log^p(yn|xn,5,„ = cJk)7rn(A:)
*=i

= E[-logp(yn|sn,7rn)]

= H(Yn\Xn,*n). (4.28)
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The argument for (4.27) is the same, with all the x terms removed and 7rn replaced by pn.
D

Using this Lemma in (4.24) and (4.25), and substituting into (4.23) yields the ca-
parity in terms ofthe distributions ofwn and pn; we summarize this inthe following theorem.

Theorem 4.1.3.1 The capacity of the FSMC is given by

1 n

n—oor(A'") n f-f
x ' t=l

C = lim max —Y^
"n) n +~i

E

A'

-\ogY,p(y\s = ck)Pi(k)
jt=i

-E

K

- log ]£ p(y\x, s = ck)iri(k)
jt=i

(4.29)

where the dependence on $ GV(Xn) of the distributions for 7r,-, pi, and y is implicit.

Using Lemma 4.1.3.1, we can also express the-capacity as

Although Gallager's theorem [40, page 109] guarantees the convergence of (4.29), the ran

dom vectors 7rn and pn do not necessarily converge in distribution for general input dis

tributions. We proved this convergence in §4.1.2 for i.i.d. inputs. We now derive some

additional properties of the entropy and mutual information under this input restriction.

Lemma 4-1-3.2 When the channel inputs are stationary,

H(Yn\Xn,Xn-\Yn-1) > H(Yn+1\Xn+t,Xn,Yn)

> /r(yn+i|A'n+i,A'n,yn,5o)

> H(Yn\Xn,Xn-\Yn-\S0). (4.31)

Proof We first note that the conditionalentropy H(Y\X) is a concave function of p(y\x)

for p(x) fixed [42]. To show the first inequality, let / denote any concave function. Then

/(plynlXn,!""1,^-1]) = /Wyn+lkn+l,xJ,yJ])

4 f(E(p[yn+1\xn+1,xn,yn]\xn+1,x^y^))

> E(f(p[yn+1\xn+1,xn,yn])\xn+1,x%,y2)

= f(p[yn+i\xn+i,xn,yn]), (4.32)

where a follows from the stationarity of the channel and the inputs, 6 and d follow from

properties of conditional expectation [57], and c is a consequence of Jensen's inequality.
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The second inequality results from the fact that conditioning on an additional

random variable, in this case the initial state So, always reduces the entropy [42]. The

proof of the third inequality is similar to that of the first:

f{p\Vn+i\xn+i,xn,yn,So]) ± /(E(p[yB+1 |ar»+1,xn,yn,5i]|xn+1,xn,j/n,So))

4 f(E(p[yn+1 \xn+1, xj, y'», 5i]|x„+i, xn, yn, S0))

> E(f(p[yn+1\xn+1,x2l,y2,Si])\xn+uxn,yn,So)

= f(piVn+l\Xn+l,X^y^Si\)

= /(p[y»kn,*n-1,yn~1,5o]), (4.33)

where a and d follow from properties of conditional expectation, b follows from (2.42), c

follows from Jensen's inequality, and e follows from the channel and input stationarity. D

Lemma 4.1.3.3 For i.i.d. input distributions, the following limits exist and are equal:

\\moH(Yn\Xn,X-\Yn-1) =nlimo^(yn|A'n,Xn-1,y"-1,50). (4.34)

Proof From Lemma 5.1,

lim H(Yn\Xn,Xn-\Yn-1)= lim E

Similarly,

lim H(Yn\Xn,Xn-\Yn-\S0)= lim E
n—>oo ' n—>co

K

-log Y,P(y\x>S = ck)irn(k)
A=l

K

-iogJ2p(y\*,s = ck)w*n(k)
k=l

(4.35)

(4.36)

where tt* = 7cln for some i. Applying Lemma 4.1 to (4.35) and (4.36) completes the proof.
D

We now consider the entropy in the output alone. The following lemma is proved
using essentially the same argument as in Lemma4.1.3.2 with all the x terms removed from

(4.32) and (4.33); the details can be found in Appendix 4.A.3.

Lemma 4.1.3.4 For stationary inputs,

H<yn\Y«-*) > H(Yn+1\Yn) > H(Yn+1\Y*,S0) > H(Yn\Yn-\S0). (4.37)
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Finally, we prove the analog ofLemma 4.1.3.3 for H(Yn\Yn-1).

Lemma 4.1.3.5 For i.i.d. input distributions, the following hmits exist and are equal:

nhm ^(yn|y""i) =Jim H(Yn\Y*-\So). (4.38)

Proof Following a similar argument as in Lemma 4.1.3.3, we have that

and

K

lim H(Yn\Yn~1)= hm E
n-*oo ' n-»oo

-\ogY,p(y\s = ck)Pn(k)
fc=i

lim H(Yn\Yn-\S0)= hm E
n—oo ' n-»oo

K

-iogY,p(y\s = ck)p*n(k)
Jk=l

(4.39)

(4.40)

where pn = pn for some t. Applying Lemma 4.1.2.3 to (4.39) and (4.40) completes the
proof. D

Having established the basic properties of the entropies with i.i.d. inputs, we now

evaluate /,,</.

Lemma 4-1-3.6 The mutual information maximized over all i.i.d. input distributions

P(X) is

Iud = hm maxi/(Xn;yn)
n—oop(^)7l

= Jiirn^ max [H (Yn \pn) - H(Yn \Xn, wn)]
V(X)

= lim max
n—oo-p(X)

E - log^, PMS = Ck)pn(k)
fc=l

-E - log Ylv(y\xis = cJtK(fc)
k=l

(4.41)

Proof For 6 € P(X) fixed,

H(Yn\Xn)= J2 H(Ym\Xm,Ym~\Xm-1) (4.42)
m=l

by (4.25), and the terms of the summation are nonnegative and monotonically decreasing

in m by Lemma 4.1.3.2. Thus

lim - £ H(Ym\Xm,Ym-\Xm-1) = hm H(Yn\Xn,Xn-\Yn-1). (4.43)
n—*oo 7j * * n^oo

m=l
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Similary, from (4.24),

H(Yn)= YtH(Ym\Ym-1), (4.44)
m=l

and by Lemma 4.1.3.4, the terms of this summation are nonnegative and monotonically

decreasing in m. Hence

1 ^hm - Y H(Ym\Ym-1)= hm HCY^Y^1).
n—»oo n *—' n—»oo x '

m=l

(4.45)

The limits of (4.43) and (4.45) exist by Lemmas 4.1.3.3 and 4.1.3.5. Moreover, since

I(Xn;Yn) = H(Yn) - H(Y-»\Xn), we can combine (4.42)-(4.45) to get that for any c > 0,

there exists an N such that for all n > A7.

max

V(X)
-I(Xn;Yn) - max \H(Yn\Yn'1) - H(Yn\Xn,Xn'\Yn-')} < €. (4.46)

The lemmafollows by taking the hmit of (4.46) as n -> oo, and applying Lemma 4.1.3.1. •

Finally, the following theorem uses Lemmas 4.1.2.2 and 4.1.2.4 to interchange the

limit and maximization in (4.41). Thus, we get Iiid in terms of the hmit distributions on it
and p.

Theorem 4.1.3.2

Iiid = max
oeT(X) I AY,{-^pe(y\p))p\y\py(dp)-

JpeA yey

I AY,(-lo&p(y\x>*))p(y\x>*)o(xhe(dir) (4.47)

where v9 and p9 are the limit distributions of pand 7r, respectively, for input distribution
*. P9(y\p) = EaLi Exe* P{y\x, S= ck)9(x)p(k), and p(y\x, tt) = £* , Pfok, S= ck)7r(k).

Proof For an i.i.d. input distribution of 6, let v9n = p(pn) and p9n = p(wn). Using the
notation of (4.47), we can then rewrite (4.41) as

lad = lim max
"—°°eev(X)

f AE{-^pe(y\p))pe(y\p>n(dP)-

f A]C(-lo8P(»k.T))P(yk,T)^ar)Ai;(djr)
xe.v

(4.48)
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For any integer m, let Vm(X) C P(X) be a finite subset defined as follows: For any
distribution ip € V(X), xj> 6 Vm(X) iff for all x € X there exists a set of integers kx < m
such that V(x) = kx/m. Clearly, limm^00'Pm(A') = P(*). Substituting this into (4.48),
we get

lad = hm lim max
n-+oom^oo0m£<pm(x) IA E (-iogp*«(»ip))p6m(y\pynm(dP)-

I J2 (~ logP(j/k, T))p(»l*t *)0m(z)/4m(<^) (4.49)

Let 0* € P(X) be the distribution that achieves the maximum in (4.47), and 0„ e

Vm{X) be the distribution that achieves the maximum in (4.49). Then hmm^TO^ = 0".
With this notation, we can rewrite (4.49) as follows.

lad = hm lim
n—co m—oo

I £ (- loe p9Hv\p)) pe*m(y\p>nHdp)-

I J2 (-lo&p(y\x^))p(y\x^)em(x)^er!n(dn)

But limn^oo pnm = p9™ by definition of pn and p, and hmm_oo v9™

Lemma 4.1.2.4. Moreover, by the triangle inequality,

|jijp. -pe'\< \perT - /" I+ I/" " f'* I.

so

hm p?Jh = U6'
n,m—*oo

Similarly, using Lemma 4.1.2.4 we get that

hm v9J» = v9*,
n,m—»oo

Finally, p(y) is linear in p(x), so

Jimy«(y|/>) = p'*(y|p).

(4.50)

v9* by

(4.51)

(4.52)

(4.53)

(4.54)

Since both bracketed terms in (4.50) are bounded by log|3>|, we can bring the hmits (4.52),

(4.53). and (4.54) inside the integral and summation, yielding



Iiid = I E(-^pe'(y\p))pe'(y\py*(dp)-

j Y* (-\ogp(y\x,Tr))p(y\xiir)6m(x)pe'(dw)
reA «ey

x£X

The theorem then follows from the definition of 0*. O

Note that by definition, lad is a lower bound for the capacity C given by (4.29).

4.2 Uniformly Symmetric Variable Noise Channels

The Gilbert-Elliot channel has two features which facihtate a closed-form solution

to its capacity: its conditional entropy #(yn|A"n) is independent of the input distribution,

and it is a symmetric channel, so a uniform input distribution induces a uniform output

distribution. We now define two classes of FSMCs, uniformly symmetric channels, and

variable noise channels, which each have one of these features. The mutual information

and capacity of these channel classes have additional properties which we outhne in the

lemmas below. We also show that for the class ofFSMCs with both of these features, called

uniformly symmetric variable noise channels, Jtt(* equals the channel capacity. Moreover,

we will see in the next section that the decision-feedback decoder achieves capacity for uni

formly symmetric variable noise FSMCs. FSMCs with symmetric PSK inputs and variation

due to amplitude fading or quantized variable-power additive white noise are contained in

this channel class.

Definition: For a discrete memoryless channel, letM denote the matrix ofinput/output
probabilities, where My = p(y = j\x = i), j € 3>, i € X. A discrete memoryless channel is

output symmetric if the rows of M are permutations of each other, and the columns of M
are permutations of each other2.

Definition; A FSMC is uniformly symmetric ifevery channel ck € Cisoutputsymmetric.
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(4.55)

Symmetric channels, defined in [40, p. 94], are a more general class of memoryless channels: an output
symmetric channel is a symmetric channel with a single output partition.
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Lemma 4-2.1 For uniformly symmetric FSMCs, H(Yn\pn), H(Yn\pn), #(yn|7rn), and
H(Yn\K) are all maximized forp(xn) uniform and i.i.d., and these maximum values equal
lQg|J>|. . . .

Proof From [42], H(Yn\pn) < H(Yn) < \og\y\ and similarly H(Yn\pn) < H(Yn) <
\og\y\. But since each ck e C is output symmetric, for each k the columns of Mk are

permutations ofeach other. Thus, if the marginal p(xn) is uniform', then p(yn\Sn = ck) is
also uniform, sop(yn\Sn = ck) = l/\y\. We therefore have that for any pn 6 A,

A' x K x
P(yn\Pn) = 5Zp(yn|5„ = Ck)pn(k) = — Y^Pn(k) = TTT7, (4.56)

A=l 1*^1 k=l '"^l

and similarly,p(yn\pmn) = 1/|3>|. Thus,

#0'n|/>n) = £ £ P(Pn)p(yn|/t>n)[-logp(y„|/0„)]
Pn€Ay„€y

= H P(Pn) £ P(2/nl/>n)[-l0gp(yn|pn)]
Pn€A y„€y

= E rf*.) £ ,4log m
Pn€A y„€)> m

= log|y|, (4.57)

and similarly. H(Yn\pn) = log|3>|. Since (4.57) only requires that p(xn) is uniform for each

n, an i.i.d. uniform input distribution achieves this maximum. Substituting n for p in the

above argument yields the result for H(Yn\xn) and #(yn|7r*). D

Definition; Let Xn and Yn denote the input and output, respectively, of a FSMC. We

say that a FSMC is a variable noise channel if there exists a function / such that for

Zn = /(A'n,yn), Zn is a sufficient statistic3 for 5n, and p(Zn\Xn) = p(Zn).

If Zn is a sufficient statistic for 5n, then

7rn = p(Sn\Xn-\Yn~\Zn-1) = p(Sn\Zn~1). (4.58)

Using (4.58), and replacing the pairs (Xn,Yn) with Zn in the derivation of Appendix 4.A.1,

we get the recursive relation

xnD(zn)P a ,, . ,. _n,
7Fn+1 = «• TV* M = /(2n,*n), (4.59)

3Z = /(A*, V) is a sufficient statistic for S if S is independent of X and V given Z [42].
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where D(zn) is a diagonal K x K matrix with kth diagonal term p(zn\Sn = c>). From

(4.59), 7rn is a Markov chain with state space A and transition probabilities

p(irn+l = a\xn =/?)=£ 1[(2„): /(*»,/*) = ct]p(zn\irn = /?). (4.60)

Lemma 4-2.2 For uniformly symmetric variable noise FSMCs, H(Yn\Xn,irn) and

H(Yn\Xn,ir*) don't depend on p(xn).

Proof We consideronly H(Yn\Xn,7Tn), sincethe same argument applies to H(Yn\Xn,7r*).

Since each ck € C is output symmetric, the sets {{pk(y\x): y € 3>}; x e X] are permutations

of each other. Thus,

H(Yn\Xn,xn) = J2Y,Y, (-l°gH^(2/n|a;„)7rn(fc) jYlpk(yn\xn)^n(k)p(xn)p(irn)
Wn Xn Vn \ A: / Jfc

= SI^(-l0gXl^(ynlXnK(/:))pjk(ynkn)KTn). (4.61)
^n yn \ k /

So H(Yn\Xn,Kn) depends only on the distribution of irn. But by (4.60), this distribu

tion depends only on the distribution of Zn~l. The proof then follows from the fact that

p(Zn\xn) = P(Zn). a

Consider a FSMC where each Ck € C is an additive white noise channel with noise

nk. If we let Z = Y - X, then it is easily checked that this is a variable noise channel.

For such channels, however, the output alphabet y is infinite. In general, the output of an

additive white noise channel is quantized to the nearest symbol in a finite output alphabet;
we call this the quantized additive white noise (Q-AWN) channel;

If the Q-AWN channel has a symmetric multiphase input alphabet and output

phase quantization [58, page 80], then it is easily checked that Pk(y\x) depends only on

Pk(\y - x\), which in turn depends onlyon the noise n*; thus, it is a variable noise channel4.

We show in Appendix 4.A.4 that variable noise Q-AWN channels with the same input and

output alphabets are also uniformly symmetric. Uniformly symmetric variable noise chan

nels have the property that 7,-,-j equals the channel capacity, as we show in the following

4If the input alphabet of a Q-AWN channel is not symmetric or the input symbols have different am
plitudes, then the distribution of Z = |V* - X\ will depend on the input. To see this, consider a Q-AWN
channel with a 16-QAM input/output alphabet (so the output is quantized to the nearest input symbol).
There are four different sets ofZ= \Y- X\ values, depending on the amplitude ofthe input symbol. Thus,
the distribution of Z over all its possible values (the union of all four sets) will change, depending on the
amplitude of the input symbol.
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lemma. • -

Lemma 4.2.3 Capacity of uniformly symmetric variable noise channels is achieved with

uniform i.i.d. inputs, so C = Iiid. Moreover, C = lim^^ C„ = lim^oo C*, where

Cn = m^H(Yn\Pn) - H(Yn\Xn,wn) (4.62)

increases with n, and

C'n " Pi™)H(Y*\M- H(Yn\Xn,*'n) (4.63)
decreases with n.

Proof From Lemmas 4.2.1 and 4.2.2, C„, Q, and C are all maximized with uniform

i.i.d. inputs. With this input distribution, C„ = log p>| - H(Yn\Xn, nn) and C* = log \y\ -

#(y„|A'„,jr;;). Applying Lemmas 4.1.3.2 and 4.1.3.3, we get that H(Yn\Xn,irn) decreases
with 7?, H(Yn\Xn, it*) increases withn, and both converge to the samehmit, which completes

the proof. D

The BSC is equivalent to a binary input Q-AWN channel with binary quantization

[58]. Thus, a FSMC where Ck indexes a set of BSCs with different crossover probabilities is

a uniformly symmetric variablenoise channel. Therefore, Proposition 4 of [54] is a corollary

of Lemma 4.2.3. Moreover, Lemma 4.2.3 holds for FSMCs where C consists of any finite

number of BSCs.

4.3 Decision-Feedback Decoding

In principle, communication over a finite-state channel is possible at any rate below

the channel capacity. However, good maximum-hkehhood coding strategies for channels

with memory are difficult to determine, and the decoder complexity grows exponentially

with memory length. Thus, a common strategy for channels with memory is to disperse the

memory using an interleaver; if the span of the interleaver is long, then the cascade of the

interleaver, channel, and deinterleaver can be considered memoryless, and coding techniques

for memoryless channels may be used [58, page 115]. However, this cascaded channel has

a lower inherent Shannon capacity than the original channel, since one is restricted to

memoryless channel codes.
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The complexity of maximum-hkehhood decoding can be reduced significantly with

out this capacity degradation by implementing a decision-feedback decoder. Figure 4.2 shows

a block diagram for a system with decision-feedback decoding. The system is composed of

a conventional encoder for memoryless channels, block interleaver, FSMC, deinterleaver,

and a decision-feedback decoder. Figure 4.3 outhnes the decision-feedback decoder design,

which consists of a channel state estimator followed by a maximum-hkehhood decoder.

We now show that, if we ignore error propagation and decoding delay, a system employ

ing this decision-feedback decoding scheme on uniformly symmetric variable noise channels

is information lossless: it has the same capacity as the original FSMC, given by (4.41).

Moreover, we will see that the output of the state estimator is a sufficient statistic for the

deinterleaver output, given all past inputs and outputs. Therefore, the maximum-hkehhood

decoder input (2/n,7rn), conditioned on xn, is independent of zn_1. We can thus determine

the maximum-likelihood input sequence on a symbol-by-symbol basis, eliminating the com

plexity and delay of sequence decoders. We will also calculate the capacity penalty of the

decision-feedback decoder for general FSMCs (ignoring error propagation), and the system
cutoff rate.

ENCODER
Xn INTER

LEAVER FSMC
DEINTER
LEAVER

yn DECISION-
FEEDBACK
DECODER

A

*n

Figure 4.2: System Model
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Figure 4.3: Decision-Feedback Decoder

The interleaver works as follows. The output of the encoder is stored row by
row in a J x I interleaver, and transmitted over the channel column by column. The
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deinterleaver performs the reverse operation. Because the effect of the initial channel state

dies away, the received symbols within any row ofthe deinterleaver become independent as
J becomes infinite. However, the symbols within any column of the interleaver are received

from consecutive channel uses, and arethusdependent. Thisdependence is called the latent

channel memory, and the state estimator enables the maximum-hkehhood decoder to make

use of this memory.

Specifically, the state estimator uses the recursive relationship of (4.5) to estimate

7rn. It will be shown below that the maximum-hkehhood decoder operates on a memory

less system, and can therefore determine the maximum-likelihood input sequence on a per

symbol basis. The input to the maximum-likelihood decoder is the channel output yn and

the state estimate 7rn, and its output is the xn which maximizes logp(yn,7rn|x„), assuming

equally likely input symbols5. The soft decision decoder uses conventional Viterbi decoding

techniques with branch metrics

m(y, it) = logp(y, 7r|a:). (4.64)

If the input sequence is coded, then there will be some delay in the soft-decision

decoder's calculation of x'n, so the decision will not be immediately available to feed back to

the state estimator. The identical problem affects decision-feedback equalizers (DFEs) [59].

Recent DFE designs which alleviate this problem include parallel DFEs, which keep track

of all possible symbol decisions [60], and interleaver/deinterleaver pairs, which rearrange

the order of received symbols prior to decoding such that delayed reliable decisions can be

used for feedback [61]. We assume that the same techniques can be applied to our decision-

feedback decoder, thus we ignore decoding delay in this analysis. Error propagation analysis

of DFEs may also help to determine the effect of wrong decisions in our decoder performance

[62], which we ignore in this study.

We now evaluate the information, capacity, and cutoff rates of a system using the

decision-feedback decoder, assuming 7rn = 7rn (i.e., ignoring error propagation). We will

use the notation yji = yn to exphcitly denote that yn is in the jih row and /th column of

the deinterleaver. Similarly itji = irn and Xji = xn denote, respectively, the state estimate

and interleaver input corresponding to yji. Assume now that the state estimator is reset

every J iterations, so for each /, the state estimator goes through j recursions of (4.5) to

'If the xn are not equally likely, then \ogp(xn) must be added to the decoder metric.
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calculate ttji. By (4.6), this recursion induces a distribution p(irji) on ttji that depends only

on p(XJ). Thus, the system up to the output of the state estimator is equivalent to a set

of parallel it-output channels, where the 7r-output channel is defined, for a given j, by the

input Xji, the output pair (yji,Kji), and the input/output probabihty

P(yjh *ji\xji) = Y,Pk(yji\xji)wji(k)p(Trjt). (4.65)
k

For each j, the 7r-output channel is the same for / = 1,2,...,!>, and therefore there are

J different 7r-output channels, each used L times. The first ?r-output channel (j = 1)

is equivalent to the FSMC with interleaving and memoryless channel encoding, since the

estimator is reset and therefore ttu = 7To, 1 < / < L.

The jth 7r-output channel is discrete, since Xji and y3i are taken from finite al

phabets, and since Wjt can have at most |<Y|J'|3>|J' different values. It is also asymptotically

memoryless with deep interleaving (large J), which we prove in Appendix 4.A.5. Finally,

we show in Appendix 4.A.6 that for p(XJ) fixed, the J 7r-output channels are independent,

and the average mutual information of the parallel channels is

Ij=\l(YJ,*J; XJ) =4E Biyfrj) - B(Yj\Xit wj).
J^

(4.66)

Let

Cj =%$j1|JBW*A ~H{Y^'''•> =fl?5,7 Ec,-. (4.67)

where

Cj = H(Yj\*j) - H(Yj\Xj,wj), (4.68)

for the maximizing distribution p(XJ). The capacity of the decision-feedback decoding
system is then

Cdj = lim Cj (4.69)

Comparing (4.69) to (4.30), we see that the H(Y\X,tt) terms are common to C and Cdf-
Therefore, an upper bound for the capacity penalty of the decision-feedback decoder is

c~Cd^ Jfi£> $$) 1?[H{Yjlpj) ~H{Y^)]' (4J°)
Let Iud{dj) denote the mutual information Ij of the decision-feedback decoder for

i.i.d. inputs. Then
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I«d - Iui(dt) <J*»ffl» J E \BVi\Pj) - BQrfri)] (4.71)

By Lemmas 4.1.3.3 and 4.1.3.5, H(Yj\kj) and H(Yj\Pj) converge for i.i.d. inputs. Moreover,
H(Yj\Pj)is monotonically decreasing in j by Lemma 4.1.3.4, and an argument similar to
that ofLemma 4.1.3.2 shows that H(Yj\ttj) is also. Thus, the hmit in (4.71) can be moved
inside the summation, yielding the following upper bound for therate penalty ofa decision-
feedback decoder with i.i.d. inputs:

Iiid'T^W)^9f^J AH{-l<*Av\pJ)Av\p) (u9(dp)-p9(dp)), (4.72)
where v9 and p9 are as defined in Theorem 4.1.3. Finally, by Lemma 4.2.1, Iad and Iud(df)
are maximized with uniform input distributions. Thus,- the bracketed summation in (4.71)

equals log \y\ for any p. Therefore, the right side of (4.72) vanishes for uniformly symmetric

channels. Moreover, since uniformly symmetric variable noise channels have C = /,-,•<*, the

decision-feedback decoder preserves the inherent capacity of such channels.

Although capacity gives the maximum data rate for any maximum-hkehhood en

coding scheme, estabhshed coding techniques generally operate at or below the channel

cutoff rate [58]. Since the 7r-output channels are independent for fixed p(XJ), the random

coding exponent for the parallel set is

E0(1,P(XJ)) = J2RJ'

where

*j = -log£ £?(*;)«
!/,*

i=i

A'

. J2p(y\x,S= ck)nj(k)p(iTj)
\k=i

The cutoff rate of the decision-feedback decoding system is
j

Rdf = lim max —Y^iE,.

We show in Appendix 4.A.7 that for uniformly symmetric variable noise channels, the

maximizing input distribution in (4.75) is uniform and i.i.d., the resulting value of Rj is

increasing in j, and the cutoff rate Rdj becomes

Rdf = lim Rj = - log y
y,*€A

E —
mti

K

Y^P(y\x,S = ck)*(k)p(ir)

where p is the invariant distribution for ir under i.i.d. uniform inputs.

(4.73)

(4.74)

(4.75)

(4.76)
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4.4 Capacity and Cutoff Rates for a Two-State Variable

Noise Channel

We now compute the capacity and cutoff rate of a two-state Q-AWN channel with

variable SNR, Gaussian noise, and 4-PSK modulation. The variable SNR can represent

different fading levels in a multipath channel, or different noise and/or interference levels.

The model is shown in Figure 4.4. The input to the channel is a 4-PSK symbol, to which

noise of variance no or ns is added, depending on whether the channel is in state G (good)

or B (bad). We assume that the SNR is lOdB for channel G, and -5dB for channel B.

The channel output is quantized to the nearest input symbol, so from sections 4.2 and 4.3,

the capacity and cutoff rates are achieved with uniform i.i.d. inputs. The state transition

probabilities are depicted in Figure 4.4. We assume a stationary initial distribution of the

state process, so p(S0 = G) = g/(g + b) and p(S0 = B) = b/(g + 6).

r r
X

1-b (3o€)., y

v^—' ^ "^ x^ ^

9

TWO-STATE CHANNEL

Figure 4.4: Two-State Fading Channel

Figure 4.5 shows the iterative calculation of (4.6) for p(irn(G) = a), where 7rn(G) =
p(Sn = Glz"-1,^-1). In this example, the difference ofsubsequent distributions after 15
recursions is below the quantization level (da = .01) of the graph. Figure 4.6 shows the
capacity (Cj) and cutoff rate (Rj) of the jth ^-output channel, given by (4.68) and (4.74)
respectively. Note that Ci=1 and flJ=1 in this figure are the capacity and cutoff rate of the

FSMC with interleaving and memoryless channel encoding; thus, the difference between
the initial and final values of Cj and Rj indicate the performance improvement of the
decision-feedback decoder over conventional techniques.

For this two-state model, the channel memory can be quantified by the parameter
p= 1 - g - b, since for a £ {G,B} [54],

p(Sn = <t\Sq = a) - p(Sn = a\S0 £ a) = pn. (4.77)
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Figure 4.7: Decoder Performance versus Channel Memory

In Figure 4.7, we show the decision-feedback decoder's capacity arid cutoff rate (Cdf and
Rdf respectively) as a function of p. We expect these performance measures to increase

as p increases, since more latency in the channel should improve the accuracy of the state

estimator; Figure 4.7 confirms this hypothesis. Finally, in Figure 4.8 we show the decision-

feedback decoder's capacity and cutoff rates as a function ofg. The parameter g is inversely

proportional to the average numberof consecutive bad channel states (which correspond to

the 15dB fading channel); thus, Figure 4.8 can be interpreted as the relationship between
the maximum transmission rate and the average fade duration.

4.5 Unequal Error Protection Codes for Fading Channels

We now consider the case where the correlation structure of the channel variation

is unknown. In thiscase, the channel state varies arbitrarily over its statespace. The capac

ity of such Arbitrarily Varying Channels (AVCs) was first studied by Blackwell, Breiman

and Thomasian [63]; more recent treatments can be found in [55, 64], and the references

therein. In general, the capacity-achieving code of an AVC assumes the worst-case channel

state for probabihty of error calculation. Similarly, practical code designs for time-varying

channels typically specify a (maximum or average) error probability for all received data
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Figure 4.8: Decoder Performance versus g

bits. A higher data rate can be achieved if the input sequence is prioritized into high- and

low-priority bit streams, where the error probabihty of the high-priority stream is lower

than that of the low-priority stream. Then, even under worst-case channel conditions, the

high-priority bits will get through. This type of channel coding requires bit prioritization

by the source encoder, which is inherent to some voice and video compression schemes,

such as sub-band coding [65]. It can also be applied to heterogeneous traffic streams with

different BER criterion, like voice and data. We now explore some of these Unequal Error

Protection (UEP) techniques for fading channels. We first derive the maximum average

data rate of a narrowband fading channel with optimal UEP coding. We then describe

two practical implementations of UEP coding: time-multiplexing of coded bit streams, and

coded modulation with multiresolution codes.

4.5.1 Performance Limits

We assume that the fading channel under consideration is constant for the duration

of a symbol transmission, and that the range of the received SNR can be partitioned into a

finite number of intervals6. Thus, the channel can be modeled as a discrete-time state space

'This model was used to characterize Rayleigh fading in [67].
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channel, where each state is an AWGN channel with a different SNR, as in the two-state

variable noise channel of §4.4.

Let K denote the number of channel states, and nt- denote the noise power associ

ated with state c,, where the n's are increasing (n,- < nj for i < j). Define the incremental

noise power by

A/ n* i=l (A 70\u{ = < , (4.78)
y ni - n,_i t > 1

so7?, = 5Zj=i "«• Since the AWGN channel c, has thenoise power Y?j=i uj->tne setofchannels
ci,.. .,ca- with common input can be represented by the incremental noise channel shown

in Figure 4.9.

Figure 4.9: Incremental Noise Channel

The fading channel can be considered as an incremental noise channel with only
one of the c, channels active on each transmission (thec, corresponding to the current fade
level). We will use this fact below to determine the average rateofthe fading channel from
the rate region of the incremental noise channel, which we now obtain. The maximum

rate of the incremental noise channel can be considered in the more general framework
of degraded broadcast channels [68]. The degraded broadcast channel models a system
with one transmitter and many receivers sharing a particular frequency band, where the
channel quality between the transmitter and each receiver is different, as would generally
be the case when the receivers are in different locations. The goal of the transmitter is to
send as much information as possible to each of the receivers. Thus, the incremental noise
channel models a system ofone transmitterand multiple receivers, where receiver i obtains
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the transmitted signal plus AWGN of power n,-. Assume for now that the transmitter
sends independent information to each receiver. The rate vector (Ru..., RK) that can be
achieved simultaneously on the set of incremental noise channels cu.. .,cK is refered-to as-
its rate region, and the maximum rate region is called the capacity region [42]. The capacity
region of the channel ofFigure 4.9 was determined by Bergmans [69] to be the convex hull
of all rate vectors (Ru...,JEA), where R{ is given by

ie, =los(1+^fc^) (479)
for any set of q,s that satisfy J^iLi Q« = 1> where B and P are, respectively, the total

channel bandwidth and power allocated to the channel set, and a, is the fraction of power
allocated to channel c,.

The intuitive explanation for (4.79) is the following [69]. Since n j < nj for i < j,

user i correctly receives all the data transmitted to user j. Therefore, user i can correctly

decode and then subtract out user j's message, then decode its own message. However, user

j cannot decode the message intended for user i, since it has a less-favorable channel; thus,

user fs message, with power a,P, contributes an additional noise term to user fs received

message. This explains the additional noise terms in the denominator of (4.79).

This capacity region is achieved by superposition codes, which form the theoretical

basis for the multiresolution coded modulation described in the next section. Superposition

codes are constructed by using multiple codebooks to generate the coded data [42]. There

is a codebook associated with each of the channels in the channel set c\,...,ck- The

general idea behind superposition codes is to have a refinement in the code structure, so

that the receiver associated with each channel can determine the coarse code structure (the

code clouds), while more favorable channels can determine some of fine code structure (the

codewords within the clouds). The best channel can distinguish all of the coarse and fine

code structure.

Suppose now that we remove the assumption of independent information for each

receiver. Since user i automatically receives the information sent to all receivers with j > i,

if we assume that this information is also desired by user t, then we can include this as an

additional component to user Vs information rate. The capacity region with this common

information is then
/ K K \

(*'„...,J&)= £*»£*»".,** • (4.80)
\i=l ts2 /
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This common information could be the high-priority bits of a source encoding scheme.

Thus, all channels (ci,...,ca) would receiver the high-priority bits; the best channel c\
would receive all high and low-priority bits, and the number oflost low-priority bits would

increase with i.

Wenow return to the fading channel model. The capacityregion in (4.80) gives the

simultaneous rates achievable for all channels (c\,..., ck)- For the fading channel, however,

only one channel c,, with rate jRJ, is realized on each symbol transmission. Thus, the data

rate R on each symbol transmission is a random variable with distribution

**=r)= (P(C=Ci) ' =*, (4.81)
( 0 else

where c denotes the channel state for that transmission. The average transmission rate of

the incremental noise channel is thus

_ K
R=Y,p(c = ci)R'i. (4.82)

With this transmission scheme, if the fade level realized on a particular transmission corre

sponds to channel ct, then HjU'+i R'j kits ofinformation will be lost on this transmission.
With channel estimation and transmitter feedback, however, the expected trans

mission rate R equals the actual transmission rate. This is because the transmitter knows

how much information was lost on each transmission, and can retransmit this data on a

subsequent transmission. We illustrate this process for a K = 2 incremental noise channel.

Let 71 = (Rj + R2,R2) be the capacity region for the channel. Using the terminology

of Bergmans [68], on each transmission we will have 2fl* cloud centers corresponding to
the information transmitted to the second channel and 2fli satellite codewords appended

to each cloud center corresponding to the additional information transmitted to the first

channel. If the channel realization for this transmission is the first channel, then the re

ceiver will successfully decode the 2R*+R2 codewords. The feedback mechanism informs the

transmitter that the first channel was realized, hence the transmitter knows that all the

transmitted information was successfully decoded. If the second channel is realized, then

only the 2R* cloud centers can be successfully decoded. The feedback mechanism informs

the transmitter that the satellite codewords were lost, and these satellite codewords are

then appended to the next set of cloud centers to be transmitted. Thus, no information is

lost, and rate R2 is achieved when the second channel is realized, rate Ri + R2 when the
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first channel is realized. The fraction of time that the ith channel is realized is p(c = a), so
the actual rate asymptotically approaches the average rate. As expected, this average rate
(4.82) equals the capacity ofa time-varying feedback channel (3.7) that was derived in the
previous chapter.

4.5.2 Multilevel Coding Techniques

Practical implementation of a multilevel code was first studied by Imai and Hi-

rakawa [70]. Binary UEP codes were later considered both for combined speech and channel

coding [65], and combined image and channel coding [71]. These implementations use tradi

tional (block or convolutional) error-correction codes, so coding gain is directly proportional

to bandwidth expansion. More recently, two bandwidth-efficient implementations for UEP

have been proposed: time-multiplexing of bandwidth-efficient coded modulation [72], and

the coded-modulation techniques of §3.5.1 applied to both uniform and nonuniform signal

constellations [66, 73, 74]. All of these multilevel codes can be designed for either AWGN

or fading channels, depending on the distance criterion of the code, which will be discussed

in more detail below. We now briefly summarize these UEP techniques; specifically, we

describe the principles behind multilevel coding and multistate decoding, and the more

complex bandwidth-efficient implementations.

A block diagram of a general multilevel encoder is shown in Figure 4.10. The

source encoder first divides the information sequence into M parallel bit streams of de

creasing priority. The channel encoder consists of M different binary error-correcting codes

C\,..., Cm with decreasing codeword distances. For AWGN channels, the binary encoder

should maximize the Euclidean distance between codewords; for fading channels, the Ham

ming distance should be maximized [75]. The ith prioritybit stream enters the ith encoder,

which generates the coded bits$,-. If the 2M points in the signal constellation are numbered
from 0 to 2M - 1, then the point selector chooses the constellation point s corresponding to

M

6= ^5,x2M. (4.83)
i=i

For example, if M = 3 and the signal constellation is 8PSK, then the chosen signal point

will have phase 2tts/8.

Optimal decoding ofthe multilevel code usesa maximum-likelihood decoder, which

determines the input sequence that maximizes the received sequence probability. The
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maximum-likelihood decoder must therefore jointly decode the code sequences $i,...,sm.

Hence, if the encoder memories are of length p\,. ..,pm<> the number of states in the op

timal decoder is 2til+-+flM. This leads to very high complexity in the optimal decoder,

even if the memories of the individual encoders C\,..., Cm are small. Due to this complex

ity, the suboptimal technique of multistage decoding, introduced in [70], is used for most

implementations. Multistage decoding is accomplished by decoding the component codes

sequentially. First, the most robust code, Ci, is decoded, then C2, and so forth. Once

the code sequence corresponding to encoder C, is estimated, it is assumed correct for code

decisions on the less robust code sequences.

The binary encoders of this multilevel code require extra code bits to achieve

their coding gain, thus they are not bandwidth-efficient. An alternative approach recently

proposed in [73] uses time-multiplexing of the bandwidth-efficient coset codes described in

§3.5.1. In this approach, different conventional coded modulation schemes, such aslattice or

trellis codes, with different coding gains are used for each priority class of input data. The

transmit signal constellations corresponding to each encoder may differ in size (number

of signal points), but the average power of each constellation is the same. The signal
points output by each of the individual encoders are then time-multiplexed together for

transmission overthe channel, as shown in Figure 4.11 for two different priority bit streams.

Let R{ denote the bit rate of encoder Ct- in this figure, for i = 1,2. If Ti equals the fraction

of time that the high-priority C\ code is transmitted, and T2 equals the fraction of time

that the C2 code is transmitted, then the total bit rate is (R\Ti + R2T2)I(T\ + T2), with
the high-priority bits comprising RYTi/(RiTi + R2T2) percent of this total.

The optimal coding results for the degraded broadcast channel suggest that the
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time-multiplexed coding method yields a higher gain if the consteUation maps Si and S2 of

Figure 4.11 are designed jointly. This revised scheme is shown in Figure 4.12 for 2 encoders,

where the extension to M encoders is straightforward. In fact, the coded modulation of

Figure 3.22 in Chapter 3 can be considered as a two-level code of this type. Recall that

in this scheme, bits are encoded to select the lattice subset, and uncoded bits choose the

consteUation point within the subset. The binary encoder properties reduce the BER for

the encoded bits only; the BER for the uncoded bits is determined by the separation of

the consteUation signal points. We can easily modify this scheme to yield two levels of

coding gain, where the high-priority bits are encoded as in Figure 3.22 to choose the lattice

subset, and the low-priority bits are encoded using a binary encoder, whose output selects

the consteUation signal point.

More complex multilevel code designs use non-uniform signal consteUations. For

example, in [73], the nonuniform 32-QAM signal consteUation of Figure 4.13 is considered.

In this scheme, the high-priority bits are encoded with an eight state trellis encoder, yielding

two coded bits per transmission, and the low-priority bits are encoded using an eight state

trellis encoder and two uncoded bits, resulting in three coded bits per transmission. The

two high-priority coded bits are used to determine the quadrant of the transmitted signal
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Figure 4.12: Joint Optimization of Signal ConsteUation

point, or equivalently, one of the four consteUation superpoints shown in Figure 4.13. The

three low-priority coded bits are then used to select one ofthe 8-PSK points centered around

the superpoint. Coding gains for this scheme, for different percentages of high-priority bits
and different spacings between the superpoints and between the 8-PSK points, are calcu

lated in [73] and compared with those ofthe time-multiplexing technique depicted in Fig
ure 4.11. This comparison shows that the time-multiplexing scheme performs better when

the percentage of high-priority bits is small; otherwise, coded-modulation with nonuniform

signal modulation is better. This result is somewhat surprising, since the capacity analysis
for degraded broadcast channels predicts that coded modulation with nonuniformly spaced
codewords should always outperform time-multiplexing [42]. This discrepancy between the
ory and practice may result from the fact that the theoretical results do not consider code

complexity, or that they rely on random coding schemes, rather than specific code designs.

4.6 Summary

We have examined techniques for spectrally-efficient communication on time-varying
channels without feedback. We first considered finite-state Markov channels, where the
channel variation is governed by a Markov process with statistics known to both trans-
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© - Superpoint

Figure 4.13: Nonuniform 32-QAM with embedded 4-PSK

mitter and receiver. After deriving the Shannon capacity of this channel, we proposed

a decision-feedback maximum-hkehhood decoder, which uses the Markov transition prob

abilities to estimate the channel state distribution. This estimate allows the decoder to

make maximum-likelihood decisions on a symbol-by-symbol basis, even though the channel

memory is infinite. We defined a class of channels for which the decision-feedback decoder

achieves channel capacity, and bounded the capacity loss of our scheme for general chan

nels. The capacity and cutoff rate of our decoding scheme was then compared to those of

conventional memoryless encoding methods for variable noise channels. We found that the

decision-feedback decoding method, for a small increase in complexity, yields a significant

capacity increase which is most pronounced on slowly-varying channels.

When the channel varies arbitrarily, multilevel codes can be be used to maintain

high-priority data transfer even under worst-case channel conditions. This type of coding

prioritizes the transmitted bit stream into data classes; this data prioritization is already

inherent to many speech and video source coding techniques. We first determined the

average data rate possible with optimal multilevel coding for variable noise channels. We

then discussed some practical implementations of this type of coding. Surprisingly, when

high-priority data comprises a large percentage of the transmitted bit stream, a simple

multiplexing scheme, which is theoretically inferior to multilevel codes with consteUation

optimization, in practice performs better.
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Appendix 4.A.1

In this section, we derive the recursive formula (4.4) for 7rn. First, we have

p(Sn\xn,yn) & P(xn,yn\Sn,xn-\y"-i)P(Sn,xn-\y»-*)
p(xn,yn)

A P(yn|5n,xn,a:"-1,y^-1)p(a;n|5n,a:n-1,y"-1)p(5w,^-1,y"-»)
p(xn,yn)

± P{yn\Sn,Xn)p(xn\xn-l)p(Sn,Xn-\yn-l) .
p(xn,yn)

± P(yn\Sn,xn)p(xn\xn-i)p(Sn\xn-\yn-i)P(xn-\yn'1) " .
^T^) . (4.84)

where a, b, and dfoUow from Bayes rule and cfoUows from (2.42). Moreover,

p(xn,y») = 52p(x\y»,Sn = ck)
keK

= ]£ P(xn,yn\Sn =c*,a?B-1,yn-1)p(5n = cjk,a:n-1,yn-1)
keJ<

= £ P(yn|5„ =ck,xnixn-\y*-*)p(xn\Sntxn-\y«-1)p(Sn =c*,*""1,^-1)

= I>(Vn|£„ =Cib.arnKinla:"-1)^^ =Cfcl*"-1,^-1)^"-*,^-!), (4.85)

where we again use Bayes rule and the last equality follows from (2.41). Substituting (4.85)
in the denominator of (4.84), and cancehng the common terms p(xn\xn~'1) and p(xn~l,yn~l)
yields

P(Sn\xn, yn) = P(yn\Sn,Xn)P(Sn\x»-\y»-l)
LkehP(yn\Sn = ck,xn)p(Sn = c*|x«-i,3/«-i)' t4,W)>

which, for a particular value of Sn, becomes

p(Sn =ct\xn, yn) = P(yn\Sn =cl,xn)p(Sn =cl\x"-\y»-i)
22keKP(yn\sn =ck,xn)p(sn =ck\xn-\y*-iy {q'*{)

FinaUy, from (2.40),

p(Sn+1 = a\xn,yn) = J2 Ptfn =Cj\xn,yn)Pjh (4.88)

Substituting this into (4.87) yields the desired result.

Appendix 4.A.2

We must show that for all 0m,0 € P(X), if 0m - 0, then p9™ - ^, and i*» - *A
We first show the convergence of iA». From [57, page 346], in order to show that v9~ - v9,
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it suffices to show that {*A»} is a tight sequence of probabihty measures7 , and that any
subsequence of iA» which converges weakly converges to u9.

Tightness of the sequence {u9m} foUows from the fact that A is a compact set.
Now suppose there isasubsequence iA»* = iA which converges weakly to i/>. We must show
that i\) = v9, where v9 is the unique invariant distribution for p under the transformation
(4.10) with input distribution p(x) = 0. Thus, it suffices to show that for every bounded,
continuous, real-valued function <f> on A,

Ja <t>(l)4>(dl) =j j <f>(a)1>(d0)p9(da\P), (4.89)

where p9(a\P) = p(pn+i = ct\pn = 0) is given by (4.10) under the input distribution 0.
Applying the triangle inequality, we get that for any k,

1/ <f>(l)Hdi)- f f <f>(a)il>(dp)p9(da\0)
\JA ./A ./A

<[£#7)lK<*7)- J<Kl)»9Hdi)
1/ 4il>6k{dl)- i I <f>(c*yk(dp)p9(da\f3)
\JA J A J A

|j^ J^ cj>(ay*(dfi)p9(da\P) ~J^j^ <K*Md0)p(da\0)
+

+

(4.90)

(4.91)

(4.92)

Since this inequality holds for all k, in order to show (4.89), we need only show

that the three terms (4.90), (4.91), and (4.92) aU converge to zero as k -*• oo. But (4.90)

converges to zero since v9k converges weakly to ij). Moreover, (4.91) equals zero for all

k, since u°k is the invariant p distribution under the transformation (4.10) with input

distribution 0k-- Substituting (4.10) for p9(cx\(3) in (4.92) yields

|^ j^ <f>(a)u9k(d/3)p9k(da\P) ~JaJ^ <t>(aMdP)p9(da\P)\ =
£ / <KfBk(v,0))p9k(v\P)''9kW)- £ / <Kfe(y,P))pe(yWWP
yzy*" vty

where f9 is given by (4.9) with p(x) = 0, and

,(4.93)

Av\P) = £ £ P(y\x> S= Ck)P(k)0(x). (4.94)
xSX k=\

7A sequence of probability measures {i>m\m > 1} is tight if for all c > 0 there exists a compact set K
such that v(K) > 1 —e for all um-



Since y is a finite set, (4.93) converges to zero if for every y € 3>,

\Ja ftf9k{vMp9k(v\0>9kW) - JA #Av.«)p'(vlWto*)
Fix an arbitrary y Gy. Applying the triangle inequality to (4.95) yields

Ja <f>(f9k(yJ))p9k(y\pyk(dfi) - J^ <Kf9(yJ))peWMdp)
<\jjUHy,P))p6k{y\P>HdP)- JA<t>(f9(y,P))p9wyk(dp)
+\Ja 4>U9(yJ))p\yWHdf5) -^ <P(f9(yJ))p9(yWm •

But for any fixed y and /?, 0k -* 0 implies that f9k(y,fi) -* /*(y>/?), since from

(4.9), the numerator and denominator of / are hnear functions of 0, and the denominator is

nonzero. Similarly, 0k -• 0 imphes that for fixed yand /?, p9k(y\(3) -* p9(y\P), since p9(y\fi) is

linearin 0. Since <f> is continuous, this imphes that for fixed y and /?, <t>(f9k(y,P))p9k(y\P) -»

<t>(f9(yiP))pe(y\P)- Since <£ is also bounded on A, (4.96) converges to zero bythe dominated
convergence theorem [57]. Moreover, for fixed y and 0, f9(y,P) and p9(y\fi) are linear in

/?, so <p(f9(y,(3))p9(y\/3) is a bounded continuous functions of/?. Thus, (4.97) converges to
zero by the weak convergence of jA to ij>.

Since the {p9m} sequence isalso tight, theproof that p9m -> p9 foUows if the hmit
of any convergent subsequence of {p9m} is the invariant distribution for tt under (4.6). This
is shown with essentially the same argument as above for u9k -* v9, using (4.6) instead of
(4.10) for p(a\0), p9(y\x,0) instead ofp9(y\(3), and summations over X x y instead ofy.
The details are omitted.

Appendix 4.A.3

To prove Lemma 5.4, we must show that

H(Yn\Yn-*) > H(Yn+1\Yn) > H(Yn+1\Y\S0) > H(Yn\Yn-\S0). (4.98)

For the first inequality, let / denote any concave function. Then

/(plynW-1)) ± f(p[yn+i\y?])

= /(E(p[3,„+,|j,*M))

> W(p[yn+i\yn]M)

= /(p[yn+i|ynD, (4.99)

124

0. (4.95)

(4.96)

(4.97)
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where a foUows from the stationarity of the inputs and channel, band d follow from prop
erties of conditional expectation [57], and c is a consequence of Jensen's inequality.

The second inequality results from the fact that conditioning on an additional

random variable reduces entropy. Finally, for the third inequality, we have

f(p[yn+i\yn,SQ)) ± /(E(p[yn+1|^S!]|y«,So))

4 /(E(p[jfn+i|y,»,51]|yw,5o))

> E(/(p[yn+1|yJ,S1])|y",S0)

= /Wyn+i|y2n^i]),

= /(p[yn|yn-\So]), (4.ioo)

where a and d follow from properties of conditional expectation, 6 foUows from (2.42), c

follows from Jensen's inequality, and e follows from the channel and input stationarity.

Appendix 4.A.4

We consider a Q-AWN channel where the output is quantized to the nearest input

symbol and the input alphabet consists of symmetric PSK symbols. We want to show that

for any k, P-j = pk(y = j\x = i) has rows which are permutations ofeach other and columns

which are permutations of each other. The input/output symbols are given by

ym = xm = Aexpi2*mtMi m=l,...,M. (4.101)

Define the M x M matrix Z by Zij = |y, - Xj\ and let qk(Zij) denote the distribution of

the quantized noise, which is determined by nk, A, M. By symmetry of the input/output

symbols and the noise, the rows of Z are permutations of each other, and the columns are

also permutations of each other.

If M is odd, then

»(*>-< •i!'-*!;,, 'r-'"0. (4.io2)
Qk(\y-x\)/2 else

and if M is even,

•{
f | v , Qk(\y-x\) \y-x = 0 or \y-x = 2A

Pk(y\x)={ . (4.103)
9k(\y-x\)/2 else

Thus, P^j depends only on the value of ZfJ; the rows of P£ are therefore permutations of
each other, and so are the columns.
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Appendix 4.A.5

Wre wiU show that the 7r-output channel is asymptotically memoryless as J —• oo.

Indeed, since the FSMC is indecomposable and stationary, for asymptotically large J,

p(Sn+J, Sn) = p(Sn+J)p(Sn) (4.104)

for any n, and thus also

p(7rn+j,7rn) = p(xn+j)p(*n)- (4.105)

Therefore, since -kji and tj(i-i) are J iterations apart, Xji and flj(/_i) are asymptotically

independent for large J.

In order to show that the 7r-output channel is memoryless, we must show that for

anv j and L,
L

p(y^,7r'VL) = nriyj/,M*j/). (4.106)
/=i

We can decompose p(y^L,-K^L\x^L) as follows:

L •

p(y'L,7r'VX) = IlKyj/.»i/l*;7,yi(/"1),^'-1)^/-1)). (4.107)
l=i

Thus we need only show that the /th factor in the right hand side of (4.107) equals

p(yji,^ji\xji) in the limit as J —• oo. This result is proved in the foUowing lemma.

Lemma 4-A.5.1 For asymptotically large J,

P(yji^ji\xji,yj{l-'l\^1-1^1-^) = p(yji,7Tjl\xjl). (4.108)

Proof

P(yji^ji\xj,,yj{l-1K^1-I)x^-^)

= P(»ifkil, *ii,yi('-1), W'C1-1), a^C'-^jpCx^lxii, l^"*1-^, it'C-1), a '̂C-1))

= j<yi/ki/,*ii)p(^|yi(i-1),iri('-1),*i('-1))

= p(yji\*jh xji)p(*ji\*v+i)(t-i))

= P(yjlUjl,Xjl)p(TTjl)

= P(yji,*ji\xji), (4.109)
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where the second equality follows from (2.40) and (2.41), the third equality foUows from

(4.5), and the fourth equality follows from (4.105) in the asymptotic hmitof deep interleav
ing.

Appendix 4.A.6

The 7r-output channels are independent if

J

p(yJ,TrJ\xJ) = J[p(yj,*j\xj). (4.110)
i=i

This is shown in the following string of equalities.

J

p(yJ,*J\xJ) = n^W^il^'V"1,^'-1,^'-1)
i=i

J

j

= Y[p(yj\^j,Xj)p(Trj\xj,yj-\irj-'l,xj-1)
i=i

J

= np(yj\*j,xj)p(irj), (4.111)

where the third equality follows from (2.41) and the last equality foUows from the fact that

we ignore error propagation, so a?'""1, yJ_1, and 7rJ_1 are all known at time j.

We now determine the average mutual information of the parallel 7r-output chan

nels for fixed p(XJ). The average mutual information of the parallel set is

Ij = jI(Yj,kj;Xj). (4.112)

From above, the parallel channels are independent, and each channel is memoryless with

asymptotically deep interleaving. Thus, we obtain (4.66) as follows:

jI(Yj,ttj;Xj) = H(YJ,*J)-H(YJ,TrJ\XJ)
= H(YJ\wJ) + H(*J) - (H(YJ\irJ,XJ) + H(wJ\XJ))

= H(YJ\irJ)-(H(YJ\nJ,XJ)
J

= Y,H(Yj\Yi-\*J)-H(Yj\Yi-\*J,XJ)
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J

= Y,H(Yj\*j)-H(Yj\*j,Xj), (4.113)

where the third equality follows from the fact that p(it J\xJ) = p(nJ), and the last inequality

follows from the fact that

H(Yj\Y*-\<kj) = H(Yj\Pj,*J) = H((Yj\7rj), (4.114)

since pj = Ex3ttj.

Appendix 4.A.7

In this section, we examine the cutoff rate for uniformly symmetric variable noise

channels. The first four lemmas show that for these channels, the maximizing distribution

of (4.75) is uniform and i.i.d. We then determine that Rj, as given by (4.74), is monotoni

cally increasing in j, and use this to get a simphfied formula for Rdf in terms ofthe hmiting
value of Rj.

Lemma 4.A.7.1 For aU j, Rj depends only on p(Xj).

Proof From the proof of Lemma 6.2, ttj is a function of Zn~l, and is independent of

A""-1. Sop(xj) doesn't depend on the input distribution. The result then foUows from the

definition of Rj. •

Lemma 4.A.7.2 An independent input distribution achieves the maximum of Rdf.

Proof Let p* denote the maximizing distribution of Rdf, and assume that under p*, the

inputs are not independent. Define theindependent input distribution p by p(xj) = p*(xj).
Since by the previous lemma, Rj,j = 1,2,... is the same for inputs governed by p* or p,
the distribution p must also achieve Rdf. D

Lemma 4-A.7.3 For a fixed input distribution p(XJ), the J corresponding 7r-output
channels are all symmetric [40, page 94].



129

Proof We must show that for any.; < J, the set ofoutputs for the jth ?r-output channel
can be partitioned into subsets such that the corresponding submatrices oftransition proba
bilities has rows which are permutations ofeach other and columns which are permutations
of each other. We will call such a matrix row/column permutable.

Let nj < \X\i\y\i be the number of points 6 € A with p(irj = S) > 0, and let
{^}i=i exphcitly denote this set. Then we can partition the output into nj sets, where the
ith set consists ofthe pairs {(y,6i):y € y}. We want to show thatthe transition probabihty
matrix associated with each of these output partitions is row/column permutable, i.e. that

for all /, 1 < i < nj, the \X\ x |3>| matrix

p{ = p{yj = y^j = Si\xj = x), xcx,yey (4.115)

has rows which are permutations of each other, and columns which are permutations of
each other.

Since the FSMC is a variable noise channel, pk(y\x) depends only on z = f(x,y)
for all k, I <k< K. Therefore, if for some k', pk»(y\x) = pk>(y'\x'), then f(x,y) = f(x',y').
But since z - f(x, y) is the same for aU k, this implies that

Pk(y\x) = pk(yV) Vfc, 1 < k < K. (4.116)

Fix k'\ then by definition of uniform symmetry, pk\y\x) is row/column permutable. Using

(4.116), we get that the 1*1 x \y\ matrix

K

Pl = £p*(y|*), xtx,yey (4.117)
*=i

is also row/column permutable. Moreover, multiplying a matrix by any constant wiU not

change the permutability of its rows and columns, hence the matrix

P^ =

K

£p*(y|*)
U=i

6iP(wj = 6i),x eX,y€y (4.118)

is also row/column permutable. But this completes the proof, since

K

Piyj = y^j = Si\xj = x) = £pfc(yj = y\xj = xfapfa = 6{). (4.119)
fc=i

•



Lemma 4-A.7.4 For i.i.d. uniform inputs, Rj is monotonically increasing in j.

Proof For i.i.d. inputs,

Let

Rj =-log-— £ ?(*.,•)£
1*1

K
-.2

\ £pjfe(yk»5,= Cfc)7rJ(A:)
w,eA yty ixex

i2

/(';)= E
ye>> L

K

£p*(yk^ = Cfc)7ri(A:)
_xex \k=i

so iEj = -\ogj±pE[f(7ij)]. We must show -logr^pEJ/Orj)] < -logppjyEl/^+i)], or
equivalently, E[/(7Tj)] > E[/(ttj+i)]. FoUowing an argument similar to that of Lemma 5.2,

we have

,2

/(»>) = E

= E
yey

= E
ye>'

= E
yty L

* E
y€}>

= E
y€)>

E
K

£pjfc(yk,5' = c/.)7rj(fc)
fc=i

K
-.2

£p*(yki5 = Cjk)p(^i = Cik|arn-1,yn-1)
x€-V \ Jtrsl

E
xex

xe* >

•n2

\ £>*(yk,S = ck)p(Sj+i = ck\x%,y%)

A'

£pjt(y|a:,S = ck)E\p(Sj+1 = cjk|ar»f y»)|*5,yj)]
Jfc=i

_2

EE
x€*

AT

\ £p*(y|*,S = c/t)p(Sj+i = c*|arn,yn)
\k=i

E
x€A'

£pfc(yk,5 = cfc)p(SJ+1 = ck\xn,yn)
Jfc=i

= /(*j+l).

-.2
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(4.120)

(4.121)

(4.122)

where a foUows from stationarity and bfollows from Jensen's inequality. Taking expectation

of both sides in (4.122) yields the desired result. •

Lemma 4-A.7.5 For uniformly symmetric variable noise channels, a uniform i.i.d. input

distribution maximizes Rdf. Moreover,
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Rdf = lim Rj. (4.123)
J—OO

Proof From Lemma 4.A.7.2, the maximizing distribution for Rdf is independent. More
over, from Lemma 4.A.7.3, each of the 7r-output channels are symmetric, therefore from

[40, page 144], a uniform distribution for p(Xj) maximizes Rj for all j, and therefore it
maximizes Rdf. Moreover, by Lemmas 4.A.7.4 and 4.1, for i.i.d. uniform inputs, Rj is
monotonically increasing in j and converges to a hmit independent of the initial channel

state. Therefore,

1 J
Rdf = hm -yR,; = hm Rj. (4.124)

J—oo J rrf j—oo
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Chapter 5

Multiuser Systems

The previous chapters dealt with increasing spectral efficiency on single-user chan
nels; we now consider the case where multiple users share the same channel. There are
several methods for dividing the channel frequency spectrum among many users: the most
common are time division (TDMA), frequency division (FDMA), code division (CDMA),
and hybrid combinations of these methods. Currently, there are four standards with differ
ent spectrum-sharing techniques for digital ceUular phone systems alone: one for Europe,
one for Japan, and two for North America. The debate among ceUular and personal com
munication standards committees and equipment providers over which approach touse has
led to countless analytical studies claiming superiority of one technique over the other. In
many cases the a priori assumptions used in these analyses bias the results in favor of one
technique over the other alternatives; usuaUy the technique that is of some economic inter
est to the authors of the study. In this chapter we provide an unbiased evaluation of the
different spectrum-sharing techniques for both time-invariant and time-varying broadcast
and multiple access channels.

We begin with a summary ofthe capacity and achievable rate regions for time-
invariant AWGN channels. We consider only broadcast and multiple access channels, which
model two-way transmission in systems where many users are communicating with asingle
transceiver, as in ceUular, satellite, TV broadcast, and packet radio systems. We wiU see
that CDMA (with interference canceUation and no power control) and FDMA techniques
both achieve the maximum total rate for multiaccess channels, and CDMA achieves the
maximum rate region for broadcast and multiaccess channels. In addition, if power control
is used to equalize received power in abroadcast system, then CDMA, FDMA, and TDMA
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all have the same rate regions. Finally, without interference canceUation CDMA is generally

inferior to both FDMA and TDMA. Although CDMA with interference cancellation is

always at least as good as the other techniques, it also requires more complexityin both the

transmitter and receiver, which may preclude its use in low-power mobile receivers [76]. We

wiU also summarize the derivation by Cheng and Verdii of the capacity region for wideband

time-invariant ISI channels [77]. For these channels, FDMA and CDMA with interference

cancellation have the same rate regions for equal user priorities, and CDMA is superior

when the user priorities are not equal.

We then extend the time-invariant analyses to time-varying memoryless channels.

For FDMA and TDMA spectrum sharing, the users are orthogonal, and the time-varying

capacity results of Chapter 3 can be applied. We also show that the time-varying capacity

region of CDMA with interference canceUation dominates both time and frequency division

techniques, and we discuss the capacity region of CDMA without interference canceUation.

The capacity of cellular systems cannot be evaluated using the methods outlined

above, since spatial reuse is not incorporated into the multiuser channel model. Reusing

frequencies at spatiaUy-separated ceUs allows more efficient use of the frequency spectrum,

however it also introduces intercell interference, which reduces the capacity of all users. The

tradeoff between increased spectrum efficiency and decreased user capacity is quantified by

the area spectral efficiency, defined as the data rate/Hz/unit area of all users in the system.

We calculate this efficiency as a function of reuse distance for FDMA with a very simple

signal and interference model. Optimization of power control and reuse distance to maximize

this efficiency for more complicated models is also discussed. We conclude the chapter with

some interference mitigation techniques.

5.1 Rate Regions for Memoryless AWGN Channels

When several users share the same channel, the channel capacity can no longer be

characterized by a single number. At the extreme, if all but one user occupies the channel,

then the single-user capacity results of Chapter 3 apply. However, since there is an infinite

number of ways to "divide" the channel between many users, the multiuser channel capacity

is characterized by a rate region, where each point in the region is a vector of achievable

rates that can be maintained by aU the users simultaneously. The set of all achievable rates

is called the capacity region of the multiuser system. In this section we analyze two time-



134

invariant memoryless AWGN channels: the broadcast channel and the multiaccess channel.

We examine rate regions for these channels using CDMA with and without interference

canceUation, TDMA, and FDMA spectrum-sharing techniques. The maximum rate region,

achieved using CDMA with interference canceUation, relies on the concept of superposition

codes and successive decoding, as described in §4.5. Specifically, the user with the highest

priority decodes aU lower priority messages and subtracts them before decoding his message;

the lower priority users treat higher priority messages as noise. We wiU elaborate on this

technique for the two channel models under consideration in the foUowing sections. We wiU

also show that the rate region of CDMA without interference canceUation is inferior to all

the other spectrum-sharing techniques. As in the single-user case, the capacity region gives

the maximum set of rates without constraint on the complexity and delay of the coding,

decoding, and spectrum-sharing method.

5.1.1 Broadcast Channels

The broadcast channel consists of one transmitter sending information to many

receivers over a common channel, as shown in Figure 5.1. The transmitter must encode

information meant for the different receivers into a common signal. The capacity region of

the broadcast channel characterizes how much information can be conveyed to the different

receivers simultaneously.

We consider rate regions for a two-user discrete AWGN broadcast channel only;

the extension to multiple users is straightforward [78]. Thus, there is one sender of power

P, and two distant receivers, each with AWGN of power n,-, t = 1,2. We also assume that

the data pulses are Nyquist, so the signal bandwidth B = 1/T, where T denotes the length

of each data pulse. We can order the channels relative to the noise powers without loss of

generality, so that n\ < n2, i.e., receiver l's channel is less noisy than receiver 2's. If we

denote the transmitted signal by X, then user 1 receives the signal Y\ = X + N\, and user

2 receives the signal Y2 = X + #2, where AT,- denotes the noise sample of the ith receiver.

The transmitter wishes to send independent messages to receivers 1 and 2 at rates R\ and

R2, respectively.

We encountered this broadcast channel model in §4.5 when we analyzed unequal

error protection codes for fading channels. We now consider the capacity region of this
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Figure 5.1: Broadcast Channel.

channel model in the multiuser context, as analyzed by Bergmans [69]1. If we denote the

total power and bandwidth allocated to both users by P and B, respectively, then the

single-user capacity Ct- of receiver f s channel is given by:

P<?«• =§log 1 +
niB

(5.1)

If the transmitter allocates all the power and bandwidth to one of the users, then the other

user receives no data; therefore, the set of simultaneously achievablerates (R\,R2) includes

the pairs (Ci,0) and (0,C2). These two rate pairs bound the multiuser capacity region.

We now consider rate pairs in the interior of the region, which are achieved using more

equitable methods of dividing the channel resources.

One scheme for dividing the bandwidth and power between the two users is time

division, where the full power and bandwidth is allocated to user 1 for a fraction r of the

total transmission time, and then to user 2 for the remainder of the transmission. This

time division scheme achieves any rate pair (rCi,(l - r)C2), so a straight hne connecting

the points (Ci,0) and (0,C2), as shown in Figure 5.2, bounds the rate region achievable

through time division. A problem with this scheme is delay: since the transmissions to each

1Bergmans' results were for continuous-time channels, however it can be shown that the same formulas
hold for discrete-time channels with Nyquist data pulses [42].
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Time Division Rate Region

R

Figure 5.2: Rate Region with Time Division.

user take place sequentially, the second user must wait to receive data until after the first

user finishes with the channel. The more common method of time multiplexing alleviates

this delay problem, since the channel is periodically alternated between the users. However,

multiplexing introduces some capacity loss due to code restriction; this loss was bounded

ill §3.6.3.

An alternative approach for spectrum-sharingis frequency division. In this method

the ith user is allocated power Pt and bandwidth P, of the total, so Pi + P2 = P and

B\ + B2 = B. The set of achievable rates, for fixed P, and £,-, is then given by

Pi* - flog
R2 = ylog

1 +

1 +

niBi.
P2

no B2-C2.
(5.2:

It was shown by Bergmans [69] that, for nj strictly less than n2 and any fixed frequency

division (Pi,P2), there exists a range of power aUocations (Pi,P2) whose corresponding

rate pairs dominate a segment of the time division rate region, as iUustrated by the shaded

region in Figure 5.3. Moreover, the rate regions achievable through time division can always

be exceeded by optimizing both the frequency and power division in (5.2). Finally, the

frequency division rate region boundary intersects the time division line at the point where
the power allocation P, is proportional to the bandwidth P,. This intersection point n has

a negative derivative with respect to ai, and so there must be another intersection point

for a smaller value of Q], as shown in Figure 5.3. However, these rate region properties
are valid only when t?i / n2. When the noise powers are equal there is no performance
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difference among these spectrum-sharing techniques: time division and frequency division

have the same rate regions [68].

Time Division with Variable Power

Optimum Frequency and Power Division

Fixed Frequency Division (B..BJ

Time Division

- R

Figure 5.3: Rate Region with Frequency Division.

We can also view the broadcast channel with time division as a time-varying

channel with two channel states, where each state is an AWGN channel of power n,-. If we

allow one user to use more average power than the other, then we can achieve the same

capacity with time division as with frequency division. To see this, let Pi and P2 denote the

power allocated to users 1 and 2 respectively, where the channel is occupied by user 1 for

a fraction ~\ of the total transmission time, and by user 2 for the remaining time fraction

r2 = 1 —Tj. To satisfy the total power constraint we must have riPi + T2P2 = P. The set

of variable-power time division rates is then given by

Pi = Tl^log

P2 = T2-^l0g

1 +

1 +

P

nxB

P2
n2B. '

(5.3)

where B denotes the total channel bandwidth. Define P, = TiB, and 7r,- = TiPi, so the

power constraint becomes ttj + tt2 = P. Making these substitutions in (5.3) yields

* = f *
R-

B2]= Tlog

1 +

1 +

niPi. '
7T2

n2B2.

Comparing this with (5.2), we see that with appropriate choice of P,- and r,-, any point in

the frequency division rate region can also be achieved through time division with variable

power.

(5.4)
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The degraded broadcast channel rate region, given by (4.79), was shown in [79]
to strictly dominate the regions achievable through either time or frequency division, when

ni < n2. This region is achieved through superposition codes, where the message to each
receiver is jointly encoded into a message that uses the fuU available bandwidth and power.
For decoding, the user with the worse channel (user 2) treats the message component
intended for user 1 as noise. In theory, user 1 can decode user 2's message perfectly; it
then subtracts user 2's message component from the total received message, leaving only
the component intended for user 1. The rate region of (4.79) for superposition coding with
two users reduces to

Ri = ylog

R2 = J log

1

1 +

+2^1+ niB\ '
Q2P

n2P +aiPj' (5'5)
where a, denotes the fraction of total power allocated to user i, so a2 = 1- a2. The
rate regions for aU the spectrum-sharing methods, and the superiority of (5.5), is shown in
Figure 5.4. Moreover, Bergmans shows in [79] that (5.5) defines the capacity region, i.e.,
the maximum achievable set of rate pairs. However, superposition coding is superior only
when Tij ^ ti2; otherwise, all the spectrum-sharing methods we have described have the
same rate region [68]. Therefore, if the constant power policy of §3.3.2 is used to equalize
the received SNR of all the users, then each of the spectrum-sharing techniques yields the
same performance.

iSuperposition Coding

Fixed Frequency Division (B,,B2)
Optimum Frequency/PowerDivision

Superposition without
Succesive Decoding

Time Division

Figure 5.4: Superposition Rate Region.

In practice, successive decoding of superposition codes adds complexity and delay



139

in the decoding process, as well as the potential for feedback errors when user 2's message
is not decoded properly. Superposition coding is mostly done using spread spectrum tech
niques [38], and successive decoding for this implementation is generally too complex to
build into a low-power portable device [76]. We wiU discuss practical implementations for
successive decoding in more detail in §5.4.2. Most commercial spread spectrum receivers
don't use successive decoding; they treat all messages intended for other users as noise,
resulting in the two-user rate region

*i = flog
p

R2 = -log

1 +

1 +

c*iP

niB + a2P
a2P

n2P + aiPj '

where 0.1 + a2 = 1. By taking second derivatives of Ri and R2 with respect to al5 we see
that (Ri,R2) as a function of c*i is convex, with end points C\ and C2, as shown in Fig
ure 5.4. Therefore, both time division and frequency division always dominate superposition
coding without successive decoding. The fixed frequency division scheme also dominates this

suboptimal technique over some range ofrate regions, in particular the shaded region shown
in Figure 5.3.

(5.6)

5.1.2 Multiaccess Channels

The multiaccess channel consists of K transmitters sending information to one

receiver over a common channel of bandwidth B, as shown in Figure 5.5. The transmitters

must encode their individual signals such that they can be determined from the received

signal, which consists of the sum of signals from each transmitter. The rate region of the

multiaccess channel characterizes how much information can be received simultaneously

from all the transmitters.

The multiaccess model consists of several transmitters, each with power P,, sending

to a receiver which is corrupted by AWGN of power n. If we denote the ith transmitted

signal by A",, then the received signal is given by

K

y =£*• +*. (5.7)
1=1

where N is an AWGNsample of power n. The two-user capacity region of this channel was

determined by Cover to be the closed convex huU of aU vectors (RUR2) satisfying [42]

ft <flog 1+S



Figure 5.5: Multiaccess Channel.

#i +£2<f log 1 +
P1 + P2

nB

This region is shown in Figure 5.6, where d and C* are given by

1+̂ ],* =1,2,C: =flog

and

CT =fiog

Cl=j\og

1 +

1 +
P2

rP2.T

*]•
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(5.8)

(5.9)

(5.10)

nB +Pj- (5-n>
The point (d, 0) is the achievable rate vector when transmitter 1is sending at its

maximum rate and transmitter 2is silent, and the opposite scenario achieves the rate vector

(0,C2). The corner points (Ci,C$) and (C;,C2) are achieved using the successive decoding
technique described above for superposition codes. SpecificaUy, let the first user operate
at the maximum data rate C\. Then its signal will appear as noise to user 2; thus, user 2
can send data at rate Cj which can be decoded at the receiver with arbitrarily small error
probability. If the receiver then subtracts out user 2's message from its received signal, the
remaining message component is just users l's message corrupted by noise, so rate Ci can
be achieved with arbitrarily small error probability. Hence, (Ci,CJ) is an achievable rate
vector. A similar argument with the user roles reversed yields the rate point (C{,C2).
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Figure 5.6: Multiaccess Channel Capacity Region.

Time division between the two transmitters operating at their maximum rates,

given by (5.9), yields any rate vector on the straight line connecting Ci and C2. With

frequency division, the rates depend on the fraction of the total bandwidth that is allocated

to each transmitter. Letting Pi and B2 denote the bandwidth allocated to each of the two

users, we get the following rate region:

Pi <
Pi

log

P2 < ylog

1 +

1 +

Pi
nPi

P2
nB2 J

(5.12)

Clearly this region dominates time division, since setting B\ = tB and P2 = (1 - t)B

in (5.12) yields a higher rate region than (rCi,(l - r)C2). Varying the values of B\ and

B2 subject to the constraint Pi -f B2 = B yields the frequency division curve shown in

Figure 5.6. It can be shown [42] that this curve touches the rate region boundary at one

point, and this point corresponds to the rate vector which maximizes the sum Pi + R2- To

achieve this point, the bandwidths Pi and P2 must be proportional to their corresponding

powers Pi and P2.

As with the broadcast multiuser channel, wecan achieve the same rate region with

time division as with frequency division by efficient use of the transmit power. If we take

the constraints Pi and P2 to be average power constraints, then since user i only uses the

channel rt- percent of the time, its average power over that time fraction can be increased

to Pi/rx. The rate region achievable through time division is then given by

PiB
Ci = T{- log 1 +

71T,P
, t = 1,2, (5.13)
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and substituting P, = t{B in (5.13) yields the same rate region as in (5.12).
Superposition codes without successive decoding can also be used. With this

approach, each transmitter's message acts as noise to the others. Thus, the maximum
achievable rate in this case cannot exceed (C{, Cj), which is clearly dominated by frequency
division for some bandwidth aUocations,- in particular the aUocation that intersects the rate
region boundary. More work is needed to determine when, ifever, this suboptimal technique
achieves better rates than time or frequency division.

5.2 Rate Regions for Wideband Multiaccess Channels

We now describe the capacity rate region of the Gaussian wideband multiaccess

channel. This section is mainly asummary of apaper by Cheng and Verdii [77]. RecaU from
§3.2 that the capacity ofa single-user time-invariant additive Gaussian noise channel was
achieved with spectrum Sc(f) given parametrically by (3.20). We first consider the two-
user multiaccess channel where both channels have the same frequency response H^f) -
H2(f) =H(f) and power constraints P2 and P2, respectively. In this case, the Karhunen-
Loeve expansion can be used to decompose the channel into aset of independent parallel
AWGN channels with different noise levels, as in the proof of the capacity theorem for single-
user wideband channels [40]. The capacity region of the wideband channel is then given
by the sum of capacity regions corresponding to the individual memoryless channels. The
memoryless multiaccess channel capacity region was given by (5.8); the two-user capacity
region for the wideband channel, which is asum of these memoryless regions, is [77]:

«><-iM+SM$mNU)
df, (5.14)

N(f) J' (5'15)
where S{(f),i = 1,2 is the transmit power spectrum of user t's transmission with total
power less than or equal to P{, and S12(f) =Si(f) +S2(f) is the joint spectrum of the two
users. Note that the spectrum 5i2(/) maximizing the rate sum Rx +R2 is determined by
water-filling as if there was asingle user on the channel with power Px + P2:

SM) =[A12 - N(f)/\H(f)\2}+, (5.16)

where Ai2 is chosen such that the total power in S12(f) equals Px +P2.
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The capacity region of (5.15) forms a pentagon, as shown in Figure 5.7. The

point (Ci,0) is achieved when only user 1 occupies the channel, which reduces it to a

single-user channel; therefore, C\ equals the capacity of the single-user channel H(f) with
power Pi. The transmit spectrum for user 1which achieves this capacity is S\(f) = [Ai -

N(f)/\H(f)\2]+, where Ai is chosen such that the total power in Si(f) equals Px. The
same argument with the user roles reversed achieves the rate point (0,C2).

Figure 5.7: Capacity Region for Hi(f) = P2(/).

The value of C{ in Figure 5.7 is given by

1 f"

"=*r/olog 1 +
N(f)

df, (5.17)

where S\(f) = S12(f) - S2(f) for 5i2(/) given by (5.16) and S2(f) = [A2 - JV(/)/|P(/)|2]+

has total power P2. The geometric interpretation for 5 J(/) is shown in Figure 5.8. Intu

itively, the point (Cl,C2) is achieved when the sum of the spectra for users 1 and 2 equals

Si2(/), and user 2's spectrum is optimal for the single-user channel H(f) with power P2.

The value of C2 is obtained in a similar manner by reversing the roles of the two users. The

line connecting points (Cj,C2) and (Ci,C2) is achieved through time division.

In general, it is unlikely that different users wiU have the same channel impulse

response. When H\ ^ H2l there is no common Karhunen-Loeve kernel that can decompose

both Pi and H2 into sets of independent channels. However, using circular channel methods

of [80, 81], an orthogonal decomposition of the channel can be found that is independent

of the channel impulse response [77]. Using this decomposition and the capacity region

formula derived in [82], Cheng and Verdu obtained the following expression for the capacity
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Figure 5.8: Transmit Spectra for Achieving the Rate Point (C[,C2).

region of a two-user Gaussian multiaccess channel with Hl ^ H2:
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where #(/), the input spectrum of the ith user, is any nonnegative real-valued function
with total power less than or equal to P,.

For each i, let C{ denote the single-user capacity for channel P, with power Pt,
so C; equals the right side of (5.18) with St(f) obtained from the water-filling equation
(3.20). The rate point (Cl50) is then achieved when only user 1occupies the total channel
bandwidth with atransmit spectrum of power Pj that is optimized to the single-user channel
Hl Asimilar argument for user 2achieves the rate point (0,C2), and time division yields
any point on the straight line connecting (d,0) and (0,C2). Moreover, if the channels Hl
and P2 do not overlap in bandwidth, then the rate region (CUC2) can be achieved since
the users are orthogonal, and can therefore optimize their transmit spectra independently.
If the channels Hj and P2 do overlap, then the overlapping portion of their spectra can be
divided between the two users using frequency division; the optimal transmit spectra for the
orthogonal frequency bands is then obtained independently via water-fiUing, as shown in
Figure 5.9. Alternatively, the overlapping portion of the channels H, and P2 can be shared

#j i = 1,2,

^2(/)|P2(/)|2
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(5.18)

(5.19)
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Figure 5.9: Frequency Division for Pi •£ H2.

between the two users with a superposition coding scheme. It turns out that frequency

division maximizes the rate sum Pi + #22- This fact was derived in [77] using equivalent

channel models, where the equivalent channel is a scaled version of Hi,i = 1,2, as shown

in Figure 5.10. If the input power is multiplied by the scale factor ki, then the capacity of

the equivalent channel is the same as the original channel capacity, and is achieved with

the input spectrum of the original channel multiplied by &,-.

Figure 5.10: Equivalent Channel Model.

Appropriate choice of fci and k2 allows the input spectral densities that maximize

the rate sum to be derived via water-filling. The scaling is required since in general, the

water-filling on each individual channel results in a different water level, therefore the op

timal division of the channel bandwidth and power cannot be determined from a single

2Recall thai this was also the case for multiaccess channels without ISI (§5.1.2).
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diagram. Suppose, however, that we fix the water level to be 1, and plot the two curves

kiN(f)/\Hi(f)\2 and k2N(f)/\H2(f)\2 on the same diagram. The optimal spectrum for

each user is then determined by adjusting the parameters fci and k2 such that the total

amount of water in the joint water-fillingdiagram, k\Pi + fc2P2> equals one, and the amount

of water in the region where fci/|Pi(/)|2 < fc2/|P2(/)|2 equals fciPi, as in Figure 5.11.

1 -•

^ A
r \

IP* IrP /

iH,(f)i» ^s;^ y

1
\ /¥,(f)

Figure 5.11: Spectral Densities for Equivalent Channel Model.

This combined water-filling maximizes the rate sum for the foUowing reason. We

want to maximize the combined rate of the two users. By scaling the two channels, we

effectively reduce the equivalent two-user channel to a single-user channel with spectrum

Heq(f) = mdix[Hi(f)/ki,H2(f)/k2]. The spectral density which maximizes the rate on this

single-user channel, Seq, is determined by water-filling. But this optimal spectrum must

equal the sum of the two users' equivalent channel spectra: Seq(f) = kiSi(f) + Jb252(/).

Since for a particular frequency /o, one of the two equivalent channels has a less noisy

impulse response, all of the power in Seq(fo) is assigned to that more favorable channel.

Specifically, the optimizing spectrum for each user is given by

kiSi(f) = Seq(f)l[Tmx[H1(f)/k1,H2(f)/k2) = Hi/ki]. (5.20)

Suppose we are interested in the wideband capacity region at points other than the

maximum rate sum. Then starting from the maximum rate sum point (R\,R2), user t can

increase its rate above R*, and then user j ^ i must lower its rate below Rj. We say that
the user which increases its rate has userpriority. To achieve points on the rate region other

than the maximum rate sum, the superposition coding and subsequent decoding methods

of the previous section are used. The message of the low-priority user is decoded perfectly

and subtracted out of the total message, so that the spectrum of the low-priority user does
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not affect the high-priority message. However, the spectrum of the high-priority message
is treated as noise to the low-priority user; therefore, the spectrum of both users must be

designed jointly. The joint design ofthe spectra uses a similar technique as the equivalent
channel scaling, with an offset in the water-filling formulas that is proportional to the user
priority. Details of this technique can be found in [77].

5.3 Time-Varying Rate Regions

In the previous two sections, we analyzed the rate regions for multiuser time-

invariant channels. We now consider the maximum achievable rates for time-varying mul
tiuser channels with channel estimation and transmitter feedback. The rate regions for

such channels combine the superposition coding ideas of the previous two sections with the

single-user power control techniques outlined in §§3.1 - 3.3.

5.3.1 Narrowband Broadcast AWGN Channels

The two-user time-varying narrowband broadcast channel has one sender of av

erage power P and bandwidth P, and two receivers with AWGN of time-varying power

iii{t),i = 1,2. We assume that the set of values over which n,-(<) varies is finite, and that

the noise variation follows the discrete-time model of §2.4.1. The receivers have perfect

channel estimation and error-free delayless transmitter feedback, so at time t the transmit

ter has perfect estimates of ni(r) and n2(t). The transmitter can vary its instantaneous

power P(t) relative to the noise samples, subject only to the average power constraint

pU) = p-
We first consider the time division method of sharing the common channel band

width. In this case, we allocate average transmit power P and bandwidth B to the first

user over the time interval [0,t!T] and to the second user over the time interval [tT,T].

This method reduces the two-user channel to a single-user channel corresponding to user

l's channel over the first time interval, and user 2's channel over the second interval. There

fore, we can maximize each user's rate over their respective time intervals independently,

and the total rate region is just the sum of these maximum rates weighted by the frac

tion of time each user occupies the channel. Since the channel variation is stationary, the

maximum rate of the second user can be calculated for transmission over the time interval

[0. (1 —t)T]. In the limit as T —* oo, the maximum rate of each user becomes the single-user
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time-varying capacity derived in §3.1. Thus, we can achieve any rate point

(Pi,P2) = (rCi(P),(l - t)C2(P))> 0 < r < 1, (5.21)

where d(P),i = 1,2, is the capacity of the time-varying channel with average power P,

bandwidth B, and time-varying noise n'i(t). Applying the time-varying capacity formula

(3.7), we get

d(P) = max £ ^C^), (5.22)
i**X:p(nI(0=nJ|>0)

where Tjt = p(n,-(t) = iijt), Cj,($jt) equals the capacity of a time-invariant AWGN channel

with noise power n,,, bandwidth P, and average signal power $j,, and the $j,s are subject

to the single-user power constraint

!>***<* (5.23)

Combining (5.21) with (5.22) yields the following expression for the timedivision rate region:

Pi < max ^tt^tC;, ($;,),

R2 <.max^7ri2(l^-r)Ci2($i2), (5.24)

where the maximum is subject to the power constraint (5.23). The time-varying power
of each user can be optimized independently, since time division renders the two users

orthogonal.

We can also consider (5.24) as a weighted sum of time-invariant capacity rate

regions by letting the noise variances njt and nj2 represent a set of channel states. Since

there is only a finite number of values for nj1 and nj2, there is also a finite number of
values for the variance pairs (nj,,??^), and these variance pairs characterize the two-user

channel at any point in time. Let Kdenote the number of distinct variance pairs (nj,,nj7),
Nk = (wfcj ,rik2) denote the fcth of these distinct pairs, and Tjt denote the probabihty ofthe
pair Nk. Suppose we allocate power $*. to user i when the channel is in state Nk- Since

the average power ofeach user equals P, the S^s are subject to the power constraint

K

!>***.-< J*, t = l,2. (5.25)
*=i
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Let Ck,($k,) denote the capacity of a time-invariant AWGN channel with noise

power n/.t, bandwidth B, and signal power $*.:

<?*,(**,)= flog
With this notation, we can express (5.24) as a weighted sum of these time-invariant rate

regions with spectrum-sharing through time division. The set of achievable rates is thus

K

(Pi,P2) = ^^(rCk^kMl-^Ck^h))
k=i

( K K \
= [T^XkCkAQk^V-T^nCk^k,) , (5.27)

\ *=1 k=l )

where the $/;ts are subject to the constraint (5.25). Optimizing (5.27) subject to (5.25)
defines a straight line connecting the points Ci(P) and C2(P), where

Ci{P) = <« ^maXA pX^Aft,)- (5.28)

Fixed frequency division, which divides the total channel bandwidth B into nonover-

lapping segments Pi and P2, also reduces the two-user channel to independent single-user

channels. The total average power P can be divided between the two users in any way such

that their power sum Pi + P2 = P. For Pi and P2 fixed, the rate region is given by

Pi < maxVTrjtC/^^Pi),
**i k

R2 < maxY,wkCk2(Vk2,B2), (5.29)
**' k

where Cki (Vkt, P,) denotes the capacityof a time-invariant AWGN channel with noise power

tiki, average signal power $*,, and bandwidth P,, and the maximization is subject to the

power constraint

!>***, = Pi. (5.30)
k

As in the time-invariant case, the time division rate region wiU dominate the fixed

frequency division rate regionover some range of powerallocations Pi and P2, in particular

when all of the power is allocated to one of the frequency bands (e.g. Pi = P,P2 = 0).

We now show that the fixed frequency division rate region intersects the time division line

at the point where the power aUocation between the two channels is proportional to the

bandwidth. This was also true in the time-invariant case.
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Let ($*,, $k7)k=i denote the maximizing power set in (5.25) for time division, and

let (Pi, P2) denote a bandwidth partition for frequency division. The distance from a given

frequency division rate point (Pi,P2) to the time division Une (rCi,(l —t)C2) is given by

d= ?± 4.^1 - 1
C\ C2

(5.31)

This distance is positive for points above the time division Une, and negative for points

below the time division line, as iUustrated in Figure 5.12. Substituting (5.29) and (5.24)

into (5.31) yields

, EnA-,(**,,Pi) ZnCh(Vk2,B2)
(5.32)

where tykl is the power allocated to frequency band P, when the channel is in state Nk-

Time Division

(tC^K) Cj)

Fixed Frequency Division

Figure 5.12: Distance Between (Ri,R2) and the Time Division Line.

Let q, = Bi/B,i =1,2 define the fraction of bandwidth allocated to user t.

Suppose also that when the channel isinstateNk we let **, = 0,$*,. This power allocation
satisfies the average power constraint, since

Ptotal = I>* (**i +**») = !>* («i**, + <*2**2) = P.
k k

The frequency division and time division rates for the ith user are given by

Ck,(*kt,Bi) = aiB log 1 +
Ot&ki
n^Bi

= c*iB log 1 +
rcjt.P

(5.33)

(5.34)
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C*,($0 =Plog[l +-%
respectively. Substituting (5.34) and (5.35) into (5.32) yields
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(5.35)

oiEnPlog [l +£g] a2E^Plog[l +^l
d = ~^—^—f *Ti + T—St1 - 1 = ai + o2 - 1 = 0. (5.36)E^log[l+J^_] E?r^log[1 +^] 2 ^ >

Thus, the frequency division and time division regions intersect at this point. We've seen
in the time-invariant case that frequency division dominates a portion of the time division

line over some range ofpower allocations. Since the values ofr for which frequency division
dominates will be different for the different Nk channels, it is not obvious that this wiU be

true in the time-varying case, although we conjecture that it is.

However, if we allow both the power and the bandwidth partition to vary for each

channel Nk> then the resultingrate region dominates both fixed frequency division and time

division. The achievable rates in this case are given by

(Pi,P2)= max yMCkAVk^Bk^Ck^k^Bk,)), (5.37)
(*fcl,**2,£fc,,Bjt2) k

where the tf^s satisfy the power constraint

£>*(**, +%2) = P, (5.38)

and B^ +Pjt2 = B for all k. Both the power and bandwidth aUocations are optimized jointly

to achieve the maximum in (5.37), so the two users are no longer independent. Clearly, any

rate point achievable with fixed frequency division can also be achieved with this scheme.

To show that (5.37) also dominates time division, let ($ kn$k2)k=i denote an arbitrary set

of power allocations for the time division rate region. Choose an arbitrary time division

parameter r. From §5.1.1, for a given channel Nk we can find a bandwidth partition

{(Bkl,Bk2);Bki + Bk2 = B} and power partition {(¥*,,¥*,);¥*, + **2 = $klBkJB +

$*2Bk2 /B} such that the frequency division rates achieved with these parameters dominate

the time division rates. Therefore, the weighted average of the frequency division rates will

dominate the weighted average of the time division rates.

The idea of reallocating bandwidth as the channel varies is closely related to dy

namic channel allocation, where each user measures the noise (and interference) in a par

ticular frequency band, and only occupies the frequency band if the noise is below some
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threshold [83]. Suppose two users want to access the same frequency band, and the noise

level is below threshold for both, but lower for one of the users. The frequency allocation

of (5.37) suggests that instead of using a threshold level to determine which user should

occupy the channel (which for this example would not differentiate between the two users),

the channel is allocated to the user which gets the most capacity from it.

We now consider superposition coding, where both users occupy the full channel

bandwidth over aU time. The achievable rates are again weighted averages of the achievable

rates on each channel Nk:

<*i.*2) =E-i- 0°e[i +mP +r,i, >nJ 'l06[1 +n2p +r,,iK >nj) •
(5.39)

where 1[-] is the indicator function and the T^s must satisfy the power constraint

Y,*k(Tkl+Tk2) = P. (5.40)

Since superposition codes dominate time and frequency division in the time-invariant case,

we expect this to be true for time-varying channels as weU. Indeed, consider any achievable

rate point in the frequency division rate region (5.37). Associated with that point wiU be a

set offrequency divisions (Bki, Bk2)£=1 and a set of transmit power values ($kl, $jfc2)£=i for
each of the K channel states. Let Vk = $/., + tyk2. From §5.3.1 there exists a superposition

code with total power $jt'that dominates the frequency division code on channel Nk. Since

we can find such a dominating code for all k, the weighted sum of the superposition rates

dominates the frequency division sum.

5.3.2 Narrowband Multiaccess AWGN Channels

The two-user time-varying narrowband multiaccess channel has two transmitters

with average power Px and P2, respectively, and one receiver with bandwidth B and AWGN

of time-varying power n(t). We assume that n(t) varies overa finite set ofvalues ni,..., nh-,

so nk characterizes the channel state with probabihty irk = p(n(t) = nk). We also assume

that at time t both transmitters have perfect estimates of n(t). The transmitters may vary

their instantaneous transmit power P,(<) relative to n(t), subject only to the average power
constraint P,(<) = P, for i = 1,2.
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We first consider spectrum sharing through time division. With this technique we
can achieve any point

K • - •

(Pi, P2) = £ xfc (rCk(*kl), (1 - r)C*(**2)), (5.41)
*=i

where

c*(*,)£fiog[i +i^
and $*,, the power aUocated to the ith user for channel state nk, is subject to the average
power constraint

52*k*ki = Pi. (5.43)
k

The $kfs in (5.41) can be optimized independent of each other, since under time division the

two users are orthogonal. Optimizing (5.41) subject to (5.43) therefore defines a straight

line connecting the points Ci(Pi) and C2(P2), where

c«(p') =,. rm*l pvE**^**.)- (5-44)

Fixed frequency division partitions the total bandwidth B into nonoverlapping

segments Pi and P2, which are then allocated to the respective transmitters. Since the

bandwidths are separate, the users are independent, and they can allocate their time-varying

power independently, subject only to the total power constraint P,. The fixed frequency

division rate region is thus given by

Pi < max £>*<?*($*,, Pi),
**i k

R2 < max^7rjkCjt(*jt2,P2), (5.45)

where

**2 k

Ck(*ki,Bi) =^- log Vk1+ *'
nkBi

(5.42)

(5.46)

and the ^kts satisfy the power constraint

£>*¥*, = Pt-. (5.47)

We now show that fixed frequency division dominates time division. Suppose we

use the power aUocations $jt, which achieve the maximum time division rate in (5.44) for

a fixed frequency division scheme. This power allocation is included in the set over which
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(5.44) is maximized, so we need only show that frequency division dominates time division

in this case. Using these $kis, we achieve the frequency division rates

(Pi, P2) =£ *k(Ck(*kl >Pi), Ck($k2 ,B2))- (5.48)

The rate vector (5.48) is a linear combination of fixed frequency division rate vectors for the

nk channels. From §5.1.2,varying the bandwidth partition (B\,B2) yields a convex capacity

region for each channel nk. Therefore, varying Pi and P2 in (5.48) over a range of values for

which Pi + P2 = B yields a linear combination of convex regions, so the resulting capacity

region is convex. Moreover, since the power allocations are the same, the endpoints of the

regions defined by (5.48) and (5.44) are also the same (i.e., allocating aU the transmission

time to user i with time division is the same as allocating all the bandwidth to user i

with frequency division). Since the time division boundary is hnear, the frequency division

boundary is concave, and the two boundaries have the same endpoints, fixed frequency

division strictly dominates time division with this power allocation.

We conclude by showing the dominance of superposition codes over frequency

division. Consider any point on the boundary of the frequency division rateregion, as given

by (5.48). Corresponding to that point will be a bandwidth partition (Pi,P2) and a set of

transmit power values ($*i,$*2)JtLi for each of the K channel states. Then from §5.1.2, a
superposition code can achieve any rate point

*. =flog
Pi +P2=2-log 1 +

$fr + $k2
nkB

and within this region there is a rate point which dominates frequency division on channel

nk. Thus, a linear combination of (5.49) dominates (5.48).

5.4 Interference in Cellular Systems

The capacity results above assume multiple users sharing the same frequency band

through either an orthogonal (FDMA/TDMA) or semi-orthogonal (CDMA) partition of the

spectrum. As was discussed in §2.3, the spectral efficiency over a large geographical area for

any of these partition techniques can generally be increased by reusing the same frequency,

time slot, or code at spatially separated cells, where the power falloff with distance reduces

(5.49)
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the effect of the intercell interference. The magnitude of the interceU interference depends
on both the distance between the interfering transmitters and the intended receiver as weU
as the propagation lawsgoverning the interferers' transmissions.

The interference distribution isgenerally assumed to be Gaussian. Thisis a reason

able assumption for CDMA systems, where there axe many intraceU and interceU interferers,
so the Gaussian distribution follows from the law oflarge numbers. With FDMA orTDMA,
however, there is usually only a few dominant interferers3, so the white noise assumption
is generally not valid. For capacity calculations, Gaussian interference is a worst-case noise

assumption [84], and under this assumption the capacity-achieving transmit spectrum for

all users (i.e. signal and interference) is Gaussian. Most cellular systems are interference

limited, meaning that the receiver noise power is generally much less than the interference

power, and can hence be neglected.

In the foUowing sections, we first define the area spectral efficiency, which quan

tifies the effect of in-cell and out-of-ceU interference on ceUular system capacity. We then

outline some methods of interference mitigation including antenna sectorization, voice activ

ity monitoring, and interference canceUation. We also discuss the effects of power control on

intracell and intercell interference, and conclude with a proposal for a hybrid power control

algorithm which adapts to the system traffic load, channel characteristics, and performance

specifications of each user.

5.4.1 Reuse Distance and Area Efficiency

Let the radius of a ceU be normalized to one, and define the reuse distance Rp to

be the minimum distance between any two base stations that use the same code, frequency,

or time slot. The reuse distance is iUustrated in Figure 5.13 for frequency division. Let

the area spectral efficiency of a ceU be defined as the total bit rate/Hz/unit area that is

supported by a cell's base station. Since a code, time slot, or frequency slot is reused at

a distance Pc the area covered by one of these partitions is roughly 7r(.5Prj>)2. The area

spectral efficiency is therefore approximated by

3The interference comes from the closest ring of cells (Figure 2.7). On the forward link, one or two
mobiles which are close to the cell boundaries will generally dominate the interference. On the reverse link,
there are at most six interfering base stations for hexagonal cells.
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Figure 5.13: Reuse Distance.
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where N is the total number of users per cell, Rj is the data rate of the jth user, and P is

the bandwidth occupied by each user.

If we can shrink the reuse distance without changing the Pjs, then the area effi

ciency can be increased. However, decreasing the reuse distance increases interceU inter

ference (since the interference travels a shorter distance), thereby reducing the S/I of each

user. Since Rj is an increasing function of S/I, the numerator and denominator of (5.50)

are both increasing functions of Rr>. Therefore, in order to maximize the area efficiency

relative to Rr>, we must first determine Rj for all j as a function of Pp, then maximize

(5.50) relative to Rry.

As a simple example, consider an FDMA multiple access channelwhere the signal-

to-interference power of each user is exponentially distributed (as in Rayleigh fading). With

FDMA there is only one user per cell, so N = 1 in (5.50), and we only need to find the

rate R of this one user as a function of Rd. Assume that we have hexagonal ceUs of

diameter one. If the signalis transmitted from a midpoint between the base station and the

cell boundary, then the signal travels a distance of .25. If we assume a power falloff with

A,=
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(5.50)
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distance of d~2, the average received signal power is S= Pt(.2o)~2, where Pt is the average
transmit power for both the signal and theinterferers. We assume a pessimistic interference

model, with six interferers at the boundaries of the closest adjacent ceUs using the same
frequency band. The distance that each interferer travels is therefore RD - .5, the frequency
reuse distance minus the cell radius. Since interceU interference generally travels a much

farther distance than the signal, we assume an interference power falloff with distance of
d~4, so the average interference power is 7 = 6P<(Pz> - .5)-4. We use this model to obtain
the average signal-to-interference 7 = 5/7 as a function of reuse distance, then calculate

P from the single-user time-varying capacity formula (3.25). This calculation yields the

following table of efficiency values as a function of Rr).

Rd lidB) P Ae
1 -7.78 .34 .43

2 11.30 3.34 1.06

3 20.18 5.95 .84

4 26.02 7.80 .62

The table suggests that for this simple model, Rd = 2 maximizes area efficiency.

The calculation of Rj from (3.25) wiU depend on the distribution of the jth user's

signal-to-interference ratio jj. In the previousexample we assumed a Rayleigh distribution,

independent of the power control pohcy; in general this distribution wiU depend on the power

control policy of both the signal and the interferers. Therefore, the power control policy that

maximizes a single user's data rate may not maximize the area efficiency, since increasing the

signal power of one user increases that user's interference to everyone else. Determining the

power control policy that maximizes area efficiency is a complex optimization problem which

will depend on the spectrum partitioning technique, propagation characteristics, system

layout, and the number of users. This optimization may be too complex for analysis,

and therefore suboptimal techniques must be considered. We propose such a scheme, which

combines some of the benefits of both the constant power and the water-filling power control

pohcies, in §5.4.4.

If we fix the power control pohcy, and assume a particular set of system parameters,

then the distribution of 7j can be determined either analytically or via simulation. The

distribution of fj for CDMA systems (i.e., with both intraceU and interceU interference),

assuming Gaussian interference and the constant power control pohcy, has been determined

analytically in [38, 85, 86], and via simulationin [87, 88]. The distribution of 7 j for CDMA
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under other power control policies, and for FDMA and TDMA under any form of power

control, has not yet been determined. With these distributions, a comprehensive comparison

of area efficiency under different power control policies and spectrum partitioning methods

could be done using the methods described above. However,even if such a study finds that

water-filling achieves the highest area efficiency, it stiU might not be the best power control

policy to use, since the user data rates change with the channel variation, and therefore

cannot be guaranteed over any given time interval. In §5.4.4 we wiU discuss some of the

performance tradeoffs other than area efficiency which must be considered in the design of

power control policies.

5.4.2 Interference Mitigation

The area efficiency for any of the three spectrum-sharing techniques will be in

creased if interference can be reduced while maintaining the same number of users per

cell and the same reuse distance. Several techniques have been proposed to accomplish

this, including speech gating, sectorization of the base station antennas, and interference

cancellation. We now describe each of these techniques in somewhat more detail.

Speech gating takes advantage of the fact that in duplex voice transmission, each

speaker is only active approximately 40% of the time [89]. If voice activity is monitored,

and transmission suppressed when no voice is present, then overall interference caused by

the voice transmission is reduced. If we denote the average percentage of time that voice

is active by p, then through speech gating the average power of both intraceU and interceU

interference is reduced by p.

Antenna sectorization refers to the use of directional transmit and receive antennas

at the base station. For example, if the 360° omni base station antenna is divided into three

sectors to be covered by three directional antennas of 120° beamwidths, then the interferers

seen by each directional antenna is one third the number that would be seen by the omni.

If Ns denotes the number of directional antennas used to cover the 360° beamwidth then,

on average, antenna sectorization reduces the total interference power by a factor of Ns-

Another method of mitigating interference in CDMA systems is multiuser detec

tion. The received CDMA signal is a superposition of each user's signal, where user i
modulates its data sequence with a unique spreadingcode. The multiuser detector for such

a received signal jointly detects the data sequences of all users: if the data sequences of
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the interference is known, then it can be subtracted out from the desired signal, as in the
superposition coding techniques described above. The optimal receiver for CDMA joint
detection was derived by Verdii in [90]; it uses a bank of matched filters and the Viterbi

algorithm to determine either the maximum-hkehhood set of received signal sequences or
the set of signal sequences with minimum error probabihty. However, the complexity of
this optimal receiver structure is exponential in the number of interfering users, making
the receiver impractical for systems with many interferers. The detection algorithm also
requires knowledge of the signal energies, which is not always available.

Several suboptimal multidetection schemes which are more practical to implement

have also been developed. A multiuser decorrelator for joint detection which does not re

quire knowledge of the user energies and with complexity that is only hnear in the number

of users was proposed in [91] and [92] for synchronous and asynchronous users, respec

tively. Multistage detectors [93, 94] decode the users' signals sequentially in decreasing

order of their received power. Specifically, the highest-power signal is detected using a

conventional CDMA receiver (i.e., all interference signals are treated as noise). This signal

is then subtracted from the total received signal, and then the highest-power remaining

signal is detected. This successive interference cancellation is done until aU signals have

been estimated. The decision-feedback detector, proposed in [95], uses both forward and

feedback filters to remove multiuser interference. As with decision-feedback equalization,

this approach suffers from error propagation. The multistage detectors generally yield bet

ter performance than the decorrelator and decision-feedback detectors at a cost of increased

complexity (although still linear in the number of users). These detectors were designed

for AWGN channels, while more recent studies have looked at multiuser detection in fading

channels [96, 97].

A common interference problem for CDMA systems with conventional detectors is

the "near-far" effect on the forward hnk, which refers to a signal having a poor transmission

path to the base station and the interferers having strong paths. In this case, the interference

power is still quite large even after despreading. Power control can reduce the near-far effect,

as we will discuss in the following section. However, multiuser detection schemes inherently

compensate for the near-far effect, since they are designed to detect all signals jointly. Since

strong interferers are easily detected and subtracted out, the multiuser detection schemes

generally work best when the received signals are at different power levels. Thus, the

water-filling power control policy might be weU-suited for a CDMA system with multiuser
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detection, since the data rates of some users can be increased without causing degradation

to the weaker users.

5.4.3 Power Control Impact on Interference

Figure 5.14: Interference Effects.

In this section we describe the impact of power control on intracell and interceU

interference, including the near-far effect discussed above. Consider first the case of intra

cell interference on the forward hnk (mobile to base station), where two users A\ and A2

are transmitting to the same base station, as shown in Figure 5.14. RecaU that intraceU

interference only occurs in CDMA systems, since with FDMA or TDMA only one user is

assigned to each frequency or time slot in the ceU. If both A\ and A2 transmit at the

same power level, then the signal received by the base station from Ai wiU generaUy be

stronger than the signal received by A2. Therefore, the interference caused by Ai to A2 wiU

be strong even after despreading. This difference in received signal strength is called the

near-far effect. Tocompensate for this effect, the constant power policy of §3.3.2 is used to

equalize the receive power ofall users within a cell. With this policy, the received power of
users Ai and A2 at the base station is the same, regardless of their individual path losses,

so the signal-to-interference power after receiver processing equals the spreading gain. The
water-filling policy of§3.3.1 has theopposite effect: since Ai has a good signal path it wiU
increase its transmit power, while A2 has a bad signal path, so it wiU decrease its signal
power. Moreover, this policy has a recursive effect: Ai increasing its power causes A2 to

have an even worse channel, so A2 wiU lower its power. This decreases the interference to

j4i, so Ai increases its power further, and so on. Roughly speaking, the constant power
policy equalizes the performance ofaU users in the ceU, while water-filling tends to remove
all users from the ceU except the one with the most favorable channel. Therefore, if we
consider only intracell interference effects, the water-filling policy is unacceptable when all
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the users within a cell require aguaranteed rate at aU times. However, it may have a higher
throughput in a system where the users within a ceU can tolerate long periods ofno trans
mission with an occasional burst of very high-rate data, as in packet radio systems. -This
assumes that all the users within a ceU wiU eventually have the best signal path to the base
station.

The effect of these two power control pohcies on interceU interference is quite

different. Again refering to Figure 5.14, suppose we have interceU* interferers Pi and B2

from cell P coupling into ceU A. Without power control, the interference power from Pi

will be strong, since it is close to the boundary of ceU A, while the interference from P2 has

much farther to travel to the base station of cell A, and will therefore be weaker. With the

constant power policy, Pi will transmit at a high power since it is far from its base station,

and this will cause a higher level of interference in cell A. Since P2 reduces power with

this pohcy, and it is far from cell 4's base station, the constant power pohcy has the effect

of magnifying the power of interferers near ceU P's boundary while reducing the power of

interferers close to ceU P's base station. Conversely, the water-filhng power control wiU

cause Pi to lower its power and P2 to increase its power, so that the interceU interferers

in cell P have approximately the same amount of power coupling into ceU A's base station,

regardless of their location in cell P. Since the dominant interceU interferers are generally

near the cell boundaries, water-filling will significantly reduce interceU interference on the

forward link.

For the reverse hnk, the intracell interference and signal are both transmitted

from the base station, so their path loss at any point within cell A is the same. Therefore,

no power control is required to equalize the received signal strength of the signal and

interference (equivalently, the constant power policy for the reverse hnk is achieved with no

power control). Water-filhng power control has the same recursive effect as in the forward

link: since Ai has a good path, the base station transmits to Ai at a high power, which

will cause interference to ^2, so transmit power to A2 is reduced, and so on. Hence, the

effect of these two power controls policies on intraceU interference is roughly the same for

both the forward hnk and the reverse hnk.

For intercell interferers, if the base station is sending to Pi and P2 at the same

power level, then the location of Pi and P2 wiU not affect the amount of power coupling

in to cell A. With water-filhng, the base station wiU send at a higher power to P2 and a

lower power to Pi, but these interference signals have the same path loss to the mobiles in
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cell A. Therefore, it is difficult to say which power control policy will cause worse intercell

interference on the reverse hnk.

5.4.4 Hybrid Power Control

Wre now propose a hybrid power control scheme that incorporates the benefits of

both constant power control (guaranteed performance for aU users) and water-filhng (in

creased efficiency when the channel is favorable). This scheme has the capabihty to accom

modate different performance specifications for each user in the system, and to determine

when additional users can access the system.

The "best" power control pohcy, as part of the overaU system design, wiU depend

on the performance criterion of each user, as weU as on the overall system requirements.

These criteria may include average efficiency, minimum guaranteed data rate, outage prob

ability, delay constraint, total system throughput, maximum/minimum number of users,

and the overall system complexity. Many of these criteria require tradeoffs; for example,

we've seen in the single user case that the constant power control pohcy is fair to all users

in the system but has a lower averageefficiency than water-filling.

It is also desirable that the system accommodate heterogeneous traffic with dif

ferent performance criteria, for example a high-rate user with delay-tolerant data and a

user with low rate delay-constrained voice traffic. Moreover, if the overall traffic on the

system is low, then additional users should be able to access the system. We now propose

a power control and adaptive data rate scheme which combines both water-filhng and con

stant power control to achieve these twogoals. The basic idea is .to provide a higher level

of performance to users with favorable channels while maintaining a minimum performance

threshold for aU users.

The algorithm requires global system knowledge in the base stations. Specifically,

we assume that each base station knows the transmit and receive power level of mobiles

within its ceU, and in the adjacent interfering ceUs. Equivalently, the base stations know

the transmit power level and path loss of aU intraceU and interceU mobiles. Typically,

a base station only knows the transmit power level of mobiles within its own ceU, and

the total interference level. The additional information we require can be obtained by an

information exchange between the base stations of their mobiles' transmit power levels,

and through transmission of base station pilot tones to determine the path loss values for
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interceU mobiles [98].

There are basicaUy three steps to the algorithm, which we summarize below and
then describe in more detail.

1. Determine the power control vector for all users to maintain the threshold received

SNR required for minimum performance. This defines the feasibility region.

2. Increase the power of the users with the best channels by some increment. Confirm

that the new vector is feasible. Continue the process until a user drops below its
minimum required SNR.

3. As conditions change and/or new users request access to the system, the powercontrol

vector is updated.

We initially assume that all users are transmitting at a power level such that their

received S/I is sufficient to maintain the minimum performance specification (data rate and

BER) specified by each user. The S/I of user i in ceU j is given by

Gi,Pi,
J2m-1 12k=l,k^i^kmPkmB

where Gi} is the path loss from the ith user in the jth ceU to its base station, Ptj is
the transmit power of the ith user in the jth ceU, M is the total number of ceUs, Km is

the number of users in the Arth ceU, G3k is the path loss of the fcth user in the mth cell

to the base station in the jth ceU, and P is the spreading gain if the system is CDMA

(otherwise P = 1). Since aU these parameters are known, it is easy to see if the minimum

S/I specifications for each user are met for a particular set of transmit power levels, or

power vector. A power vector which satisfies this specification hes in the feasibility region

of all possible power vectors. We assume that new users are only allowed on to the system

if a set of transmit powers can be found which lies in this feasibility region. Necessary and

sufficient conditions for the existence of feasible power vectors for a TDMA system have

been derived in [98].

Suppose we have a vector in the feasibility region, so that all users are operating

at their minimum S/I specification. If there is excess capacity available in the system, then

how should it be divided among all the users? One method would be to increment the power

of all users equally by an amount such that the power vector stiU hes in the feasibility region.

S{i ~ ^M Wvv' ^i r, ^' (5-51)
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Such an increase would allow aU the users to either increase their data rates or reduce their

BERs. However, some of the users might not be able to increase their data rate or gain

much from a decreased BER; for example, users with only voice traffic. Moreover, a slight

increase in power of one mobile might cause a large increase in interference to other mobiles,

so that this power increase is not being used efficiently. Based on the water-filling pohcy, we

therefore propose that the excess capacity be allocated to the users with the best channels

(high S/I), since they can gain the most capacity increase by a small power increase. This

is the philosophy behind the second step in the power control algorithm: the users with

the best channels are allowe'd to increase their power by some increment until the S/I of all

users lies on the boundary of the feasibility region. This also allows a single user to have

heterogeneous traffic, so that its minimum S/I can be specified for constant rate (voice and

data) traffic, and when a good channel is available, packetized high-rate data can be sent.

The intercell interference caused by this powerincrease is smaU, since generaUy the mobiles

with good channels will be close to their base stations (and therefore far away from other

base stations). However, intraceU interference would be increased.

Since the system is dynamic, the path loss factors wiU be constantly changing,

which will require adjustments to the transmit power values such that they remain in the

feasibility region. Suppose now that we have completed the second step of the algorithm,
and the transmit power vector is on the feasibihty region boundary. If a new user requests

access to the system at a particular minimum S/I, then clearly some ofthe power levels must

be lowered to accommodate it. Since some ofthe users are operating above their minimum

S/I ratios, these users can return to these minimum levels, and then the feasibility of the
system with the new user can be confirmed. If there is no such feasible power vector, then

the new user is either denied access, or granted access at a lower S/I which can achieve a
feasible vector.

The advantages of this algorithm are its adaptability to changing conditions, its

efficient allocation ofexcess system capacity, itsability toaccommodate heterogeneous users
with different data requirements, and its built-in capability to process new access requests.
Obviously much work remains to specify the exact details of the algorithm and determine
its performance.
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5.5 Summary

In this chapter we first reviewed the achievable rate regions for multiuser time-
invariant AWGN channels under TDMA, FDMA, and CDMA spectrum-sharing techniques.
We consider both broadcast and multiaccess channels, which model the reverse and forward

links, respectively, of a ceUular system. We show that for both these channels, TDMA and

FDMA are equivalent if the TDMA power can be varied, and both these techniques are
inferior to CDMA with interference canceUation. We also show that without interference

cancellation, CDMA is inferior to the other techniques. We then combine the time-varying
single-user analysis of §3.3 with these rate region results to obtain the multiuser time-

varying rate region for narrowband broadcast and multiaccess channels. In general, the

relative performance of TDMA, FDMA, and CDMA is the same in this case as in the

time-invariant case.

These rate region results cannot be applied directly to ceUular systems, since

frequency reuse is not taken into account. We therefore define the area efficiency as the

data rate/Hz/unit area, with interference effects included in the data rate calculation. We

compute the area efficiency for a simple interference model, and show areaefficiency can be

used to determine the optimal frequency reuse distance. We also discuss some methods of

interference mitigation such as antenna sectorization,voice gating, and multiuser detection.

Power control is commonly used in CDMA systems to equalize interference within

a cell, however this aggravates the interceU interference. We analyze the impact of the

water-filhng and constant power control policies on both intraceU and intercell interference.

We then use the general conclusions of this analysis to propose a hybrid power control

policy which exploits the advantages of both pohcies. This hybrid scheme is also adaptive

to changes in channel conditions, user requirements, and overaU system loading.
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Chapter 6

Wireless Networks

The wireless networking vision for the next decade, as shown in Figure 6.1, is to

provide high-speed, high-quality mobile voice and data communication anywhere and any

time. The previous chapters addressed techniques for the single-user and multiuser wireless

communication hnks that support these applications. We now consider internetworking of

various wireless subnetworks. The network infrastructure must be able to support different

applications with very different data types, coverage requirements, and system specifica

tions. In addition, this infrastructure must provide seamless communication between the

different wireless applications, as weU as interconnection to the backbone wirehne network

supporting the Public Switched Telecommunications Network (PSTN) and Integrated Ser
vices Data Network (ISDN), as well as the Internet.

We begin this chapter by outlining the various wireless applications currently in
demand. We then examine the infrastructure necessary to interconnect these different ap
plications. In Figure 6.1 internetworking is accomphshed via a wireless gateway which
connects the wireless subnets to each other and to a high-speed fiber backbone. However,

this infrastructure creates an enormous bottleneck at the gateway. A hierarchical infrastruc

ture alleviates this problem, and also provides more flexibility to accommodate the different

requirements of the various subnetworks. We propose such an infrastructure in §6.2.

Another major design element in the network ismobihty management and routing.
Specifically, the network must be able to locate and routedata betweenhundreds of millions

of mobiles located over a very large geographical area in an efficient manner. Existing
techniques for location of mobile units are paging and registration. The paging technique
is very wasteful ofbandwidth if the mobiles are located over a large geographical area, so it
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is certainly impractical for routing between the subnetworks of Figure 6.1. The registration

technique currently requires a mobile to register its location at a central database whenever

it is outside its home location. The central database will quickly fiU up for a large number

of users, suggesting that distributed databases for mobile location must be used. In §6.3

we propose mobility management techniques similar to those used for caU-forwarding in

the wireline Intelligent Network [99] and roaming in ceUular systems. Routing strategies

through both the wireless and wirehne infrastructure are also discussed in this section.

We conclude with a brief discussion about some other issues in the wireless network

design, including network security, pricing, and control.

6.1 Wireless Applications

In this section we describe the various wireless apphcations that are currently in

demand. We will also reference existing or proposed systems that meet these demands.

More details on these systems can be found in [100, 101] and the references therein.

1. Voice communication in or near the home. This demand is partially met by existing

cordless phone technology. Coverage of these systems is currently limited to within

close range of the wireless base. Second-generation cordless phones (DECT, CT-2)

aim to increase coverage by aUowing the wireless headset to access many base stations
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within a given area, where the base stations are coordinated by a central switch. The

headsets are assumed to be stationary or slowly-moving, so there is no handover

between base stations. These base stations wiU also be set up in pubhc areas like

airports and shopping centers.

2. Voice communication in offices. The second-generation cordless phones wiU also act

as wireless PBXs to provide voice communication throughout office buildings. Some

handover in these systems may be required as people move between floors or down

long corridors.

3. Voice communication in vehicles. This demand is currently being met in the U.S. with

the analog ceUular system AMPS. Second-generation systems are digital, providing

greater capacity and voice quality. Several different standards have been proposed for

these systems, including the GSM standard for Europe, the JDC standard for Japan,

and the IS-54 and IS-95 standards for the United States. None of these standards

are compatible. Further increases in capacity wiU be achieved by shrinking the cell

size from its current one to five mile radius (macroceU) to a one thousand foot radius

(microcell).

4. Ubiquitous low-speed data and voice devices - the personal communicator. These de

vices are targeted for use in homes and offices, as weU as outdoors in residential and

urban areas. The devices must be "pocket-sized", hence low-power. These communi

cators are similar in concept to pagers,except that they allowtwo-way communication

and real-time voice. No products have yet been developed for this application.

5. High-speed data in buildings. These systems are oriented towards replacing the Eth

ernet with more easily configurable wireless network. Existing products include Mo

torola's Altair and NCR's WaveLAN, both operating around 5 Mbps. Higher-rate

systems are stiU in the research stage. Many of the proposed high-rate systems are

asymmetric, with a very high-speed (10-100Mbps) broadcast channel transmitting to

low-power portable devices that return data at much slower rate. Due to the high
speed requirements of the base station, and the power restriction in the portable

devices, the coverage area of these systems is small, on the order of several meters.

6- Global low-speed packet data. This need is partially met through current sateUite

paging systems, which are almost exclusively one-way. SateUite systems providing
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global full-duplex store-and-forward packet data services include Qualcomm's Omni-
TRACKS system at 5-15 Kbps and Geostar at 1.2 Kbps.

7. Global and regional voice and data. Geostationary and low-earth orbit sateUite sys
tems which provide voice and data (5-20 Kbps) transmission with global or regional
coverage include Inmarsat, MOBILESAT, and MSAT.

The ultimate goal of the wireless revolution is ubiquitous high-rate data and voice

communication through a single low-power portable device. However, due to the different

requirements and coverage areas involved in such a system, it is unlikely that, given fore

seeable technology, this goal will be met any time soon. Therefore, we wiU concentrate in

this chapter on the wireless subsystems designed to meet the needs enumerated above.

6.2 Network Architectures

Existing network architectures can be divided into basicallytwo categories: circuit-

switched networks designed for voice and packet-switched networks designed for data. In

this section we wiU first review several existing architectural paradigms for these two types

of networks. We then use these examples as a baseline to sketch a wireless network infras

tructure.

6.2.1 Circuit-Switched Network Architecture

In circuit-switched networks, two users that wish to communicate must first es

tablish a dedicated transmission path between them which is held throughout the duration

of their transmission. The dedicated line insures sequential arrival of the data, and the

data delay consists of the time necessary to estabhsh the connection. These features make

circuit-switching the preferred technology for voice telephony. In this section we wiU discuss

the architecture for the PSTN, and its extension to ceUular and cordless phone architectures.

The circuit-switched architecture for the PSTN is shown in Figure 6.2. The traffic

is generated from either telephones or data sets (such as modems), which are connected with

dedicated telephone lines to a local exchange office. If the call destination is not directly

connected to the local exchange, then the exchange determines the next local office on the

route to the final destination, and requests a connection to this office on the trunk (set of

multiple lines) connecting them. The trunk transmission may be via copper wire, fiber, or
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Figure 6.2: PSTN Architecture.

satellite radio. All trunks are full-duplex connections, so communication can take place in
either direction. If atrunk is available, it is reserved for this call. Each local exchange
office on the route to the final destination determines the next office along the route, and
establishes atrunk connection with this office. When the connection to the local exchange
office at the final destination is made, adedicated line between the call initiator and final
destination is estabhshed through these reserved trunks, and data transfer can commence.
The route can either go through several other local exchange offices, or along along-distance
trunk line. Local exchange offices which do not generate local traffic but merely serve as a
connection between other offices are caUed tandem offices. Aprivate branch exchange, or
PBX, is aprivately owned switch connected to the pubhc network. The PBX is similar to
the local exchange office, except that it is privately owned. Aremote multiplexor is used to
multiplex remote users via one transmission facihty to alocal office. It performs the same
function as aPBX, but is part of the public network rather than being privately owned.

The cellular and cordless phone architectures use the PSTN as abackbone infras
tructure, as shown in Figure 6.3. The cordless phone local base station communicates with
awireless headset via aduplex radio connection. More sophisticated headsets have several
channels available for the radio connection, with channel selection based on the amount
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Figure 6.3: Cordless and Cellular Extension to the PSTN.

of interference and noise measured on the available channels. The local base emulates the

standard telephone connection to the PSTN.

The main restriction of this architecture is the small coverage area of the local

base station and the susceptibility of the wireless headset-base connection to interference

and interception. The first of these restrictions is being corrected in second-generation

designs by changing the cordless phones from stand-alone consumer items to elements of

a geographically dispersed network. The wireless terminals wiU be able to access base

stations at thousands of pubhc locations which connect directly to the PSTN [102]. In

business environments, cordless phones wiU have access to several base stations that hand

off the user between them as it moves from one location to another.

CeUular systems have a similar structure with an intermediate mobile telephone

switching office (MTSO) to control the base stations. Each base station services a subset

of the geographical area covered by the MTSO. The base stations are essentiaUy dumb

terminals which transfer the wireless data from the mobiles via a (wireline) trunk to the
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MTSO. The MTSO monitors signal strength of each mobile on all the base stations, deter

mines the base station which should service calls to a particular mobile, and controls the

handoff and channel allocation between base stations and mobiles. Calls between mobiles

within the MTSO's service area are directly routed between the appropriate base stations

by the MTSO. Calls intended for PSTN destinations are routed through the local exchange

connected to the MTSO. To service subscribers in locations remote from their home service

areas, proprietary communication hnks are established between MTSOs to exchange mobile

location information and transfer calls.

There are several problems with this architecture, including limited capacity, cen

tralized control, and poor mobility tracking and intersystem handoff. The capacity is limited

by the number of subscribers that can be serviced with each base station; therefore, the total

system capacity can be increased by shrinking the size of the ceUs, as was discussed in §2.3.

However, this increases the processing burden on the MTSO in two ways: it must monitor

more mobiles within a given geographical area, and it must hand off mobiles between base

stations more often due to the smaller ceU size. The trend for future ceUular architectures

is to distribute these control and monitoring functions among the base station, mobile, and

MTSO. Moreover, roaming and intersystem handoff wiU be managed with standardized

signaling systems linking MTSOs and databases. We wiU discuss this further in §6.2.3.

6.2.2 Packet-Switched Network Architecture

In packet-switched networks, the data stream is first decomposed into packets

(smaller data strings whose length varies according to the network), and each packet is

labeled with the address of its destination and a sequence number. Packet switches use the

destination address to determine the next packet switch to which it should send the packet.

There may be several valid routes to the final destination. Packets share the hnk and switch

facilities with other packets routed through the network, so switches must generally queue

packets until they can be forwarded, as shown in Figure 6.4. There are essentially two

types of packet-switching: datagram packet-switching and virtual-circuit switching. With

datagram packet-switching, packets from a given source are routed independent of each

other, and since some routes may take longer than others, the packet sequence numbers

must be used to order the packets sequentiaUy at their final destination. With virtual-

circuit routing, the packets follow the same route through the network, as in the case of
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circuit-switching, except that they don't have adedicated path: some segment ofthe route
may be shared with packets traveling a different path..

Packet-switched data networks tend to fall into three categories based on the
geographical distance that they span: Local Area Networks (LANs), Metropolitan Area
Networks (MANs), and Wide Area Networks (WANs). The wireline LANs typically have a
diameter of a few kilometers, atotal data rate of at least several Mbps, and are generally
owned by a single organization. The most common LANs are ALOHA packet radio, Eth
ernet, token bus, token ring, FDDI, and DQDB. Details of these network designs can be
found in [103]. By contrast, WANs typically span entire countries, have much lower data
rates, and are generally owned by several organizations, including the ubiquitous PSTN,
since most WANS use leased lines of the PSTN for their backbone communications in

frastructure. WAN examples include IBM's SNA, DECnet, and Siemen's TRANSDATA,
among others. A MAN is a network which generally spans an entire region, like a city or
university campus, but uses essentially LAN technology or interconnected LANs. Details

on these network architectures and protocols can be found in [103, 104]

Many computers today are linked to one of the networks described above. There

fore^ computers connected to the same network can exchange information between them.

In order to build a global communications network connecting aU computers, it is necessary
to internetwork the LANs, MANs, and WANs described above. ATM is emerging as the
standard protocol for information transfer between heterogeneous data networks [103]. The
most prevalent architecture for this network interconnection, which is likely to provide the

backbone infrastructure for the information superhighway of both wirehne and wireless net

works, is the Internet. A segment of the basic Internet architecture is shown in Figure 6.5.
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Descriptions of the specific networks shown in this figure can be found in [103].
The Internet is primarily a hierarchical network centered around the backbone

ARPANET. At the lowest level of the hierarchy are LANs, which are generally private
networks to connect computers in one office building or university department. These LANs

can be connected by bridges, which basicaUy store and forward frames between different

LANs [104]. A linked set of LANs may span a group ofoffices or a university campus. In
orderfor a LAN or MAN to communicate with a hostsome distance away, it needs to transfer

its data across a WAN. A gateway, which connects dissimilar networks, is used to connect

LANs and WANs. Thegateway issimilar in function to a bridge, however it must generally

make more changes in the data structures to make the networks that it transfers between

compatible (for example, a gateway can convert between different addressing formats).

Finally, the WANs connect via a gateway to the ARPANET, which has worldwide network

nodes. Other global networks have recently been incorporated into the Internet to expand

access, including BITNET and NSFNET, among others. The Internet therefore connects

millions of globally dispersed computers through these sequences of network connections.

However, the Internet is designed for transfer of data, and does not guarantee any minimum

delay or maximum rate for data transfer. Therefore, it cannot accommodate a large number

of users with delay-constrained data, like voice or video.

6.2.3 A Proposed Architecture for Hybrid Wireless Networks

In order to support voice, video, and data traffic, the wireless network infrastruc

ture will require a combination of circuit and packet-switched architectures. It will also

hkely interconnect with the evolving PSTN/ISDN network and the Internet. The wireless

subsystems described in §6.1 have analogies with wirehne networks relative to their cover

age areas: cordless phone systems and high-speed indoor data systems cover roughly the

same area as wirehne LANs, current ceUular systems and second-generation ceUular and

cordless technologies wiU span distances of wirehne MANs, and sateUite systems cover the

large geographical regions of WANs, in fact many of the WANs on the Internet already use

sateUite communication hnks. These analogies suggest that a hierarchical structure simi

lar to that of the Internet will provide the most flexibility in the network architecture, as

well as backward compatibility with existing wireless subsystems. A proposed hierarchical

structure for the evolving network is shown in Figure 6.6.
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The cellular clusters in this figure represent self-contained wireless networks, for
example an AMPS cellular system, or a second-generation cordless phone system. We
assume that routing, handover, and control functions within these ceUular clusters are

self-contained, although some of these functions could be better optimized by relying on
higher levels within the hierarchy, particularly for handover [105]. The picoceUs of this
figure represent apphcations spanning approximately five to ten meters in diameter, and
therefore provide coverage within a small office, cubicle, or classroom. Microcells cover

applications over kilometer distances, and provide coverage over a city block or a floor
within a large office. Macrocells span roughly ten kilometers, and cover large areas within
cities or suburban areas. Finally, the sateUite ceU generally spans very large distances,
although directional spot beams can be used to provide coverage within the smaUer cell
sizes ofmacrocells and microcells. Thus, sateUite beams can be used to relieve congestion
within cellular systems that are below it in the network hierarchy.

The gateways of Figure 6.6 wiU perform the same function as gateways on the

Internet: convertingprotocolsbetween networks to make them compatible. The wireless-to-

wireless gatewaysrequire multimodetransceiver hardware, for example sateUite and ceUular

phone capabilities. To reduce transceiver size, it is desirable to use many of the same

hardware components for the different transceiver functions. However, this design goal has

proved difficult to accomplish in current dual-mode analog AMPS and digital IS-95 ceUular

transceivers, whose modes of operations have much more in common than the modes of a

satellite/cellular phone transceiver. In any event, buildinglight-weighthandheld multimode

transceivers will become easier through technological advances in component size and power

reduction.

Communication between cellular systems within the hierarchy can be strictly

through the wireless infrastructure, strictly through the backbone wirehne network, or

through some combination of the two. It is hkely that the reliance on the wirehne in

frastructure will persist for quite some time, for several reasons. First of all, current ceUular

and cordless phone systems use the PSTN for routing, and wireless LANs use the Internet.

New generations of these systems wiU require backward-compatibility with their older pre

decessors. Moreover, the cost of building a completely wireless infrastructure may not be

justified by current or future demand. Therefore, the existing wirehne infrastructure allows

for the introduction of new wireless services at an increment cost. Its also not clear that

a wireless infrastructure could ever fully support the demand for wireless services without
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a wireline backbone, given the capacity hmitations of the wireless channel. Finally, the

exchange of backbone control and routing information between base stations within and

between ceUular subsystems may be more effective using wirehne network technology.

In the wireless communication services described in 6.1, the coverage area and

data rates for each system are inversely proportional. This is due mainly to the fact that

high data rates require high power, and power dissipates with distance. Moreover, the cost

of implementing a system with a large coverage area (e.g., launching a sateUite or laying

fiber throughout a city), is generally much greater than the costs associated with a smaU

coverage system. Therefore, the bandwidth of the large coverage systems must be divided

among many users to recoup this cost. This inverse data rate-coverage area relationship

implies that, moving up the hierarchy of Figure 6.6, systems provide greater mobility but

less bandwidth. Hence, within the global communication infrastructure, there wiU be low-

mobility high-bandwidth communication islands connected by high-mobility low-bandwidth

bridges. In this context, the terms "high" and "low" are relative to the level within the

hierarchy of Figure 6.6.

The frequency spectrum available for wireless services is scarce, and thus many

of the systems within the wireless network hierarchy wiU operate in the same frequency

band. Spectrum-sharing techniques were discussed in the previous chapter in the context

of a single system. However, it's not clear if these multiuser spectrum-sharing results apply

to users with different coverage areas, power levels, and propagation characteristics.

6.3 Mobility Management and Routing

In the PSTN and the Internet, terminals (or ports) are assigned identification

numbers associated with their physical location. However, within the wireless infrastructure

of Figure 6.6, the network must be able to locate and transmit data to an end user based

only on a personal identification number (PIN) which is independent of the user's location

or communication device. The PIN is required to deliver true mobility to the user, since
it separates the user's logical address from the physical address of the port used to access

the network. It also allows different apphcations to send to data a user's address, rather
than a device address, eliminating the need for one user to have a separate address for each

wireless device (e.g., computer, ceUular phone, fax machine). The network must manage
the association between the user's PIN and current physical address inorder to route traffic,
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regardless of the user's location, type of wireless device, or layer of the network hierarchy
through which it is connected. Of course, the type of data that can be transferred is
ultimately restricted by the wireless device and network capabilities. . ,

The process of locating auser and routing acall are somewhat separate, since once
auser's location is known, there wiU generaUy be many possible ways of routing calls to
it. There are several methods for locating mobile users. One technique, currently used in
ceUular systems, is for PINs to be assigned to aunique home location gateway. This is the
gateway through which the user generally connects to the wireless or wirehne network. If a
user is not connected through this home gateway, the address of the gateway through which
the user is connected, (its visiting gateway), is sent to ahome location database (HLD)
within the home gateway's ceUular cluster. For a caU initiator to determine the location
of a particular user, it need only query the home gateway. These roaming mobiles that
are away from their home gateways will also be registered in the visitor location database

(VLD) of their visiting gateways. A particular ceUular system may have multiple home
gateways, since it may connect to a higher level in the wireless network, the PSTN/ISDN
network,and the Internet, as shown in Figure 6.6 for the shaded ceUular cluster. All threeof

these home gateways can access the HLD and forward information about a user's location.

The main disadvantage.of this technique is the amount ofcontrol traffic necessary to keep
updating the location databases for highly mobile users. Moreover, if the network latency
is high relative to user mobility, the location information may be outdated by the time it is
received by the query intiator.

The location information may also be stored at databases located higher up in

the wireless network hierarchy than the home location gateway. For example, the location

database for users within a picoceU could be stored in a microceU or macroceU cluster above

the picoceU in the network hierarchy. This reduces the amount of traffic associated with

location queries and updates, since these messages would not have to traverse as many

levels in the network hierarchy to reach the location databases. One disadvantage of this
method is the increased size and complexity of the location databases. It would alsobe more

difficult for wireline networks which connect directly to a user's home gateway to get that
user's location, since the information is stored higher up in the wireless hierarchy. A hybrid

solution would be to have location databases distributed at several levels throughout the

hierarchy. The most efficient means of distributing location information in these databases

would depend on the particulars of the wireless and wireline network interconnections.
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Routing through the network wiU be of two types depending on the data con

straints: circuit-oriented routing which guarantees sequential data arrival within a delay

constraint for real-time data, and packet-oriented routing which has no constraint on the

time-arrival of the data packets. For circuit-switching, the network would need to locate the

mobile destination, and dedicate wireless or wirehne hnks through the hierarchy between

the sender and destination. Packet-oriented routing could be done using techniques based

on the Internet routing protocol with some slight modifications for packet-forwarding as

mobiles relocate [106].

Since the wirehne network already has established routing procedures, and will

eventuaUy convert to fiber which has a much higher bandwidth and reliability than wireless

technology, it would appear that the most efficient routing schemes would connect into the

wireline network as soon as possible. However, it may be prudent to route circuit-oriented

data through one level higher up in the wireless network hierarchy than necessary. With

this technique, when a mobile passes between different systems at a particular hierarchy

level, call handover between these two systems can be managed by the higher-level network,

reducing the chance of call interruption [105]. Moreover, it's not clear that going through

the wireline network is the most efficient routing scheme between two wireless systems,

especially if the systems have dual mode gateways which would aUow them to talk to

each other directly. Developing and analyzing routing protocols for the emerging wireless
network infrastructure is an important area of research that has received little attention

to date, despite the fact that it will ultimately determine the performance of ubiquitous
communication between mobiles.

6.4 Other Issues

Network Security - Wireless data transmission raises questions about network se

curity and privacy, since anyone with a monopole antenna and simple radio can intercept
conversations, orattempt to access the network. This has been a major problem for analog
cellular systems. Conversion to digital technology on second-generation cordless and cel
lular systems will allow encryption and authentication more readily than on their analog
predecessors. However, it's not clear whether these techniques wiU be applicable to a gen
eral wireless infrastructure of nonhomogeneous networks, with network control distributed
throughout the system.
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Network Pricing - Pricing for data transfer across a range of nonhomogeneous
networks will affect both user demand, and possibly routing strategies. The cost ofrouting
data wiU depend on the type of service guarantees required, which may determine whether
a call is routed through the wireless or wirehne infrastructure. The cost of current ceUular

technology has not dropped as was once anticipated, and if the price of services within
the wireless network are not competitive with wirehne services then demand may not be
sufficient to support an interconnected wireless infrastructure. Pricing for different services
traversing wireline nonhomogeneous networks is an area of current research, and it would

seem that the addition of wireless services wiU only make the problem more difficult.

Local and Global Control - Network control functions include fault detection and

correction, performance monitoring, network topology monitoring, traffic monitoring and

billing, and security. These functions are generaUy assumed at both the local and global

levels within the network. Many of the control requirements for the wireless network in

frastructure are similar to those in wireline networks, and current proposals for wireline

network management will be applicable to wireless networks also. However, the changing

topology of wireless networks wiU require many of these control functions to be performed

more frequently, and may change the level within the hierarchy where certain functions are

best performed.

6.5 Summary

After outhning some of the wireless applications currently in demand, we discuss

the implementation of a wireless network supporting these applications. We first propose

an architecture to interconnect various wireless and wirehne subnetworks with different

coverage areas and requirements. We then discuss a few schemes for locating mobile units,

regardless of their physical location in the network. The routing of different types of data

is also discussed. We conclude by addressing network security, pricing, and control issues.

The topics in this chapter are still very much in the research stage, and the discussion

throughout is not meant to provide definitive proposals for the design of the global wireless

network, but rather to outhne the various design issues that must be addressed to ultimately

connect all the wireless subsystems currently under development.
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Chapter 7

Conclusions and Future Work

The wireless communication vision of high-speed high-quality information ex
change between portable devices located anywhere in the world faces many technical hurdles.
In this thesis we mainly focussed on techniques to improve the quality and achievable data
rates of single and multiple users over time-varying communication links. In particular,
we derived the capacity of a single-user time-varying channel with channel state informa
tion available at the transmitter, and proposed a variable-rate coded modulation scheme
that achieved data rates approaching this capacity limit. We also developed a reduced-
complexity maximum-hkehhood sequence detector for the case when only the distribution
of the channel variation is known. Multiuser rate regions for narrowband time-varying
channels under different spectrum-sharing methods were also evaluated. Finally, an infras
tructure to support nonhomogeneous wireless applications was proposed.

7.1 Conclusions

Two important conclusions can be drawn from Chapter 2: the wireless communi
cations link has many impairments, and these impairments vary greatly depending on the
characteristics and topology of the region over which the signal propagates. In particular,
changing the distance the signal propagates or the height of the transmitting or receiv
ing antennas fundamentally changes the model for signal propagation. Therefore, analysis
of a system designed for alarge coverage area wiU generaUy not apply to the system's
performance over a small coverage area.

From Chapter 3we conclude that optimizing the transmit signal spectrum to the
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channel variation maximizes the achievable data rate on time-varying channels. In partic
ular, Shannon's theorem of maximizing efficiency on fixed wideband channels through a
"water-filling" in frequency of the transmit power spectrum extends to a two-dimensional

water-filhng in both frequency and time. Applying these results to narrowband channels,
we conclude that the pohcy which maximizes the average data rate transmits more power
and data when the channel is good and less power and data when the channel is bad. This

may seem intuitive, but it is theexact opposite of power control policies being implemented
in current ceUular systems. However, this optimal policy does not take into account in

terference to other users or guaranteed data rate and delay requirements. Since the.data

rate fluctuates with the channel variation, this may not be acceptable for applications with

delay-constrained data, hke voice or video. The capacity analysis also leads to the design
of a variable-rate coded modulation scheme which achieves near-capacity rates.

Time-varying Markov channels, where the channel variation is not known but

its statistics are, were considered in Chapter 4. We found in this chapter that, even

though these channels have infinite memory, the channel variation statistics can be used

for maximum-likelihood sequence estimation without a significant increase in complexity

or delay over the conventional method of interleaving and memoryless channel encoding.

Moreover, this maximum-likelihood detection scheme achieves channel capacity for a par

ticular channel class. Finally, this scheme shows a significant capacity increase over the

conventional technique, and the increase is most pronounced on slowly-varying channels.

In Chapter 5 we looked at spectrum-sharing techniques for multiuser systems. We

found that TDMA and FDMA are equivalent if the transmit power can be varied, and we

also found that CDMA with interference canceUation is superior to FDMA/TDMA, and

inferior without the cancellation. However, these conclusions apply to spectrum-sharing

within a single cell of a ceUular system, and don't take into account interceU interference.

Including interceU interference in the achievable data rate calculation requires a new defi

nition - the area efficiency. We define this quantity and use it to obtain the optimal reuse

distance for a simple interference model under an FDMA spectrum-sharing scheme. De

termining the spectrum-sharing technique which maximizes area efficiency requires more

analysis and/or simulation to obtain the distribution of signal power under various power

control policies. We conclude this chapter by proposing a hybrid power control pohcy with

the benefits of both the constant power pohcy (guaranteed data rates) and the water-pouring

policy (increased data rates under good propagation conditions). This scheme also accom-
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modates different user specifications and channel access requests. The main conclusion to

draw from this chapter is that there is probably no "best" method of spectrum-sharing and

power control. Therefore, nontraditional and hybrid methods should be considered along

with the more traditional approaches.

The main conclusion to draw from Chapter 6 is that internetworking the het

erogeneous wireless subnetworks wiU be quite chaUenging, and the protocols and network

infrastructure for this internetworking should be addressed at a global level in the near

future. Second- and third-generation ceUular and cordless phone systems are already being

built to adhere to a particular networking structure and set of protocols, which are based on

emerging PSTN/ISDN technology. Emerging wireless computing devices wiU likely adhere

to the Internet or ATM standards. Therefore, although the divide between communications

and computers wiU continue to blur as their respective devices become multimedia wireless

terminals, the networking protocols for these devices are hkely to differ significantly, given

the disparate networking philosophy between communication and computer engineers to

day. Forthis reason, global standards for interconnection ofall these devices should precede

their development in order to make them compatible. Issues of routing, mobihty manage

ment, network security, pricing, and control of the wireless network may borrow from the

standards of wirehne networks, but must also take into account the unique character of
terminal mobility.

7.2 Future Work

Much work remains to be done in the design and analysis of high-speed wireless
communication networks. Extensions to this thesis fall into four main categories: com
munication link techniques, channel estimation and feedback, power control and spectrum
sharing, and wireless networks.

7.2.1 Communication Link Techniques

The variable-rate modulation and coded-modulation techniques of §§3.4 - 3.5
should be verified via simulations to determine their feasibility. The effects of channel
estimation error and delay should also be quantified. Different trellis and lattice structures

for the variable-rate coded-modulation technique should be considered, and their relative
performance determined both analyticaUy and via simulation.
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Simulation of the decision-feedback decoder proposed in §4.3 would verify its per
formance under different coding schemes. We must also examine the techniques outlined
in §4.3 to eliminate the effects of decoding delay in the decoder design. Analytic results or.
bounds on the effect of error propagation would also be useful.

We found that when channel state information is available at the transmitter

then variable-rate coding achieves good performance, and when this information is not

available, then unequal error protection codes are effective. Perhaps when the channel

state is known with some uncertainty, some combination of these techniques could be used,

resulting in variable-rate codes with unequal error protection. This type of coding merits

further investigation.

7.2.2 Channel Estimation and Feedback

There is a dichotomy in communication over time-varying channels relative to

how much time should be spent estimating the channel, and how much time should be

spent transmitting data. Channel estimates can be used at both the receiver and the

transmitter (if there is feedback) to increase data rates or decrease BER. Intuitively, the

better the channel estimate, the more it can improve performance. However, a good channel

estimate requires a long estimation sequence, which reduces the data rate. Therefore, there

should be some optimal estimation time which maximizes data rate for a given BER and

set of channel parameters. In §3.6.3 we determined the reduction in channel capacity as

a function of estimation time. If we could determine the combined effects of estimation

error and estimation time on channel capacity, then we could obtain the optimal estimation

time relative to channel capacity. A related topic is when to use feedback in time-varying

communication hnks. If the channel is changing very rapidly, then by the time the channel

is estimated and fed back to the transmitter, the estimate may no longer be valid. In

addition, the feedback communication hnk is neither error-free nor delayless, as we assumed

in our analysis. Therefore, a valuable topic for further investigation is to determine, under

more realistic system constraints, when full or partial transmitter feedback improves system

performance.
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7.2.3 Power Control and Spectrum Sharing

Determining the "best"method of spectrum sharing and power control will depend

on the performance criteria of the individual users and the system. As described in §5.4.1,

the area efficiency under different spectrum-sharing techniques and power control pohcies

quantifies the most efficient technique relative to system throughput, and calculating this

quantity under different power control and spectrum-sharing pohcies would be a valuable

addition to the debate on CDMA/TDMA/FDMA spectrum sharing. The hybrid power

control policy proposed in §5.4.4 should be evaluated both analytically for simple cases

and via simulation. Other hybrid power control and spectrum-sharing schemes may prove

superior to anything proposed thus far. Therefore, it is important to move beyond the

CDMA/FDMA/TDMA debate and look at other solutions relative to the specific wireless
application.

7.2.4 Wireless Networks

Design and analysis of a wireless infrastructure to support existing and pending
wireless subnetworks and connect them to the wireline infrastructure is critical for ulti

mately achieving the wireless communications vision. Once this infrastructure has been

defined, research on routing, mobility management, security, control, and service pricing
will be needed. The protocols for these functions will borrow heavily from those of existing
wireline technology. However, terminal mobihty introduces the need for adaptability far
greater than in fixed wirehne structures. Thus, it is not clear if modification ofexisting
protocols will suffice, or a completely new outlook is necessary. In addition, the wireless
radio link introduces increased flexibility in interconnection, since allwireless networks can

communicate directly with each other if they are within transmission range and have the
appropriate hardware. This flexibility should be incorporated intothe protocol suite devel
oped for the wireless infrastructure.
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