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Abstract

DESIGN AND PERFORMANCE OF HIGH-SPEED COMMUNICATION
SYSTEMS OVER TIME-VARYING RADIO CHANNELS

by

Andrea Goldsmith

Doctor of Philosophy in Engineering
Electrical Engineering and Computer Sciences
. University of California at Berkeley

Professor Pravin P. Varaiya, Chair

The next generation of wireless networks will require more efficient use of the
underlying time-varying channel to accommodate the demand for voice, video, and data
transmission. In this thesis, we investigate methods to increase the spectral efficiency
of point-to-point and multiuéer communication systems operating over time-varying radio
channels. We begin by developing several models for the time-varying channel. Specif-
ically. we model both deterministic and stochastic multipath channels, cellular channels,
and state space channels. Next, we propose spectrally-efficient communication techniques
for time-varying channels when the channel is estimated and this estimate fed back to the
transmitter. We determine the maximum spectral efficiency under this assumption, and
show that this maximum is achieved when three parameters are adapted to the channel
variation: transmit power, data rate, and coding scheme.

When a feedback path is not available, the receiver can use a priori knowledge
about the channel statistics to decode the input sequence. For a discrete-time channel with
Markov variation, we propose a decision-feedback decoding algorithm that uses the channel’s
Markovian structure to determine the maximum-likelihood input sequence. We calculate
the capacity and cutoff rate of this decoding scheme, and compare them to the inherent
rate limits of the channel. Finally, we discuss some multiresolution coding techniques for
the case when no a priori channel information is available. This type of coding allows some
loss of nonessential data in order to achieve overall higher data rates.

We then consider performance of multiuser systems, where interference limits the



total number of users and their respective data rates. We determine the achievable rate re-
gions of multiuser time-varying channels with channel estimation and transmitter feedback
under CDMA, FDMA, and TDMA spectrum-sharing techniques. We also discuss several .
uses for power control beyond traditional interference balancing. In particular, we propose
a hybrid power/rate control scheme which adapts to the system traffic load and the channel
characteristics of each user. This policy maintains fairness in the network while taking
advantage of favorable propagation conditions. Finally, we propose an architecture and
protocol suite for interconnecting wireless subnets with different specifications and require-

ments.
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Chapfér 1
Introduction

The vision of wireless communication providing high-speed high-quality informa-
tion excilange between two portable devices located anywhere in the world is the commu-
nications frontier of the next century. The great popularity of cordless telephones, cellular
telephones, radio paging, and other emerging portable communication technologies demon-
strates a great demand for such services. The network infrastructure must support all of
these services, and will likely encompass wireline networks as well. Efficient interconnection
of the subnetworks, each with different protocols and requirements, will require standardiza-
tion of interfaces and internetworking protocols, as well as intelligent net working capabilities
to exchange information across subnet boundaries.

What has emerged from worldwide research and development activity in this area

is the need for the following technological advances to implement this wireless vision:
o Hardware for low-power handheld computer and communication terminals.

¢ Techniques to improve the quality and spectral efficiency of communication over wire-

less channels.

o Better means of sharing the limited spectrum to accommodate the different wireless

applications.

e An architecture and protocol suite to integrate the various subnetworks and systems

into an interconnected network.

We now give a more complete overview of the proposed integrated wireless com-

munication network, and the technical issues involved in its implementation. Many of these



technical issues will be carefully examined in the thesis chapters, where we propose and eval-
uate new methods to approach them, and compare these methods with other techniques

that are currently being implémented or suggested in the literature.

1.1 Global Wireless Networks

The current network architecture of cellular and cordless phone systems is shown
in Figure 1.1. The local base of the cordless phone connects into the Public Switched
Telephone Network (PSTN) in the same way as a wireline telephone, with communication
between the base station and wireless handset via low power radio. The cellular system has
a similar architecture, except that the base stations are controlled by an intermediate mobile
telephone switching office (MTSO), which provides central control of all the base station
and mobile units (call routing, transfer between base stations, etc.). Calls that are initiated
and terminated within the same cellular system do not go through the local exchange;
they are routed directly by the MTSO. All other calls go through the local exchange. The
inefficiency, cost, and bottlenecks associated with this centralized control scheme has led to

more decentralized proposals for future-generation architectures.

‘ LOCAL
Lacfs‘;“ EXCHANGE LONG-DISTANCE
: NETWORK
CORDLESS
PHONE
WIDE-AREA

MOBILE
TELEPHONE
SWITCHING LONG-DISTANCE
OFFICE | __ , NETWORK

CELLULAR

Figure 1.1: Current Network Architecture

The architecture for a global wireless infrastructure is still under development, as



CORDLESS
PHONES
(TELEPOINT)

Figure 1.2: Interconnection of Wireless Communication Subsystems

we will discuss in more detail in Chapter 6. For the near future, however, it is likely that
wireless communication subsystems will be connected to existing wide-area voice and data
networks either directly (as the current systems are connected to the PSTN), or through a
metropolitan area network, as shown in Figure 1.2. In either case, gateways will be necessary
for routing and protocol conversion between the wireless subsystems and the networks
that support their interconnection. This will provide backward compatibility with existing
systems, however, it will impede the development of an architecture that is optimized to
fully integrate the emerging personal communication technologies. The conflicting goals
of maintaining backward compatibility while optimizing for an emerging system is not
new; however, it presents a challenge for the design of a wireless infrastructure, given the
diverging standards for the different wireless technologies and the desire to interconnect
them through a single global network. Research and design of the global infrastructure
have not yet received much attention in academic or industrial circles, probably because
the wireless subsystems are still under development, and the economic potential of the
infrastructure design is less immediate than that of the wireless subsystems. However,

addressing the issue now will provide subsystem developers with standardization guidelines



that will significantly ease subsystem integration. It is unlikely that the goal of global
wireless internetworking can be implemented if all the wireless subsystems are designed

independently, as is currently the case.

1.2 Technical Issues

In addition to the internetworking difficulties, the physical limitations of the wire-
less communication link present a fundamental technical challenge for reliable high-speed
communication equivalent to that currently available on wireline networks. The channel is
susceptible to time-varying noise, interference, and multipath. Moreover, the radio spec-
trum is a limited resource, and even with the recent increase in spectrum allocation for
wireless applications, this resource will be stretched to its capacity to accommodate the
various wireless services. Techniques to increase spectral efficiency and effectively share the
radio resource are the main focus of this thesis.

Limitations in the power and size of the communication and computing devices also
present a major design consideration. Vehicular communication devices have few power or
size limitations. However, most personal communication devices are meant to be carried in
a briefcase, purse, or pocket. These devices must be small and lightweight, which translates
to low power requirements, since small batteries must be used. However, many of the signal
processing techniques required for efficient spectral utilization and networking demand much
processing power, precluding the use of low power devices. Hardware advances for low power
circuits with high processing ability will relieve some of this conflict; however, placing the
processing burden on fixed location sites with large power resources has and will continue
to dominate wireless system designs. The associated bottlenecks and single points-of-failure

are clearly undlesirable for the overall system.

1.3 Thesis Outline

The overall approach of each thesis chapter is to first present the theoretical ca-
pacity limits of the channel under consideration. We then use the capacity analysis as a
foundation for dériving novel communication techniques that come close to this theoretical
upper bound. Since optimal performance generally implies more hardware complexity and

sensitivity, we also consider suboptimal techniques which are more robust and practical for



actual implementation.

The thesis outline is as follows. We begin in Chapter 2 with a detailed description
of time-varying radio channels. We first develop both deterministic and statistical models for
multipath channels. We then combine the multipath model with shadowing and interference
to obtain two models for urban cellular radio channels: the macrocell model for large
coverage areas and the microcell model for small coverage areas. We conclude the chapter
with the general state space channel, which models almost any type of channel variation,
including time-varying impulse response channels and channels which vary arbitrarily.

Chapter 3 describes techniques for spectrally-efficient communication over time-
varying channels when the channel is estimated and this estimate fed back to the trans-
mitter. This allows the transmitter to adapt to the changing channel. We first determine
the performance limits, in terms of channel capacity, of such channels. We then propose
an adaptive power control and coded-modulation technique for narrowband fading channels
which comes close to achieving this performance limit. We conclude the chapter with a dis-
cussion of channel estimation. In particular, we compute the effect of estimation error on
our adaptive coded-modulation technique. We also bound the capacity loss resulting from
periodic channel estimation, where no data is transmitted during this estimation time. The
consequent loss in data rate is more than just the fraction of time spent estimating the
channel, since the periodic estimation sequence restricts the data encoding.

In many cases, a feedback path between the receiver and transmitter is not avail-
able. In Chapter 4 we develop receiver processing techniques to increase spectral efficiency
in this case. We first derive the Shannon capacity of time-varying channels without feedback
when the channel variation is Markov. We then propose a maximum-likelihood decision-
feedback decoder for this channel. Our decoding scheme achieves a higher spectral efficiency
than the interleaving and memoryless encoding method typically used on this channel with-
out a significant increase in complexity. We conclude the cliapter with a discussion of
unequal error protection codes. These codes prioritize the source encoded bit stream to
ensure that high-priority bits are received even under worst-case channel conditions.

We then turn to spectrum sharing for multiuser systems. In Chapter 5 we first
discuss the performance limits of multiuser systems in the context of multiuser information
theory. We then evaluate several spectrum-sharing techniques; in particular, we compare
the two competing technologies for the North American digital cellular standard: CDMA

and FDMA. Power control was originally proposed for CDMA systems to eliminate the near-



far problem!. However, this type of power control, which equalizes the received power of all
users, tends to waste power to compensate for bad channels, and also increases interference
to other receivers. We therefore propose a hybrid power control technique which equalizes
the power of all users, then incrementally increases power and data rates of the users with
the best channels. This technique alleviates the near-far problem while taking advantage
of good propagation conditions to increase spectral efficiency.

Wireless networks will be examined in Chapter 6. We first propose an architecture
" using a hierarchical cellular structure, and show how it integrates with exjsting wireless and
wireline networks. We then describe some of the protocols necessary for routing and mobility
management within this heterogeneous network infrastructure. We alsp outline the other
protocols required for network operation, including security, pricing, and network control.

Conclusions and extensions to this thesis are discussed in the final chapter.

!The near-far problem arises in multiuser systems when two transmitters using the same frequency band,
but with different channel characteristics, access the same receiver. The transmitter with the good channel
will tend to overpower the other transmitter.



Chapt'.er 2
Time-Varying Channels

The wireless radio channel poses a severe challenge as a medium for reliable high-
speed cémmunication. Not only is it susceptible to noise, interference, and multipath,
but because the users are presumed to be moving, these channel impediments change over
time in unpredictable ways. In this chapter, we will characterize channel variations for
several different types of channels. We first define the additive noise channel. Since receiver
hardware always introduces some noise, models for any time-varying channel should include
an additive noise term, unless the noise is negligible relative to other channel impediments.
We then consider multipath effects, which can cause two types of signal degradation: the
amplitude of the received signal may vary over time, and the received signal may be distorted
or spread in time, resulting in intersymbol interference.

Next, we discuss models for urban cellular channels, both macrocells (one to five
mile coverage area) and microcells (one thousand foot coverage). For cellular channels,
interference resulting from spatial reuse of the same frequency band adds to the other
channel impediments. Moreover, the propagation characteristics of cellular systems change
with cell size. We conclude the chapter with an abstract state space model, where the
channel variation between states is governed by a stationary stochastic process. This model

is applied to both discrete and continuous channels.

2.1 Additive Noise Channels

The additive noise channel models noise introduced by hardware components at

the receiver front end. The channel model is illustrated in Figure 2.1, where the noise term



n(1) is a stochastic process. Receiver noise is commonly modeled as a zero-mean Gaussian
process. When the noise is white, the channel is referred to as an additive white Gaussian
noise (AWGN) channel. Performance and communication techniques for the additive noise
channel have been studied in depth since the late 1940s; we will consider additive noise
effects only in conjunction with other channel impediments, such as multipath fading and

interference.

n(t)

- X(t) y(®)
Figure 2.1: Additive Noise Channel.

2.2 Multipath Channels

In a typical urban environment, a radio signal transmitted from a fixed source to a
mobile receiver experiences extreme variation in both amplitude and phase. This variation
is due to multipath, whi._c‘h arises when the transmitted signal is reflected, diffracted, or
scattered by an object. These additional copies of the transmitted signal can be attenuated
in power, delayed in time, and shifted in phase and/or frequency from the line-of-sight
(LOS) signal path!. Multipath affécts the received signal in two ways: the constructive and
destructive interference of the multiple paths causes the received signal amplitude to vary,
and the time delay of each path causes intersymbol interference if the signal bandwidth is
larger than the inverse of the delay spread. We will discuss both of these phenomena for
several different multipath models in the subsections below.

We assume that the distances are small enough not to be affected by the earth’s
curvature [1]. If the transmitter, receiver, and reflectors are all immobile, then the construc-

tive and destructive interference of the multiple paths, and their delays relative to the LOS

!The line-of-sight path is the straight line path between the transmitter and receiver. This path may also
be blocked or attenuated.



path, are fixed. However, if the source or receiver are moving, then the characteristics of the
multiple paths vary with time. These time variations are deterministic when the number,
location, and characteristics of the reflectors are known, otherwise, statistical models must -
be used.

In §2.2.1, we describe propagation models which assume a finite number of reflec-
tors with known location and dielectric properties. The details of the multipath propagation
in this case can be solved using Maxwell’s equations with appropriate boundary conditions.
However, the computational complexity of this solution makes it impractical as a general
modeling tool [2]. Ray-tracing techniques approximate the propagation of electromagnetic
waves by representing the wavefronts as simple particles: the model determines the re-
flection and refraction effects on the wavefront but ignores the more complex scattering
phenomenon predicted by Maxwell’s coupled differential equations. The error of the ray
tracing approximation is smallest when the receiver is many wavelengths from the nearest
scatterer, and all the scatterers are large relative to a wavelength and fairly smooth, as with
window reflections. Comparison of the ray tracing method with empirical data shows it to
be a good model for signal propagation in rural areas, or along city streets where both the
transmitter and receiver are close to the ground [3].

We conclude §2.2.1 with a general ray tracing model that has attenuated, diffracted,
and ‘scattered multipath components. This model uses all of the geometrical and dielec-
tric properties of the buildings surrounding the transmitter and receiver, and therefore the
model almost always requires on-site empirical measurements. Computer programs based
on this model, which use a local building database for calculations, are.currently available
[4); these programs are now widely used for system planning in both indoor and outdoor
environments.

If the number of reflectors is large, or the reflector surfaces are not smooth, then
we can use statistical approximations based on the law of large numbers. The fading model
described in §2.2.2 yields the propagation statistics in this case, which vary depending on
the signal bandwidth. Much work has been done on statistical modeling of radio propa-
gation over a large urban area [1, 5, 6, 7]; we will derive and summarize the commonly
used statistical models for both wideband and narrowband signals. Hybrid models, which
combine ray tracing and statistical fading, can also be found in the literature [8, 9], however

we will not describe them here.
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2.2.1 Ray Tracing Models

This section describes several ray tracing models of increasing complexity. We
start with a simple two-path model, which predicts signal variation resulting from a ground
reflection interfering with the LOS path. This model characterizes signal propagation in
isolated areas with few reflectors, such as rural roads or highways. We then present a ten-
ray reflection model, which predicts the variation of a signal propagating along a straight,
building-lined street with the transmit and receive antennas pla,ced. below the skyline. Fi-
nally, we describe a general model which predicts signal propagation for any building and
transceiver configuration. The two-ray model only requires information about the antenna
heights, while the ten-ray model requires antenna height and street width information,
and the general model requires these parameters as well as detailed information about the
geometry and dielectric properties of the surrounding buildings.

We assume that the transmitted signal is given by
s(t) = u(t)e! I tHoo), (2.1)

where u(t) is a complex baseband signal with bandwidth B, and power P,, f is the carrier
frequency, and ¢ is an arbitrary initial phase. Throughout this section, we will suppress
the additive receiver noise as defined in §2.1, since it is added to the sum of multipath
components. Similarly, we suppress the phase term e/(27/t+#0) gince it is a constant multi-
plier of all the multipath components. In addition to the random phase, there is a doppler
frequency shift of each multipath component equal to v cos 3/A, where ¥ is the arrival angle
of the multipath ray, v is the receiver velocity, and A = ¢/ f is the signal wavelength. Thus,
U £ vcos ¥ is the relative velocity between the transmitter and receiver. We will ignore
this doppler term in the ray tracing models of this section, since for typical urban vehicle
speeds (60mph) and frequencies (900 MHz), it is less 70Hz [1, 5]. However, we will include
doppler effects in the statistical models of §2.2.2.

Two-Path Model

The two-path model is used when a single ground reflection dominates the mul-
tipath effect, as illustrated in Figure 2.2. The received signal consists of two components:
the direct or LOS component, which is just the transmitted signal propagating through free

space, and a reflected component, which is the transmitted signal reflected off the ground.
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Figure 2.2: Two-Path Model.

The received LOS component is determined from the free-space propagation loss

formula:

AG i (27l/3)
4rl
where [ is the length of the LOS path and G| is the product of the transmit and receive

rLos(t) = u(t) (2.2)

antenna field radiation patterns in the LOS direction. The reflected ray is shown in Fig-
ure 2.2 by the segments 7 and r’. If we ignore the effect of surface wave attenuation?, then
by superposition, the received signal for the two-path model is

i Glu(t)ej(2r.1/.\) + RG,u(t + -r)ej21r(r+,-')/,\
47 ) r+ ! ’

r2path(1) = (23)

where 7 = (r+7'—1)/Acis the time delay of the ground reflection, R is the ground reflection
coefficient, and G, is the proﬂuct of the transmit and receive antenna field radiation patterns
corresponding to rays r and 7/, respectively. If the transmitted signal is narrowband relative
to the time delay (r << BZ1), then u(t) = u(t + 7). Thus, the received power of the two-

path model for narrowband transmission is

-~

iae [?
1 RG e . (2.4)

TS

where A¢ is the phase difference between the two received signal components. If d denotes
the horizontal separation of the antennas, h; denotes the transmitter height, and h, denotes

the receiver height, then this phase difference is given by
rpr=0) o [[(heth\2, 1 [rhe=b\2 . 1
A¢=——2”(”:\’ )=-A1“(—-—‘: ) +1} - (——‘d ) +1 - (29)

2This is a valid approximation for antennas located more than a few wavelengths from the ground.




12

Equation (2.4) has been shown to agree very closely with empirical data [10]. The delay
spread of the two-path model is just the excess delay of the ground reflection: (r+ 7' —1)/c.
When d > Sh¢h,, r+ 1’ — | = 2h4h, [d, and thus A¢ = dnhih, [Ad.

The ground reflection coefficient is given by [1, 11)

sinf — Z
= 2.6
sinf + 2’ (2.6)
where .
7= Ve, — cos?2f/e, for vertical polarization 27)
Vi€ — cos? 6 for horizontal polarization ’

and ¢, is the dielectric constant of the ground, which for earth or road surfaces is approxi-
mately that of a pure dielectric (¢, = 15). '
From (2.5), if d > 5h;h,, then r+ 1/ = | ~ 2h,h, /d, and thus

A¢ = 4mheh, [Nd. (2.8)

For asymptotically large d, r+ 7'~ I~ d,0 ~ 0, G; = G,, and R ~ —1. Substituting these

approximations into (2.4), we see that in this asymptotic limit, the received signal power is

N A_Glr [4nh,h,]2
= land M
Thus, in the asymptotic limit of large d, the received power falls off inversely with the

approximately

P, (2.9)

fourth power of d. In [10], plots of (2.4) as a function of distance illustrate this asymptotic
limit; up to a certain critical distance d., the wave experiences constructive and destructive
interference of the two rays, resulting in a wave pattern with a sequence of maxima and
minima. At distance d., the final maximum is reached, after which the signal power falls
off proportionally to d=%. An approximation for d. can be obtained by setting A¢ to 7 in
(2.8), obtaining d. = 4h4h, /. The critical distance is used in the design of cellular systems
to determine optimal cell size, as we will discuss in §2.3.

If we average out the local maxima and minima in (2.4), the resulting average power
loss can be approximated by dividing the power loss curve into two regions. For d < d.,
the average power falloff with distance corresponds to free space loss. For d > d ¢ the falloff
with distance is approximated by the fourth-power law in (2.9). These approximations are
captured with the following simplified model for average received power [12, 13], which

assumes that G; =~ G,:

2121
P, = PG, [Z;] m, (2.10)
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d1? d (m-2)g
L(d) & [71;] i1+ T (2.11)

is a linear approximation for the power falloff. For this approximation, m £ 4 is the

where

exponent of the power falloff in the asymptotic limit of large d, d¢ is an empirical constant
that reflects the constructive addition of the two paths before the transition region, and q is
a parameter that determines the smoothness of the path loss at the transition region close
to d..

Dielectric Canyon (Ten-Ray Model)

We now examine a model for urban area transmissions developed by Amitay [3].
This model assumes rectilinear streets® with buildings a.lon'gAboth sides of the street and
transmit’ter and receiver antenna heights that are well below the tops of the buildings. The
building-lined streets act as a dielectric canyon to the propagating signal. Theoretically, an
infinite number of rays can be reflected off the building fronts to arrive at the receiver; in
addition, rays may also be back-reflected from buildings behind the transmitter or receiver.
However, since some of the signal energy is dissipated with each reflection, signal paths
corresponding to more than three reflections can generally be ignored. When the street
layout is relatively straight, back reflections are usually negligible also. Experimental data
shows that a model of ten reflection rays closely approximates signal propagation through
the dielectric canyon [3]. The ten rays incorporate all paths with one, two, or three re-
flections: specifically, there is the LOS, the ground-reflected (GR), the single-wall reflected
(S1W), the double-wall reflected (DW), the triple-wall (TW) reflected, the wall-ground
(WQ@G) reflected and the ground-wall (GW) reflected paths. There are two of each type of
wall-reflected path, one for each side of the street. An overhead view of the LOS, ground,
single-wall, double-wall, and triple-wall reflected rays is shown in Figure 2.3. Rays reflected
off vehicles are not included in this model.

For the ten-ray model, the received signal is given by

roray(t) = = [ ——+ > - (2.12)

=1

A [Giu(p)ei@mir 8 R;Griu(t+r.-)e5(2"'i)/"]

? A rectilinear city is flat, with linear streets that intersect at 90° angles, as in midtown Manhattan.
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Figure 2.3: Eight Rays of the Ten-Ray Model.

where r; denotes the path length of the ith reflected ray, r; = (r; — I)/A¢, and G,; is the
product of the transmit and receive antenna gains correspbnding to the ith ray. For each
reflection path, the coefficient R; is either a single reflection coefficient given by (2.6) or,
if the path corresponds to multiple reflections, the product of the reflection coefficients
corresponding to each reflection. The dielectric constants used in (2.6) are approximately
the same as the ground dielectric, so ¢, = 15 is used for all the calculations of R;. If we
again assume that u(t) = u(t + ;) for all 7, then the received power corresponding to (2.12)

is

' 2 9 R.G..eibe |2
47 T 7

where Ag; = 2w(r; —1)/A. The delay spread for this model is max;[(r; — I)/c].

Power falloff with distance in both the ten-ray model (2.13) and urban empirical
data (10, 14, 15] is proportional to d =2, even at relatively large distances. Moreover, this
falloff exponent is relatively insensitive to the transmitter height, as long as the transmitter
is significantly below the building skyline. This falloff with distance squared is due to
the dominance of the wall-reflected rays, which decay as d=2, over the combination of
the LOS and ground-reflected rays (the two-path model), which decays as d=4. Other
empirical studies [12, 16, 17] have obtained power falloff with distance proportional to d =7,
where 7 lies anywhere between two and four. The difference in falloff exponents among the
various empirical studies indicates the difficulty in obtaining a single model to encompass
all the vagaries of urban signal propagation. However, we can generalize (2.10) by using
an expression for L(d) with a more general falloff exponent than (2.11). Two different

expressions for L(d) have been used in the literature:

(m-2)g
L(d) & ¢ {/1 + dic (2.14)
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is used in [12], where the falloff parameter m, the critical distance d., and the smoothing

parameter ¢ are derived empirically for different streets. In 18], the expression

1

A C.
L) = A+ Bd? + Cd* (2.15)

is used, where the (A, B, C) coefficients are derived from empirical data. The two models are
quite similar: (2.14) is more general since it can encorporate more values for the distance
falloff, however (2.15) can be used over a variety of street layouts with different falloff

characteristics [18]. For this reason we use (2.15) as our falloff model in later sections.

General Ray Tracing

General Ray Tracing (GRT) can be used to predict field strength and delay spread
for any building configuration and antenna placement [4, 19, 20). For this model, the build-
ing database-(height, location, and dielectric properties) and the transmitter and receiver
locations relative to the buildings must be specified exactly. Since this information is site-
specific, the GRT model is not used to obtain general theories about system performance
and layout; rather, it explains the basic mechanism of urban propagation, and can be used
to obtain delay and signal strength information for a particular transmitter and receiver
configuration. ‘

The GRT method uses geometrical optics to trace the propagation of the LOS
and reflected signal components, as well as signal components from building diffraction
and diffuse scattering. There is no limit to the number of multipath components at a given
receiver location: the strength of each component is derived explicitly based on the building
locations and dielectric properties. In general, the LOS and reflected paths provide the
dominant components of the received signal, since diffraction and scattering losses are high.
However, in regions close to scattering or diffracting surfaces, which are typically blocked
from the LOS and reflecting rays, these other multipath components may dominate.

The propagation model for direct and reflected paths was outlined in the previous
section. Wedge diffraction provides an accurate model for the mechanism by which signals
are diffracted around street corners [20, 21, 22], although the knife-edge diffraction model
is sometimes preferred for its simplicity [1, 11]. The geometry of wedge diffraction is shown

in Figure 2.4. The geometrical theory of diffraction (GTD) yields the following formula for
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the received diffracted signal:

Gdej(Zn-(d-l-d'))/A d'
= 1

where G; is the antenna gain, and D represents the diffraction coefficient, which depends

on the signal polarization, the wedge angle, and the angles of incidence and diffraction
(¢ and ¢'). Theoretical and heuristic expressions for D can be found in [22) and [21],
respectively. The latter reference obtains numerical results for the diffraction coefficient,
vielding losses that exceed 100dB for some incident angles. Calculation of the diffraction
coefficient generally requires a computer, although simple approximations have also been
derived [23).

@ Receiver

¢

Transmitter @

d

Figure 2.4: Wedge Diffraction.

In addition to the wedge-diffracted ray, there may also be multiply diffracted rays,
or rays that are both reflected and diffracted. Models exist for including all possible permu-
tations of reflection and diffraction [23, 24); however, the attenuation of the corresponding
signal components is generally so large that these components are negligible relative to the
noise. .

A scattered ray, shown in Figure 2.5 by the segments s’ and s, has a path loss
proportional to the product of s and s’. This multiplica.;cive dependence is due to the
additional spreading loss the ray experiences after scattering. The received signal due to a
scattered ray is given by the bistatic radar equation [25):
AG;oei(2n(s+a)A

4rss

r(t) = u(?)

where o is the radar cross section of the scattering object, and G, is the antenna gain. The

: (2.17)

value of o depends on the roughness, size, and shape of the scattering object. Empirical
values of o were determined in [26] for different buildings in several cities.
The total received electric field is determined from the superposition of all the

components due to the multiple paths. Thus, if we have a LOS ray, N, reflected waves, Ny
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Figure 2.5: Scattering.

diffracted rays, and N diffusely scattered rays, the total received signal is

T i

D;Gy,u(t — 1;)ei(2n(di+d}))/A d
'3 d di(d; + dy)

[i] [G'_‘"(M + % R:G,,u(t — 7;)ed@rri/A)

t-l

+ Z Ule, t - T )61(2"(3-4’3')))\

5;is;

] , (2.18)

where 7; is the time delay of the given multipath component. The corresponding received
power is Pyosa) = E|r4otai()]?.

Any of these multipath components may have an additional attenuation factor if
its propagation path is blocked by buildings or other objects. In this case, the attenuation
factor of the obstructing object multiplies the component’s path loss term in (2.18). This
attenuation loss will vary widely, depending on the material and depth of the object. An

attenuation loss of 12dB is commonly used as an average of empirical measurements [27).

-

2.2.2 Statistical Fading Models

The models of the previous sections all require detailed information about the
number and nature of the multipath components. In this section, we describe a statistical
model for the received signal. There are generally two phenomena that cause fluctuations in
the received signal as the receiver or transmitter moves. First, as discussed in the previous
section, multiple signal reflections arrive at the receiver shifted in phase, which causes
constructive and destructive interference. The resulting variations in the signal amplitude,

called signal fading, vary over distances proportional to a signal wavelength; thus, this type
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of fading is referred to as fast fading. When the number of multipath components is large,
the law of large numbers can be used to approximate the fast fading effects with Gaussian
statistics. We first describe this approximation, which results in Rayleigh statistics of the
short-term signal envelope variation. As in the previous section, we exclude the noise term
introduced at the receiver front end in the equations below.

In addition to interference effects, the LOS and reflected paths may also be at-

tenuated by buildings or other objects. This type of fading, or .shadowing, varies over

' distances that are proportional to the size of the buildings, and is thus referred to as slow
fading. When the number of signal attenuators is large, a Gaussian approximation for the
attenuation distance can be used for the slow fading statistics; this results in a log-normal
distribution for the signal variation over large distances.

The fast and slow fading phenomena give rise to a multiplicative model for the
received power:

p(t) = r(t)s(t), (2.19)

where r(?) is the value of the Rayleigh fading, s(t) is-the value of the log-normal shadowing,
and the two processes are statistically ixidependent. From this independence, p = 75. If P,
R, and S denote the dB values of p, , and s, respectively, then the received power has the
additive form P(t) = R(t) + S(1).

The Rayleigh fading model applies to both satellite and terrestrial communication
systems: multipath is generated in satellite systems from tropospheric scatter [28], and
in terrestrial systems from building reflections. Slow log-normal shadowing is unique to
terrestrial urban communication systems when the transmitter or receiver is placed above
the building skyline [1, 11, 29]. For rural, semiurban, and urban propagation with both
the transmitter and receiver below the skyline, the ray tracing techniques of the previous

section better characterize both fast and slow fading of the received signal.

Short-Term Fluctuations

The statistical model for short-term multipath fluctuation of the received signal
amplitude is based on a physical propagation environment consisting of a large number of
isolated reflectors with unknown locations and reflection properties. Let the transmitted

signal be given by (2.1). If we initially assume that the LOS component is obstructed, the
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corresponding received signal is the sum of all multipath components:
A ; . :
r(t) = Z 2y, BiGriult + 7;)ed2n(f=88:)(t+m) (2.20)
The unknowns in this expression are the multipath component delays (7; = r;/c), doppler
shifts (6 f;), reflection coefficients (R;), and antenna gains (Gy;). These parameters change
with time, and we assume that their variation is stationary. In general, omnidirectional

antennas are used, so the antenna gains are approximately equal. We also assume that the

path length spread, defined by

s maxr; — min r;, (?.21)
1 3

is small relative to the carrier wavelength: thus, the attenuation with distance, 4:—r', will be
approximately the same for each reflected path. However, since r; >> ), small differences
in r; can lead to extreme phase differences in the received components. This suggests that
6; 2 or S7i should be modeled as an i.i.d. random variable uniformly distributed on [, 7]:
this phase model has been confirmed by empirical measurements [7].

Under these assumptions, the received signal is approximated by
r(t) &~ A Y Riu(t — 1;)ed U =80)t+8=81m] (2.22)
i

where A equals the product of the distance loss and antenna gain, which is the same for all
i. If we assume that the R;s are also i.i.d. and independent of the #;s, then the first and
second moments of the received process are
E[r(t)] = 0, (2.23)
2__ .
Elrt)r(s)] = |35 Fult - m)u(s - r.-)eﬂ"(f-”-'>"-=>] , (2.24)
i

where T denotes the expectation of z, and z* denotes its complex conjugate.

If the received process is Gaussian, then the first and second order statistics specify
it completely. The process will be Gaussian if the R;s are Rayleigh distributed, or will
approach the Gaussian distribution for any R; distribution as the number of scatterers
becomes large [7].

When the doppler spread is zero (i.e., the channel is static), we say that the channel
is time dispersive. There are three types of signal distortion caused by the time dispersive

channel: incoherent combining (fading), distortion, and time spreading.
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If the multipath delay spread, defined by L = /¢, is small relative to the inverse
signal bandwidth (L << B;!), then u(t + ;) ~ u(t), and we can rewrite (2.22) as

(1) ~ u(t) (Z AR,-ei(hr«)/A) , (2.25)

Equation (2.25) differs from the original transmitted signal by the complex scale factor in
parentheses. It can be shown that, under the assumptions stated above, this scale factor is
Rayleigh distributed [7], so the variation of the received signal envelope is Rayleigh. This
has also been confirmed experimentally [5, 6]. An approximation for the autocorrelation of

r(t) for narrowband transmission is [1]
Ar(7) £ E[(r(t) - F)(r(t + 7) - 7)] = 02327 fm), (2.26)

where 02 is the variance of r(t), Jo denotes a Oth order Bessel function, and fn, = v /.
When the LOS component is not blocked, the envelope variation follows a Rician distri-
bution [30]. Either Rayleigh or Rician amplitude variations can cause severe performance
degradation of narrowband modulation techniques [31].

Another form of distortion occurs due to the multipath delay spread L. A short
transmitted pulse will result in a received signal that is at least as long as the multipath
delay spread. Thus, the duration of the received signal may be significantly increased. If
we transmit short data pulses sequentially, this time spreading will result in intersymbol
interference. Equalization techniques, which basically invert the channel impulse response,
may be used to counter this effect [31].

As B, increases so that L ~ B!, the approximation u(t — r;) =~ u(t) is no longer
valid. Thus, the received signal is a sum of copies of the original signal, where each copy is
delayed in time by 7; and shifted in phase by 6;. The signal copies will combine destructively
when their phase terms differ significantly, and will distort the direct path signal when
u(t — 7;) differs from u(t). However, wideband signal modulation techniques can be used to
counter the distortion and fading effects of the time dispersive channel. Spread spectrum
[32] is one such method. The basic idea is to multiply the narrowband information signal
with a wideband modulating sequence such that the approximation u(t — r;) = u(t) is no
longer valid. This modulation technique allows the receiver to separate out the delayed
multipath components [6]. All but one path is eliminated by a matched filter, hence there is

no multipath interference. The receiver may also use a bank of filters matched to u(t —r;)
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for all i. The matched filter outputs are coherently combined, resulting in a higher effective
SNR than would be obtained with just one of the multiple paths.

Wideband signals can be approximated using Turin’s model [6] if the incoming.
paths form subpath clusters. In this model, paths that are approximately the same length
(Iri = rj| << BZ') are not resolvable at the receiver. Thus, they are combined into a single

subpath. A finite number of resolvable subpaths is assumed. The received signal is then

1
() =Y At ~ )l (2.27)
=1

where I is the number of resolvable subpaths, and A;, 7;, and ; are, respectively, the
subpath amplitude, delay, and phase.

A discrete-time version of this model is obtained by dividing the time axis into
equal intervals from zero to the maximum expected multipath delay spread [6]). The interval
width is less than the receiver resolution, and each subpath is restricted to lie in one of these
time interval “bins.” We define the random variable 1; to be one if a subpath falls in the
th bin, and zero otherwise. The statistics of A; and 6;, conditioned on 9; = 1, can then be
taken from the narrowband Rayleigh fading model, or derived from empirical measurements.

This completes the discrete-time approximation for a single channel impulse re-
sponse. As the cha,nnel.impulse response changes, a sequence of these models is required.
Thus, the time-varying wideband channel model must include both the first order statistics
of (I,7i,pi,0;) for each instantaneous channel, as well as the temporal and spatial corre-
lations (assumed Markov) between them. More details on the model and the empirically-

derived distributions for (1,7, p;,6;) can be found in [33).

Long-Term Fluctuations

The signal fading described in the previous section results from out-of-phase com-
bining of the multipath components. Since these phases rotate = degrees every half wave-
length, the signal amplitude changes rapidly over short distances (approximately every foot
for a 900 MHz signal). If these local variations are averaged out, the local mean will also
vary with distance due to two effects: the propagation loss with distance described above
for the ray tracing models, and the changing configuration of surrounding buildings and
obstacles which attenuate both the LOS and the multipath components. Based on the

two- and ten-ray models, it is generally assumed that the propagation loss with distance
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is proportional to d=* in a rural environment, and d~2 in an urban environment. The
more complex models described above (e.g., (2.11), (2.14), and (2.15)) may also be used to
determine propagation loss with distance.

Empirical data is commonly used to predict the expected power loss versus distance
from building attenuation [1, 19, 34]. Although these loss measurements vary depending on
the test location, the distribution of the mean received signal is approximately log-normal
in most empirical studies. Thus, the dB value of the mean received signal is Gaussian. This
statistical model can be justified by the following attenuation model [35).

The attenuation of a signal as it travels through a building of depth d is approxi-
mately equal to

s(d) = ce™4, (2.28)

where ¢ js an adjustment constant and « is an attenuation constant that depends on the
building materials and interior. If we assume that « is approximately equal for all buildings

in a given region, then the attenuation of a signal as it propagates through this region is
s(dy) = ce%%, (2.29)

where d; is the sum of the building widths through which the signal travels. If there are
man)y buildings between the transmitter and receiver, then we can approximate d; by a
Gaussian random variable. Thus, log s(d) = logc — ad,; will have a Gaussian distribution
with mean g and standard deviation o. The value of o will depend on the environment,
and usually ranges between four and twelve dB (1, 18, 36).

The autocorrelation function for the fluctuation of the signal attenuation about
this mean is not well documented in the literature. However, measurements in [36] support

an autoregressive autocorrelation model of the form
As(T) = a?e v/ Xe, (2.30)

where § = logs is wide-sense stationary, o is the standard deviation of the mean value,
v is the vehicle velocity, and X, is the decorrelation distance, which is a function of the
surrounding building sizes and layout. Values of X for various measurement conditions are

reported in [36].
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2.3 Cellular Channels

In order to accommodate the demand for wireless communication, efficient use of
the limited available frequency spectrum is essential. Cellular systems exploit the power
fallofl with distance of a transmitted signal to reuse the same frequency channel or time
slot at another spatially separated location [37). The coverage area is divided into cells
where, in each cell, only one user is assigned to a particular channel or time slot. With
frequency division, the total system bandwidth is divided into orthogonal channels centered
around a frequency f;, and each frequency channel is reused at a spatially separated cell, as
illustrated in Figure 2.6. With time division, the signal occupies the entire frequency band,
and is divided into time slots ¢; which are reused in distant cells. Time division is depicted

by Figure 2.6 if the f;s are replaced by t;s.

Figure 2.6: Cellular Systems.

Operation within a cell is controlled by a central base station, and the base stations
connect to a high-bandwidth wide-area network such as the public telephone system. When

a mobile user crosses the boundary between two cells, its communication channel is switched,
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or handed off, to the base station in the new cell. The shape of the cell is determined by
the power footprint of the transmitting base station, which is circular if the transmit and
receive antennas are isotropic and propagation follows a free-space loss model. However,
urban propagation does not follow the free-space model, so blockage and multipath fading
cause significant distortion of this circular shape.

The spatial separation of cells that share the same frequency band or time slot
should be as small as possible to cover the largest possible area with a single channel.
However, as the spatial reuse distance shrinks, the interference from ce!ls operating in the
same frequency or time slot grows. To complicate matters further, both the transmitted
and interfering signals experience the long- and short-term multipath fluctuations described
in the previous section. To help determine the spatial reuse, data rates, and system layout,
accurate models for cellular transmission are required.

Coverage areas can also be divided using spread spectrum code division techniques
(38]. For this method, each user within a cell modulates the information signal with a
wideband semi-orthogonal coding sequence. The base station can separate each of the
received signals by separately decoding each spreading sequence. H-owever, since the codes
are semi-orthogonal, the users within a cell interfere with each other (intracell interference),
and codes that are reused in other cells also cause interference (intercell interference). Both
the intracell and intercell interference power is reduced by the spreading gain of the code.
Moreover, interference in spread spectrum systems can be further reduced through multiuser
detection and interference cancellation. We will compare code division with the other
spectrum-sharing techniques in Chapter 5.

In this section, we consider models for two types of urban cellular systems, based
on the size of the cell. Since propagation conditions in suburban and rural areas are more
favorable than in cities, these urban models generally reflect worst-case propagation con-
ditions. The first model is for urban macrocells. Macrocells correspond to cells where the
base stations are placed on the tops of tall buildings, and transmit enough power to cover
one to five miles. These cells are used in the current analog cellular telephone systems of
the United States, Europe, and Japan.

If all parameters scale with distance then by shrinking the size of a cell by a factor
of N we can accommodate N times more users in a given area, since each cell accommodates
the same number of users in a smaller area. However, in order to shrink the size of the cells,

the base stations transmit at a much lower power than in macrocells, and therefore must
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be placed closer to the ground. From the previous section, we know that lower antenna
placement fundamentally changes the mechanism of signal propagation. We therefore use
a microcell model for the case when the transmitters are less than fifty feet high. Transmit
power in microcells is generally sufficient to cover about a thousand feet; this cell diameter
is chosen since it corresponds to the point at which the power falloff of a transmitted signal
versus distance increases from d=2 to d~*, thereby significantly reducing the power from
distant interferers. ’

We will refer to the transmission link from the mobile to the base station as
the forward link, and the link from the base station to the mobile as the reverse link. ‘The
forward links are separated in frequency from the reverse links, so the base stations interfere
with each other, but not with the mobiles, and vice versa. Based on both empirical and
analytical models, the interference is generally much greater than the receiver noise, so

receiver noise will be neglected in our cellular models and analysis.

2.3.1 Macrocells

Macrocell models have been well documented in [1, 11], and the references therein;
in this section we summarize these results. The macrocell model requires propagation
characteristics of both the transmitted signal within the cell, and the interference from
other cells. Since the building concentration in an urban environment is quite dense, both
the transmitted signal and the interferers are blocked or reflected from numerous objects.
Thus, the statistical propagation model of §2.2.2 applies. When isotropic antennas are used,
the long-term received signal variation in both the forward and reverse links are closely
approximated by a free-space propagation model with additional log-normal shadowing.
Based on empirical measurements, the variance of the log-normal shadowing for typical
urban environments ranges from three to eight dB. With this model, energy radiates out
from each antenna in a uniform circular pattern. In order to cover a given area with
nonoverlapping (tessellating) cells, a hexagonal cell shape is used as the closest tessalating
shape to a circle, as shown in Figure 2.7.

For narrowband transmissions, the short-term fluctuation of the desired and inter-
fering signal envelopes generally follows a Rayleigh distribution. If the transmitted signal
has a LOS path to the receiver then the fluctuation of the desired signal is Rician4. The

*The macrocell model generally uses Rayleigh fading as a worst-case assumption.



Figure 2.7: Hexagonal Cell Geometry.
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number of interfering signals is random, but usually only the interferers in the closest ring
of cells are taken into account; these interferers are shown in Figure 2.7 for a cluster size
of seven, where the cluster size refers to the number of available reuse frequencies. or time -
slots. Since code division has better intercell interference rejection than time or frequency
division [37], a cluster size of one is generally used with this technique. For the reverse
link, the distance between an interfering and the transmitting base station (and therefore
the maximum interference power) is known. However, since the mobiles may be anywhere
within a cell, the average interference power on the forward link is a random variable, with
its maximum value determined by placing all of the interfering mobiles on the closest cell
boundary, as in Figure 2.7. This figure depicts the interference for time or frequency divi-
sion. With code division, there are many more interferers both within the same cell, and
in adjacent cells, however their interference power is réduced by the spreading gain of the
code.

The long-term variation of a wideband signal is characterized by the same log-
normal shadowing as in the narrowband case. The short-term fluctuation of both transmit-
ted and interfering wideband signals are characterized by Turin’s subpath model (§2.2.2).
However, if spread spectrum techniques are used, the number of intracell and intercell in-
terferers is quite large,-so we can apply a Central Limit Theorem approximation to the

interference and model it as Gaussian noise.

2.3.2 Microcells

In microcells, there are two types of signal propagation: LOS propagation, which
refers to propagation between base stations and mobiles with a direct path between them,
and non-LOS propagation, which refers to the case where there is no LOS path. In the
latter case, the signal must “bend” around one or more corners via diffraction, scattering,
or reflection to reach the intended receiver, as shown in Figure 2.8.

The LOS propagation in microcells is accurately modeled with the ten-ray model
described in §2.2.1 [3). However, using ray tracing to model non-LOS propagation requires
detailed information about the building and street layout, geometry, and dielectric proper-
ties. This information requires field measurements for the particular cell of interest, and
the resulting model only applies for that particular site. A more general non-LOS model for

cities with rectilinear street layouts is developed in [18]. This measurement-based model is
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Figure 2.8: Microcell Propagation.

obtained from data collected in Manhattan at 900. MHz [10]. The model includes a predic-
tion method for the mean average‘power, and a statistical model for both short-term and
long-term variations about this mean.

For the microcell geometry of Figure 2.8, within a particular cell the street con-
taining the cell transmitter is called the main street, streets perpendicular to the main street
are called crossstreets, and streets parallel to the main street are called parallel streets. We
will use = to denote the distance variable along a main streef, and y to denote the distance
variable along a cross street. The model doesn’t explicitly determine the power loss on

parallel streets, since cross street data can be interpolated to obtain these values.

Constant Average Power

In 18], empirical contours of constant average power with both the long- and short-
term fluctuations averaged out have the shape of concave diamonds which are elongated
along the main street in both directions. The concave nature of these diamonds suggests that

the mechanism by which the signal energy couples into cross streets is via scattering since,
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if reflections were the dominant mechanism, the attenuation along any cross street point
(z,y) would be a function of z + y, where z is the distance traveled along the main street
before turning the corner, and y is the subsequent distance traveled along the cross street.
This would result in constant power contours with straight sides. However, if the signal
couples into the cross street via scattering, the attenuation at (z,y) would be proportional
to the product of f(z) and g(y), where f and g are functions that characterize the power
loss versus distance along the} main and cross streets, respectively. -This product form for
the power at (z,y) leads to a concave shape for the constant power contours.

If the signal propagates along the main and cross streets according to the free-space
loss formula. then the functions f and g would just be linear equations of 2-2 and y~2,
respectively. The path loss model can be generalized to urban propagation using the fitting
function of (2.15): for the main street, the path loss at a distance z from the transmitter is

approximated by
1

flz)= Ap + Bpz?2 4+ Cprzt’

Similarly, for the cross street, the path loss at distance y from the intersection with the

(2.31)

main street is approximated by

1
A+ ch2 + Ccy4 )

9(y) = (2.32)

The set of coefficients (A, By,Cr) are chosen to minimize the mean-squared
error (MSE) between (2.31) and the empirical path loss data on the main street, and the
set (Ac, B, C.) minimizes the MSE between (2.32) and the path loss data for a given cross
street [18). These forms for f and g include power falloff with distance of both d=2 and
d—4, since both have been observed in urban empirical measurements.

Let L(z,y) denote the path loss at a particular point within a cell, where (0,0)
denotes the coordinates of the transmitter. Consider a particular cross street located z¢
feet from the transmitter. Assuming that f and g predict the path loss perfectly, then the

dB path loss at the intersection of the main street and this cross street is given by
L(0,z0) = —10log(Am + B3 + Cmzd). (2.33)
Similarly, from (2.32), the dB path loss at any point y along the cross street is given by

L(y,z0) = —10log(A. + B.y* + C.y). (2.34)
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Setting y = 0 in (2.34) and equating it to (2.33) yields
— 10log A = —10log(Am + Bmz3 + Crnzd). (2.35)

If we now factor out A, in (2.34) and substitute the right side of (2.35), we get that the

attenuation at the point (y, o) is
C
L(y,z0) = —101og. [[A,,, + Btk + Cmal] [1 e 4]] (2.36)

The attenuation equation (2.36) uses the coefficients (A, Bc;Cc) derived for a
particular cross street. However, in [18] it was found that for every cross street in the data
set, the fourth power falloff with distance dominated the other terms, so

i°y4 >>1+ -f;—: 2, (2.37)
Moreover, the ratio C./A. was approximately constant over all cross street measurements.
If we denote the mean of this ratio by C4, then substituting this approximation and (2.37)

into (2.36) yields an attenuation model for all cross streets in the cell:

-

L(y,z0) = —10log C 4¢* [Am + Bnzi+ Cm:cg] . (2.38)

Assume now that C./A. = Cj4 for cross streets in any rectilinear city, where C4 is
derived from the Manhattan data. Then the model (2.38) can be applied to any rectilinear
city to predict the path loss on cross streets. However, the model still requires a method
to obtain the main street propagation coefficients (A, B, Cr) for the cell site of interest.
But from [3], the ten-ray model predicts path loss as a function of distance within a 2dB
margin of error along the main street. If we use this model instead of empirical data to
obtain the ( Am, Bm, Cyn) coefficients, then we only require knowledge of the base and mobile
antenna locations and the width of the main street to predict signal attenuation throughout
the cell.

We saw that for macrocells, the tessalating shape which approximated the circular
constant power contours was a hexagon. Since constant power contours for microcells form
concave diamonds, it is possible to inscribe a square inside each of the diamonds to form
tessalating cells covering the area of interest. Thus, square cells form the building blocks

for microcellular geometries.
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Short-Term Fluctuations

The short term fluctuations in microcells are caused by the same phenomenon as
in macrocells: the constructive and destructive interference of the multiple paths. The main
street usually- has an unblocked LOS path, so its short-term fluctuation follows a Rician
distribution. The cross streets have no LOS path, and the statistics of the short-term

fluctuation on these streets was found in [18] to be approximately Rayleigh.

Long-Term Fluctuations

The long-term signal fluctuation in the microcell model reflects variations in the
average path loss formulas of (2.31) and (2.32). For the Manhattan measurements of [18],
the statistics of these variations were shown to be log-normal, with an rms value of three
to five dB. Thus, the statistics of the lohg-term signal strength variation in microcells is
the same as in macrocells (with a lower variance). However, the cause of this variation is
quite different. In macrocells the long-term variation is caused by building blockage. Since
microcell signals propagate around buildings, there is no such phenomenon. The long-term
fluctuation in microcells has been shown, both empirically and using the ten-ray model, to
be caused by multipath [10]. Thus, in microcells multipath gives rise to both the long-term

and the short-term fluctuations.

2.4 State Space Channels

The state space channel model applies to general discrete and continuous time-
varying channels, whose variation is governed by a stochastic process taking values over
a state space of time-invariant channels. We first describe the discrete-time state space

channel model, then extend it to continuous-time.

2.4.1 Discrete-Time Model

The variation of the discrete-time state space channel is determined by a discrete-
time stochastic process {Sy,,n > 0} with state space C. The state space is a set of discrete
memoryless channels (DMCs) with common input and output alphabets, denoted by X
and ), respectively. We call S, the channel state at time n. The input and output of

the channel at time n are denoted by z, and y,, respectively, and we assume that the
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. . . . . A
channel inputs are independent of its states. We will use the notation 7™ = (r;,...,75) and
rotm = (Tms--+sTn4m) for r = z,y,0r S.

The discrete-time channel is defined by its conditional input/output probability

at time n, which is determined by the channel state at time n,
P(YnlTn, Sn) = ch(ynlzn)I[Sn = ¢, (2.39)
) ceC .
where p.(y|z) = p(y|z,S = ¢), and I[-] denotes the indicator function. The memory of the
state si)ace channel is due to the correlation structure of the process {S,}. We assume that
the state at any point in time is independent of past input/outpﬁt pairs, when conditioned
on past states:

P(Sn4118™, 2", y") = P(Sn41|5™). (2.40)

In addition, since the channels in C are memoryless,

N

P(i‘/NL’”N’ SN) = H P(Yn|Tn, Sn)- (2.41)
n=1
If the inputs are also independent, then
’ N
P(yNstISA) = H P(Yns Tn|Sn), (2.42)
n=1
and
N
p(lesN) = H P(Yn|Sn)- (2.43)
n=1

The state space model places no restrictions on the stochastic process {S,}. We now define
two classes of discrete state space channels with particular characteristics for {S,}.
Finite-State Markov Channels

If the stochastic process {S,} is Markov with stationary transition probabilities,
and its state space C is finite, then we call the state space model a Finite-State Markov

channel. Let P be the matrix of transition probabilities for S, so

and is independent of n. We also assume that the process {S,} is irreducible and aperiodic.

Since the state space is finite, this implies that {S,} is also positive recurrent, ergodic, and
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has a unique invariant distribution 7o. If the initial distribution of So is mo, then {S,} is
also a stationary process. The Finite-State Markov Channel is illustrated in Figure 2.9.

Since the state transitions are Markov, (2.40) becomes '

p(Sn-i-l'Sns z", yn) = P(Sn-i-llsn)' (2'45)

Figure 2.9: Finite-State Markov Channel.

Arbitrarily Varying Channels

The Arbitrarily Varying Channel is a state space channel where the stochastic
structure p(S5»|S"~1) of the S,s is unknown for all n. It is also assumed that every state

can reach every other state in one step. The channel output probability is thus given by

p(lemN$ SN) = H p(?/nlzm Sn)y (2.46)

n=1

where for each n, S, is chosen at random from the set C.

2.4.2 Continuous-Time Model

Variation of the continuous-time state space channel is governed by a continuous-

time stochastic process {Sy,? > 0} with state space C. Each ¢ € C indexes a time-invariant
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continuous-time channel, and S; is called the channel state at time . The channels in C
need not be memoryless; however, even if they are memoryless, the time-varying channel
still has memory due to the correlation of {S;}. We now describe two examples of the

continuous state space model which apply to wireless radio channels.

Narrowband Fading Channels

Narrowband fading can be modeled using the continuous-fime state space model.

Specifically, for an input z(t), the channel output is given by
y(t) = Siz(t) + n(t), (2.47)

where n(t) is an additive noise term which is independent of S;. The channel gain at a
particular time instant is determined by a stochastic process {S;} over the set of all positive
real nhmbers, and the transition probabilities of S; are determined by the autocorrelation
of the fading statistics. This autocorrelation was given by (2.26) and (2.30) for Rayleigh

and log-normal fading, respectively.

Impulse Response Channels

The continuous state space model also applies to channels with a time-varying
impulse response. In this case, ¢ € C indexes a time-invariant impulse response h.(t) with

additive noise. The channel response at time ¢ to an impulse at time 7 is given by

h(t,7) =Y h(t-1)1[S,=¢]. (2.48)
ceC

Thus, for an input z(7), the channel output at time ¢ is

y(t) = / " a(r)h(t = 1, 5,)dr + n(2), (2.49)
where
h(t = 7,5,) 2 S he(t - IS, = ]. (2.50)
ceC

The transition probabilities for S; may be determined, for example, using a data-
based model such as Turin’s discrete-time wideband multipath channel model [6]. The

model for the time-varying impulse response channel is illustrated in Figure 2.10.
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Figure 2.10: Time-Varying Impulse Response Channel.

2.5 Summary

We have outlined the main properties of several different types of time-varying
channels. The first model, the additive noise channel, has been studied for quite some time;
in the subsequence chapters we will include the effects of additive noise only as an additional
impediment to other time-varying factors. The most significant impediments to reliable
communication over radio channels are multipath, shadowing, and interference. Multipath
has traditionally been characterized statistically with fast Rayleigh fading and slow log-
normal shadowing. However, these statistical models break down in urban areas where the
transmitter is placed below the building skyline. We therefore also described ray tracing
techniques, which specifically calculate the attenuation and phase of each received signal
path based on the geometrical configuration of the transmitter, receiver, and surrounding
buildings.

Interference is introduced when different signals transmit within the same fre-
quency band. In general, the spectrum is regulated to avoid this overlap. However, cellular
systems deliberately introduce interference to reuse their available spectrum at. spatially
separated points, thereby accommodating more users. We described two types of urban cel-
lular systems, macrocell systems and microcell systems, and showed that the propagation
characteristics of both the data signals and the interference are different for each type.

We concluded the chapter with a more abstract model for channel variation: the
state space channel. This model characterizes a channel that varies over a set of time-
invariant channels, where the variation is governed by a stochastic process. The time-

invariant channels, and the governing stochastic process, may be continuous or discrete. We
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will see in the following chapters that for this channel model, knowledge of the stochastic
process governing the channel variation can be used at the transmitter and receiver to

increase the communication rate and reliability.
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Chapter 3

Spectrally-Efficient Techniques for
Time-Varying Feedback Channels

In this chapter we outline methods for communication over point-to-point time-
varying channels, assuming that the channel can be estimated and this information fed
back to the transmitter. Thus, the transmitter can adapt to the channel variation. We first
derive the maximum spectral efficiency of these channels in terms of their Shannon capacity,
and show that this maximum is achieved when three parameters are adapted to the channel
variation: transmit power, data rate, and coding scheme. For time-varying impulse response
channels, this optimal scheme can be interpreted as a “water-filling” in time and frequency.
Variable rate, power, and coding is fairly complex to implement; we therefore compare the
spectral efficiency of this optimal policy with that of the constant received power scheme
currently proposed for fading cellular channels [38]. Our numerical results show that the
constant power policy has a significantly lower spectral efficiency than the optimal policy.
We also develop an adaptive trellis-coded modulation scheme for M-QAM, and calculate
the spectral efficiency and maximum possible coding gain of this technique. We conclude

the chapter with some discussion about the effects of estimation time and error.

3.1 Time-Varying Channel Capacity

The capacity of a time-invariant channel was defined by Shannon to be the mu-

tual information between the channel input and output maximized over all possibly input
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distributions [41]. The mutual information is defined as

I(X;Y) = E;yloglp(z,y)/p(z)p(v)], (3.1)

where p(z,y) is the joint distribution of the channel input and output, and p(z) and p(y)
denote the channel input and output distributions, respectively. Shannon also proved that,
for any data rate below capacity, there exists a block code at that rate with an error
probability that goes to zero with block length; however, the block code has no restriction
on its code complexity or delay. In addition, no such coding scheme can achieve data rates
above capacity with an arbitrarily small error probability.

It is somewhat surprising that the purely mathematical definition of channel capac-
ity in terms of mutual information yields an upper bound on practical transmission rates for
time-invariant channels. There is, however, no analogous mathematical definition of mutual
information for time-varying channels, since the conditional input/output probabilities of
the channel are time-dependent. Therefore, for time-varying channels we define the channel
capacity to be the maximum achievable data rate with arbitrarily small probability of error
without restriction on the code complexity or delay.

The motivation for determining this capacity in part is to see how close current
modulation and coding techniques come to this maximum rate. To the author’s knowledge,
no coding schemes have been proposed specifically for time-varying channels with estimation
and feedback, and the existence of a large gap between rates that are currently achievable
and theoretically attainable might elicit more development. Moreover, the optimal code
design might suggest effective practical techniques. Indeed, in §3.3 we use the capacity
analysis to determine optimal power control, and in 3.5.2 we propose a coded-modulation
technique based on the optimal code design which achieves rates approaching the capacity
limit.

We now derive the capacity of the continuous-time state space channel described
in §2.4.2, assuming that the channel variation S; is known at time ¢ by both the transmitter
and receiver, and that there is an average power constraint on the input. We also assume
that S, is stationary and ergodic, and has a finite number of transitions in any finite time
interval. The capacity analysis with these assumptions also applies to the discrete-time

model of §2.4.11. Finally, if the channels in C are not memoryless, we assume that if a state

'The discrete-time result without the power constraint is given by Theorem 4.6.1 of [39).
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transition occurs at time ¢, then the input before ¢ does not effect the channel output after
time t. Equivalently, the channel for the duration of a particular state is a memoryless block.
This assumption is always false if the channels in C are not memoryless. Let p. denote the.
channel memory corresponding to state c. We can eliminate the effect of channel memory on
subsequent channel states by using a guard band of duration p, after a transition from state
¢, during which no data is transmitted. Of course, this guard band results in some capacity
loss, since no data is transmitted during this period. We will assess the exact capacity loss
of this guard band in §3.6.3. Based on these results, if p. is small relative to the channel
latency (the average amount of time between state transitions), then the capacity loss due
to the guard band is small. In this sense, our memoryless block assumption is a reasonable
approximation for slowly-varying channels.

With this memoryless block assumption, we can view the channel as a time division
system with multiplexed input and demultiplexed output as in Figure 3.1. There are M =
IC| pairs of input and output ports, one pair per channel state. When the time-varying
channel is in state ¢;,7 = 1,..., M, the ith pair of ports is connected through the time-
invariant channel ¢;. We may thus regard the single time-varying channel as M time-
invariant channels in parallel, with the restriction that the ith channel can be operated

only when the channel is in state ¢;.

A A
S S,
{s) P
¢ Encoder 1 \ ¢, Bocoder
X (s) Y0
: N
: ceC .
. .
CHANNEL
SYSTEM ENCODER SYSTEM DECOOER

Figure 3.1: Time Diversity System.

A (2RT ¢, T) codeis a set (z1(t),. .., T4 1ary (t)) of distinct input signals (codewords)
over [0,T], and a set (J1,..., Y, rr)) of disjoint sets in the output space such that p(y(t) ¢
Yilz;(t)) < . We will now define a set of codewords for the multiplexed channel, and in

Theorem 3.1 we show that these codes achieve capacity. In Theorem 3.2 we show that no
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channel input can do better than this set of channel codes.
Over a time interval [0, T], let T; denote the total time that S; = ¢;. Since S, is

stationary and ergodic,

[T'] =S = ) 2 m, (3.2)
and )
T
Jim 2= - (33)

Let C;(F;) denote the Shannon capacity of the time-invariant channel ¢; € C with
average power F;. Then from [40], for any R; < C; there exists a sequence of (2”7, ¢p, T)
codes that satisfies the power constraint with ez — 0 as T — oo. Fix T, and for each ¢ €C,
let z7(2) denote the code corresponding to the time interval T;. Over the interval [0, T) the
channel is in state ¢; for duration T;. We therefore require codewords corresponding to
channel ¢; of length T}, not T;. Since z}(t) is defined on [O,m, we modify these codewords
as follows: if T; < T}, let

zi(t) £ { () t<T (3.4)

and if T; > T}, then zi(1) = ;r,?(t),Q <t<LT.

Suppose now that during [0,T], the channel is in state ¢; for sub-intervals of
duration Tj;, so T; = 2_; Tij. The codeword z;(t),0 < t < T; can then be broken up into
“fractional” codewords z;;(t) of duration T;; corresponding to when the channel is in state

¢;. as illustrated in Figure 3.2.

()

Figure 3.2: Fractional Codewords.

The fractional codewords for all M channels can be time-multiplexed to form a
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single codeword x(t) on [0,T] with power

x i = 55 [Mopa (35)

The received signal is demultiplexed and the received blocks for each of the i channels
concatenated, which reduces the time-varying channel to M time-invariant channels of
duration T;,t=1,..., M.

The decoding delay of this multiplexed coding scheme will g;enera.lly be much larger
than in the time-invariant case, since to decode the signal corresponding to the ith channel,
the decoder must wait for the total time that the channel spends in state i to equal the
desired block length. The decoding delay corresponding to each of the M channels will
also vary, since the dwell times? for each state will generally be different. Slowly-varying
channels have long dwell times for each channel state; for these channels, the entire block
code can generally be sent within one dwell time, so the decoding delay is the same as for the
corresponding time-invariant channel. Although our capacity definition places no restriction
on the decoding delay, these delays certainly impact practical code designs, especially for
delay-constrained data.

Suppose codewords for the time-varying channel can have average signal power at
most P. Let

PM 2 ((Py,.., Pag): Pi 20,5 mP; < P) (3.6)

be the set of power allocation vectors over the M time-invariant channels. The capacity
of a set of independent parallel channels with a mutual power constraint is the sum of the
capacity of each channel maximized over the constraint. For our model, the capacity of
each of the 7 channels must be weighted by T;/T, which approaches 7; as T — oo. This

motivates the following definition for the capacity of the time-varying channel.
A .
C= max ; 7:Ci(P), (3.7

where C;(F;) is the capacity of the time-invariant channel ¢; with input power P;. Theorem

3.1 shows that any rate R < C can be achieved with arbitrarily small error probability.

Theorem 3.1 For any R < C there exists a sequence of (28T er, T) codes with proba-

bility of error e — 0 as T — oo.

2Average time before transitioning out of a state.
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Proof We first show that we need only consider the case when M is finite. Indeed, since
all the C;s have finite capacity and }_;#; = 1, for all ¢ > 0 there exists a finite N < M

such that
o0

Y mCi(P)<e (3.8)

i=N(+l
Let PNe denote the subset of PM with P; = 0 for all i > N, and define

Cn. 2 pmax, Z‘/T,C (Py). | (3.9)

Combining (3.9) and (3.8), we see that |C —Cn,| £ €. Thus, we need only consider the case
when A is finite.

Fix PM = (Py,...,Pr) € PM. Let the ith channel have impulse response A, (t).
From the results for time-invariant channels [40, page 430], for R; < C;(P;) there exist
2LRT\) codewords of duration T; and average power P; which can be decoded with error
probability ¢; — 0 as T; — oo. The codewords for each of the M channels can be time-
multiplexed in the manner described above to yield [J2LAT) = 22 |RT codewords of

duration )_ T; and average power
Tl ' TS ' i :

as T — oo, since by ergodicity % — 1 and % — w;. So the new code satisfies the
average power constraint in the limit as T — oo. The received signal is demultiplexed and
concatenated for each channel as described above. By the memoryless block assumption,
the concatenated output for the ith channel is the same as the response of the ith channel
to the original codeword z;(¢), and the decoding of each of the M channels is decoupled.
The probability of error, €T, satisfies

M
er<Y &—0 as T — oo, (3.11)
i=1

since M is finite and T' — oo implies that T; — oo for all 7. The rate of the new code is
= %ZR.-T.' - Z‘lr,'R,' as T — oo, (3.12)

so rates arbitrarily close to }_ m;C;(P;) are achievable. Since thisis true for all (P;,...,Pp) €

P rates arbitrarily close to the capacity defined in (3.7) are achievable.
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Theorem 3.2 Any sequence of (2RT ¢7,T) codes with e — 0 must have R <C.

Proof Let W be uniformly distributed on {1,...,[2%7|}. Consider a sequence of
(2RT,er,T) codes {z,(t),w = 1,..., |2RT|} with e — 0 as T — oo and average power
P. Let I(X;Y) denote the mutual information between the input and output of the time-
varying channel on [0,T], and I(X;;Y;) denote the mutual information of the ith time-
invariant channel on [0,T;]. Define PT(w) to be the average power in code Z4(t) which is

transmitted while the channel is in state ¢;:
T .
PT(w) & - [ leu)P1(S, = et (3.13)
i Jo
where 1[-] is the indicator function and w € (1,..., |2RT|). We then have

RT HW)

HW|Y) + I(W;Y)
HW|Y)+ I(X;Y)
1+ erRT + I(X;Y)

14 e7RT +)_ I(X3Y))

INe 1A= IN I

llo

1+ erRT + Y EuI(X;; Yi| P (w))

IA®

1+ erRT + Y E,Ci(PT(w))T;

INe

1+ erRT + Z Ci( Eu[PF(w))T;, (3.14)

where a follows from Fano’s inequality, b follows from the memoryless property of the T;
blocks, ¢ and d follow from the definitions of mutual information and capacity, respectively,
and e follows from Jensen’s inequality.
Define P’ = (P7,...,PL), where P! = E,[PT(w)]. By construction, P; satis-
fies the average power constraint on [0,T]. Let T, — oo be a subsequence such that P
converges:
P = (P, PR) = (B, ..., PY). (3.15)

Since ™" satisfies the average power constraint, it follows that

n—oco

lim Z%ﬁf" = Y mPe <P, (3.16)
E t
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where the superscript n denotes the dependence of T; on T,. Dividing (3.14) by T, we get

1 T, &7
R<F7+erR+ Z 7 Ci(Pi). (3.17)
Taking the limit of the right-hand side of (3.17) along the subsequence T, we have
. . TP |, =T,
R< Jim 3 7C(PP) = L mC(PR) < C, (318)

where the last inequality follows from (3.16) and the definition of C.

3.2 Water-Filling in Time and Frequency

In this section we use the capacity results of §3.1 'to determine the optimal input
spectrum for the time-varying impulse response channel of §2.4.2, where the channel varia-
tion is stationary and ergodic. The system model, shown in Figure 3.3, operates as follows.
The receiver estimates the channel impulse response (perfectly in zero time) and feeds this
information back to the transmitter. The transmitter then uses the multiplexing coding

technique to adapt its output to the changing channel state.

TRANSMITTER CHANNEL RECEIVER

n(t) )

l—— Decoder
e @—é T e, HH oo

Figure 3.3: System Model for Impulse Response Channels.

An example of h(t,7), given by (2.48), is plotted in Figure 3.4. The impulse
response is constant for some random time period 71, at which point the channel state
changes. The channel remains in the new state for the random time 7, — 7, then changes
again, and so forth. The statistics of the transition times ; are determined by the transition
probabilities of S;. Since we assume that channel has a finite number of transitions in a
finite time interval, 7; — 7;_; is strictly positive. In addition, within the dwell time 7; — 7;_;
the channel is assumed to be a memoryless block.

Taking the Fourier transform of h(t,7) with respect to t yields

H(f,7) = / TS ket = TS = d| et = ST H(N)e P (S, = o], (3.19)

= LeeC ceC
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h(t, T)

Figure 3.4: Time-Varying Impulse Response.
where H.(f) is the Fourier transform of h.(t). We plot |[H(f,7)|in Figure 3.5.

[H(f;T) |

T, Tz T

Figure 3.5: Fourier Transform of A(t,7) Relative to t.

From Gallager [40], the capacity-achieving code of power P for a time-invariant ad-
ditive Gaussian noise channel with impulse response h(t) is a zero mean Gaussian stochastic

process with spectrum

5:(0)=[A- I—;f-(%r

where N,(f)is the spectrum of the additive noise and A is chosen such that S¢(f) does not

(3.20)

exceed the power constraint. Since the noise N.(f) is usually introduced at the receiver,

we will assume that its spectrum is the same for all ¢ and denote this common spectrum
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by N(f). The corresponding channel capacity is given by

_ Se(NNHLNI?
Ce= /‘i’ﬁ%}Ez% N(f)

The spectrum S,(f) is generally interpreted geometrically using a water-filling

%log [1 + ] df. (3.21)

analogy, as illustrated in Figure 3.6. A fixed amount P of “water” (power) is poured into a
container with the container bottom defined by N(f)/|H.(f)|?>. The water will distribute
itself to maintain a water level of A. Inverting the shaded region of Figure 3.6 then yields

the shape of the optimal input power spectrum.

Figure 3.6: Water-Filling for Time-Invariant Channels.

Using the multiplexed coding described in the previous section, we see that the
capacity-achieving code for the time-varying channel has spectrum S.(f) when the channel
is in state c. Thus, the capacity-achieving code for the time-varying channel, S(f,7), is the

unique solution to the equation set

_ N T
) = (A~ gyl
T oo
P = Jm % /o /_ " S(fmydfr. (3.22)

The spectrum of the capacity-achieving code for the time-varying channel h(¢,7) can be
interpreted geometrically as a water-filling in time and frequency. Specifically, the total
input power P over all time and frequency is given by the shaded region under plane A in

Figure 3.7. If we adjust the height of A such that the average power constraint is satisfied,
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then an input power spectrum at time 7 and frequency fo of A.— S(fo, 7o) achieves the
time-varying channel capacity. This can be interpreted as water-filling in two dimensions,
since §(f,7) now defines the container bottom, and wateris poured into the two dimensional
container such that the time-average power equals P. Assuming that the region is connected,

the water will distribute itself in such a way as to achieve capacity.

N
[HitT)I?

Figure 3.7: Water-Filling in Time and Frequency.

3.3 Power Control for Narrowband Fading Channels

When the transmitted signal is narrowband, multipath fading introduces a time-
varying power gain G(t), as described in §2.2.2. The system model for this case is shown
in Figure 3.8, where we assume that n(?) is AWGN. In this section we show that based on
the results from §3.1, a policy which adapts the data rate, coding scheme, and power at the
transmitter achieves the maximum zero-error spectral efficiency on a narrowband fading
AWGN channel, where spectral efficiency is defined as the data rate per unit of bandwidth
for a fixed error rate. We also compare the spectral efficiency of this optimal policy to that of
two other policies which adapt only the transmit power. In order to compare these different
power control schemes, we assume that the encoder output has unity average power, which
is then multiplied by the power control value P(t). The power control is subject to the

average power constraint

1T
Jim = /0 P(t)dt < P. (3.23)
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We now determine the power control and coding policy which maximizes the spectral effi-

ciency for this system.

TRANSMITTER CHANNEL RECEIVER
A,
GO o — o
r(t) Power x(t) /L /L y(t) r A
e[+ S L—® g, 160

Figure.3.8: System Model for Narrowband Fading Channels.

3.3.1 Maximum Spectral Efficiency

The capacity of a time-invariant, bandlimited, AWGN channel with bandwidth B,
gain G and power P in bits per second is [41, 42]

PG

N5 (3.24)

C = Blog, [1 + =

where 4 2 pG /NoB is the signal-to-noise ratio (SNR). If the channel gain G is time-varying,
then the instantaneous SNR for constant transmit power P is (1) S PG(t)/N,B. Since we
assume perfect channel estimation in zero time, the transmitter knows (t) at time t, and
can adjust its power and code accordingly. Let P(7) denote the transmit power averaged
over all times ¢ such that (1) = 7, and let w(y) denote the distribution for 4, which is
determined by the fading statistics (e.g. Rayleigh, log-normal, etc.).

Combining (3.7) and (3.24), we see that the maximum zero-error spectral efficiency
for an AWGN channel with time-varying SNR +(t) and average power P is

C

5 = max / log, [1+ @) ]w(')')d'y, (3.25)

where P(7) is subject to the power constraint

/ P()r(7)dy = P. (3.26)

Using Lagrange multipliers, it can be shown that the power control policy maximizing (3.25)
is

1_1 >
P(y) _ { go 5 727 (3.27)
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for some “cutoff” value 7¢. If the received signal power is below this level, then no power
is allocated to data transmission, so the outage probability for this policy is p(y < v0). This
power control policy is depicted in Figure 3.9. Since v is a function of G(t), the maximizing
power control policy is a “water-filling” formula in time that depends on the fading statistics

only through the cutoff value 7,.

Figure 3.9: Optimal Power Control Policy.

Substituting (3.27) into (3.26), we can determine 7o by numerically solving

[, :° (7—10 - %) r(y)dy = 1. (3.28)

Once 79 is known, we substitute (3.27) into (3.25) to get

% = /oo log, (%) 7(v)dy. (3.29)

Yo
Equation (3.29) gives the maximum zero-error spectral efficiency of the narrowband fading
channel, with no constraint on the delay or complexity of the coding strategy. Although
the multiplexing code strategy of §3.2 suggests that the decoder delay is a random variable
with distribution determined by the fading statistics, in §3.5 we develop a coding scheme
with rates approaching the capacity limit where the decoder delay is fixed and independent
of the fading correlation. We now consider constant power control policies, which avoid the

use of variable-rate codes.
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3.3.2 Constant Power Policies

In the previous section we derived a policy for maximizing spectral efficiency which
adapts three parameters relative to the channel variations: the transmit power, data rate,
and coding scheme. In this section we consider two policies which adapt only the transmit
power to maintain a constant SNR at the receiver. Thus, the transmit power exactly
compensates for the signal fading, as illustrated in Figure 3.10. Sgeciﬁcaﬂy, the constant
power control policy is

P(7)/P = Pr/, (3.30)

where Pg equals the received signal-to-noise ratio. The channel then appears as a time-
invariant AWGN channel with SNR = Pg. The constant Pg is determined by the transmit

power constraint (3.26):

Rim=1 = bpg

1
p = m (3.31)

The spectral efficiency with optimal coding for this policy (C¢p) is derived from the capacity

of an AWGN channel with receive power Pg:

S = loga 1+ P = log, 1+ (3.32)

el

TRANSMITTER CHANNEL RECEIVER
8 Gm cocoer o)
r(t) o x(t) /‘L /J\ y(t) r
—O——0—® g,
1/6() II ' G

Figure 3.10: System Model for Constant Power Policy.

In severe fading conditions, the constant power policy of (3.30) allocates most of
its power to compensate for deep fades. We therefore modify this policy to compensate for

fading above a certain cutoff fade depth Yo:

(3.33)

Py) _ | & 127
P 0 7<7
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Since the channel is only used when ¥ > 7o, the power constraint (3.26) yields Pr =
1/E,,[1/7], where

a [*1
Eyl1/7]= / —m(7)dy. . (3.34).
7w 7
The spectral efficiency with this modified policy is then
Cunep = log [1 + _}__l (7 > Y0) (3.35)
B i V27| R

where p(y 2 ) = ,;’: 7(7)dy. To get the maximum efficiency for the modified constant
power policy, we must maximize (3.35) relative to yo. Alternatively, we can specify a
particular outage probability p,ur, and determine the cutoff yo which satisfies p(y < 70) =
Pout-

3.3.3 Numerical Results

We now evaluate the spectral efficiency and outage probability of the power con-
trol policies in §3.3.1 - 3.3.2 for both log-normal and Rayleigh narrowband fading channels.
Figure 3.11 shows the spectral efficiencies in log-normal fading with o = 8dB for the optimal
(3.29). constant power (3.30), and modified constant power (3.33) control policies, respec-
tively. For the modified policy, we calculate the efficiency under two different criterion for
the cutoff value 7¢: the value that maximizes the spectral efficiency for this policy, and the
value that achieves the same outage probability as the optimal policy.

For Rayleigh fading, E[1/7] is infinite. Thus, the spectral efficiency with the
constant power policy is zero. Figure 3.12 shows the spectral efﬁcienéy of the other two
policies in Rayleigh fading. There are two observations worth noting in these figures. First,
the spectral efficiency of the modified constant power policy is close to the optimal policy’s
efficiency in both types of fading. Second, for log-normal fading at high SNRs, the constant
power policies (3.30) and (3.33) perform almost the same.

' The outage probability of the optimal and modified constant power policies is
shown in Figures 3.13 for both log-normal and Rayleigh fading. The cutoff parameter
for these calculations is the value which maximizes the spectral efficiency. In both types of
fading, the outage probability with the optimal policy decreases exponentially. However, for
the modified constant power policy, the outage probability becomes asymptotically constant
for large SNRs. This behavior is explained by the cutoff values for each policy, which we

plot in Figure 3.14 for both types of fading. The cutoff values for the optimal policy increase
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—— Optimal Policy

- = = Constant Power Policy (Maximum R/B)

—-=~ Constant Power Policy (Pout of Optimal Policy)
------ Constant Power Policy (No Cutoff)

10 15 20 25 30
In[SNR] (dB)

Figure 3.11: Spectral Efficiency in Log-Normal Fading.
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10

— Optimal Policy
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10 15 20 25 30
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Figure 3.12: Spectral Efficiency in Rayleigh Fading.
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----- Optimal Policy (Rayleigh)
--— Constant Power Policy (Rayleigh)
—— Optimal Policy (Log-Normal)

— - -~ Constant Power Policy (Log-Normal)

Log10{Pout]
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-
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] T
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Figure 3.13: Outage Probability.

very slowly with SNR; thus, at high SNRs the probability of falling below the cutoff value
is small. On the other hand, the cutoff values of the modified policy increase exponentially.
Although the higher SNR increases the average value of 4, since the cutoff values are

increasing proportionally, the outage probability remains approximately constant.

3.4 Uncoded Narrowband Modulation: Variable Rate M-
QAM

The spectral efficiency calculated in 3.3.1 placed no constraints on the complexity
or delay of the channel codes. We now consider spectral efficiency of uncoded M-QAM mod-
ulation with ideal Nyquist data pulses (sinc[t/T]). We will see that the spectral efficiency
in this case depends on the allowable bit error rate (BER), and the policy to maximize
efficiency adjusts the transmit power and the number of signal points in the M-QAM con-
stellation. We also derive the maximum possible coding gain for M-QAM as a function of
BER.

It has been shown [9, 43] that the BER for uncoded M-QAM can be approximated
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Figure 3.14: Cutoff Values.
by
BER = 2¢~15(3/M-1) (3.36)

where A/ is the number of M-QAM constellation points and ¥ = P/NoB is the average
received SNR. Let R denote the bit rate, and T denote the duration of each M-QAM
symbol. The number of data bits per symbol is log, M, and since the M-QAM pulses are
Nyquist (B = 1/T), the spectral efficiency (R/B) is log, M/BT = log, M.

Let the fading parameter v be as in §3.3.1, and let the power control policy adjust
the transmit power to P(v) for fade level 4. For a fixed M, this increases the distance
between points in the signal constellation, thereby reducing the BER. Specifically, the in-
stantaneous BER is given by

BER(y) = 2 exp ;;—_5715%7-2 . (3.37)
Suppose that in addition to adjusting the transmit power, we also adjust M to maintain
a constant BER. Equivalently, we increase the size of the signal constellation while leaving

the distance between points fixed. We can then rearrange (3.37) to get M in terms of the
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BER, 4, P, and P(%):

_ 15y  P(7)
M(y) =1+ “Tea(BERTD) P (3.38)

The values of M may now be continuous. Constellations which transmit a non-integer
number of bits per symbol are discussed in [44). If we restrict the M-QAM to be a square
constellation, then the following analysis, which assumes no restriction on M, yields opti-

mistic results.

3.4.1 Maximum Spectral Efficiency

To maximize the spectral efficiency, we want to maximize

_ 1.5y P(7))
Ellogy M) = [ log, (1+ 2 S pe) T, (3.39)
subject to the power constraint
/ P(y)r(y)dy = P. (3.40)

The power control policy that maximizes (3.39) can be found using Lagrange multipliers,

and is similar in form to (3.27):

P(y) | - v21/K
P = { (3.41)

0 v < Yo/ K ’
where ¢ is the cutoff fade depth, and

LA -1.5

Define v £ 70/ K. Substituting (3.41) into (3.39), we get the spectral efficiency
5= [ ou ()
- = logy | — | w(7y)dy. 3.43
B = [, e \op) Ty (3.43)

By substituting (3.41) into (3.40), we can rewrite the power constraint in terms of v g:
/oo (L - l) n(y)dy = K. (3.44)
¥ \TK 7
The maximum spectral efficiency of uncoded M-QAM is the maximum of (3.43)
subject to the constraint (3.44). This maximization problem is identical to the maximum

efficiency with coding, defined by (3.29) and (3.28), with the transmit power constraint
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reduced by A'. Thus, there is a simple relationship between the spectral efficiencies of
optimal coding and uncoded M-QAM modulation: uncoded M-QAM has an effective power
reduction of K relative to optimal coding. Equivalently, K is the maximum possible coding
gain for M-QAM. Equation (3.43) is the spectral efficiency with optimal power and rate

adaptation; we next consider the constant power policy, which only adapts transmit power.

3.4.2 Constant Power Policies

If we again define the constant power policy as in (3.30), then the average power
constraint requires that Pg = 1/E[1/7]. Substituting (3.30) into (3.39), we get the maxi-

mum spectral efficiency of the constant power policy:

R -15
B - o8 (” log(BER/2) E[l/'y])' (3.43)

Similarly, using the modified policy (3.33) and the corresponding power constraint Pgr =
E..[1/7], the spectral efficiency (3.39) becomes

R -1.5
5 = ou i+ R %2 (346

Thus, the maximum spectral efficiency with the modified policy is (3.46), maximized relative

to 70. As in the optimal coding case, we can also set 7¢ relative to a desired outage
probability.

-

3.4.3 Numerical Results

We now evaluate the spectral efficiency and outage probability of these policies,
and compare them with the coded cases in §3.3.3. Figure 3.15 shows the spectral efficiencies
of the optimal (3.29), constant power (3.30), and modified constant power (3.33) control
policies, respectively, for log-normal fading with ¢ = 8dB and a BER of 10-3. For the
modified policy, we determine 7o based on one of two criterion: maximizing the spectral
efficiency, or matching the outage probability to that of the optimal policy. The efficiency
of the constant power policy in Rayleigh fading is zero; in Figure 3.16 we plot the efficiency
of the other two policies in Rayleigh fading. Figures 3.17 and 3.18 compare the efficiencies
for the coded and uncoded cases. In these figures, the modified policy performance is
derived for the 4o which maximizes spectral efficiency. Figures 3.19 and 3.20 compare the

corresponding outage probabilities.
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Figure 3.15: Efficiency of Uncoded M-QAM in Log-Normal Fading.
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Figure 3.16: Efficiency of Uncoded M-QAM in Rayleigh Fading.
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Figure 3.17: Coded and Uncoded Cases in Log-Normal Fading.
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Figure 3.18: Coded and Uncoded Cases in Rayleigh Fading.

58



Log10[Pout]

59

—— Optimal Policy

= - - Modified Constant Power Policy

=-= M-QAM/Optima! Policy

[~ e M-QAM/Modified Constant Power Policy

SNR (dB)

Figure 3.19: Outage Probabilities in Log-Normal Fading.
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Figure 3.20: Outage Probabilities in Rayleigh Fading.
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In Figure 3.21 we plot I, the maximum possible coding gain for uncoded M-QAM,

as a function of BER. In the next section, we will discuss practical coding techniques to

achieve some of this gain.

14

Maximum Coding Gain (K)

[} 1 |
12 -10 K ) 4 2 I

Log[BER]

Figure 3.21: Maximum Coding Gain.

3.5 Coding

The coding strategy required to achieve the gain predicted in Figure 3.21 uses
multiplexing of the capacity-achieving codes for the AWGN channel with bandwidth B
and SNR 7. However, these capacity-achieving codes give little insight into practical code
design [41]. We now discuss some of the recent advances in bandwidth-efficient coding for
time-invariant channels. In particular, we review the basic ideas behind coded modulation,
where the source and channel coding schemes are jointly optimized. We then propose an
adaptive variable-rate coded-modulation technique for fading channels with estimation and

transmitter feedback, and calculate the coding gain of this scheme relative to the uncoded
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variable-rate M-QAM of the previous section.

3.5.1 Coded Modulation for Bandlimited AWGN Channels

Although Shannon proved the capacity theorem for AWGN channels in the late
1940s, it wasn’t until recently that rates approaching the Shannon limit on bandlimited
AWGN channels have been attained [44). Shannon’s theorem predicted the possibility of
reducing both energy and bandwidth simultaneously through coding. However, traditional
error-correction coding schemes, such as block and convolutional codes, reduce transmit
power at the expense of increased bandwidth, since the added code bits increase the bit
rate [45).

The spectrally-efficient coding breakthrough came when Ungerboeck [46] intro-
duced a coded-modulation technique to jointly optimize botﬂ channel and source (modula-
tion) coding. This joint optimization results in significant coding gains without bandwidth
expansion. Ungerboeck’s trellis-coded modulation, which uses multilevel /phase signal mod-
ulation and simple convolutional coding with mapping by set partitioning, has remained
superior over more recent developments in coded modulation (coset and lattice codes), as
well as more complex trellis codes [48). We now outline the general principles of this coding
technique. Comprehensive treatments of trellis, lattice, and coset codes can be found in
(47, 44, 48), respectively.

The basic scheme for trellis and lattice coding, or more generally, any type of
coset coding, is depicted in Figure 3.22. There are five elements required to generate the

coded-modulation:

1. A conventional encoder E, block or convolutional, that operates on £ uncoded data

bits to produce k + r coded bits.

2. A subset selector, which uses the coded bits to choose one of 2¥*" subsets from a

partition of the N-dimensional signal constellation.

3. A point selector, which uses n — k additional uncoded bits to choose one of the 27—

signal points in the selected subset.

4. A constellation map, which maps the selected point from N-dimensional space to a

sequence of N/2 points in two-dimensional space.
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Figure 3.22: General Coding Scheme.

5. A QAM modulator.

The first two steps described above are referred to as channel coding, and the remaining steps
are called source coding or modulation. The receiver essentially reverses the modulation and
coding steps: after QAM demodulation and an inverse 2/N constellation mapping, decoding
is done in essentially two stages: first, the points within each subset that are closest to the
received signal point are determined; then, the maximum-likelihood subset sequence is
calculated. When the encoder F is a convolutional encoder, this coded-modulation scheme
is refered to as a trellis code; for E a block encoder, it is called a lattice (or block) code.

The steps described above essentially decouple the channel coding gain from the
source (signal-shaping) gain. Specifically, the code distance properties, and thus the channel
coding gain, are determined by the encoder (E) properties and the subset partitioning,
which are essentially decoupled from the source coding. We will discuss the channel coding
gain in more detail below. Optimal shaping of the signal constellation provides up to an
additional 1.53 dB of shape gain (for asymptotically large N), independent of the channel
coding scheme3. However, the performance improvement from shape gain is offset by the
corresponding complexity of the constellation map, which grows exponentially with N. The
size of the transmit constellation is determined by the average power constraint, and doesn’t
affect the source (or channel) coding gain.

The channel coding gain results from a selection of all possible sequences of signal

3A square constellation has 0dB of shape gain; a circular constellation, which is the geometrical figure
with the least average energy for a given area, achieves the maximum shape gain for a given N [49].
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points. If we consider a sequence of N input bits as a point in N-dimensional space (the
sequence space), then this selection is used to guarantee some minimum distance dmin in the
sequence space between possible input sequences. Errors generally occur when a sequence is
mistaken for its closest neighbor, and in AWGN channels this error probability is a decreas-
ing function of dZ;,. We can thus decrease the BER by increasing the separation between
each point in the sequence space by a fixed amount (“stretching” the space). However, this
will result in a proportional power increase, so no net coding gainis realized. The effec-
tive power gain of the channel code is, therefore, the minimum squared distance between
allowable seqﬁence points (the sequence points obtained through coding), multiplied by the
density of the allowable sequence points. Specifically, if the minimum distance and density
of points in the sequence space are denoted by dp and A, respectively, and if the minimum
distance and density of points in the sequence space obtained through coding are denoted

by dmin and A, respectively, then maximum-likelihood sequence detection yields a channel

G. = (‘-13;?) (Aﬁo). (3.47)

The second bracketed term in this expression is also refered to as the constellation expansion

coding gain of

factor, and equals 27 (per N dimensions) for a redundancy of r bits in the encoder E [48].
Some of the nominal coding gain in (3.47) is lost due to correct sequences having
more than one nearest neighbor in the sequence space, which increases the possibility of in-
correct sequence detection. This loss in coding gain is characterized by the error coefficient,
which is tabulated for most common lattice and trellis codes in [48]. In general, the error
coefficient is larger for lattice codes than for trellis codes with comparable values of G ..
Channel coding is done using set partitioning of lattices. A lattice is a discrete set
of vectors in real Euclidean N-space that forms a group under ordinary vector addition, so
the sum or difference of any two vectors in the lattice is also in the lattice. A sub-lattice
is a subset of a lattice that is itself a lattice. The sequence space for uncoded M-QAM
modulation is just the N-cube?, so the minimum distance between points is no different
than in the two-dimensional case. By restricting input sequences to lie on a lattice in
N-space that is denser than the N-cube, we can increase dp,;;, while maintaining the same

density (or equivalently, the same average power) in the transmit signal constellation; hence,

*The Cartesian product of two-dimensional rectangular lattices with points at odd integers.
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there is no constellation expansion. The N-cube is a lattice, however for every N > 1 there
are denser lattices in N-dimensional space. Finding the densest lattice in N dimensions is
a well-known mathematical problem, and has been solved for all N for which the decoder
complexity is managea.bles. Once the densest lattice is known, we can form partioning
subsets, or cosets, of the lattice through translation of any sublattice. The choice of the
partitioning sublattice will determine the size of the partition, i.e. the number of subsets
that the subset selector in Figure 3.22 has to choose from. Data bits are then conveyed
" in two ways: through the sequence of cosets from which constellation points are selected,
and through the points selected within each coset. The density of the lattice determines
the distance between points within a coset, while the distance between subset sequences is
essentially determined by the binary code properties of the encoder E, and its redundancy
r. If welet d, denote the minimum distance between points within a coset, and d, denote
the minimum distance between the coset sequences, then the minimum distance code is
dmin = min(dp,d;). The effective céding gain is given by

G.=2"%/INg? . | . (3.48)

-

where 2-27/N is the constellation expansion factor (in two dimensions) from the r extra bits
introduced by the binary channel encoder.

Returning to Figure 3.22, suppose that we want to send m = n + r bits per
dimension, so an N sequence conveys mN bits. If we use the densest lattice in N space
that lies within an N sphere, where the radius of the sphere is just large enough to enclose
2mN points, then we achieve a total coding gain which combines the channel gain (resulting
from the lattice density and the encoder properties) with the shape gain of the N sphere
over the N rectangle. Clearly, the channel coding gain is decoupled from the shape gain.
An increase in signal power would allow us to use a larger N sphere, and hence transmit
more uncoded bits. We will use this idea in the next section to design a variable-rate
coded-modulation technique for fading channels.

It is possible to generate maximum-density N-dimensional lattices for N = 4, 8,
16, and 24 using a simple partition of the two-dimensional rectangular lattice combined with
either conventional block or convolutional coding. Details of this type of code construction,

and the corresponding decoding algorithms, can be found in [44] for both lattice and trellis

*The complexity of the maximum-likelihood decoder implemented with the Viterbi algorithm is roughly
proportional to N.
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codes. For these constructions, an effective coding gain of approximately 1.5, 3.0, 4.5, and
6.0dB is obtained with lattice codes, for N = 4, 8, 16, and 24, respectively. Trellis codes
exhibit higher coding gains with comparable complexity.

We gonclude this section with an example of coded-modulation: the N = 8, 3dB
gain lattice code proposed in [44]. First, the two-dimensional signal constellation is par-
titioned into four subsets as shown in Figure 3.23, where the subsets are represented by
the points Ao, A;, Bo, and B, respectively. From this subset pa}tition, we form an 8-
dimensional lattice by taking all sequences of four points in which all points are either A
points or B points and moreover, within a four point sequence, the point subscripts satisfy
the parity check i1 + i3 4+ 43 + i4 = 0 (so the sequence subscripts must be codewords in
the (4,3) parity-check code, which has a minimum Hamming distance of two). Thus, three
data bits and one parity check bit are used to determine the lattice subset. The minimum
distance resulting from this subset partition is four times the minimum distance of the un-
coded signal constellation, yielding a 6dB gain. However, the extra parity check bit expands
the constellation by 3dB, so the net coding gain is 6 — 3 = 3dB. The remaining data bits
are used to choose a point within the selected subset, so for a data rate of m bits/symbol,

the four lattice subsets must each have 2™~! points®.

Ay By Ay By Ay By A By Ap By -
B, A, B, A, B, A, B, A, B, A, .
Ay By Ay By Ag By Ag By Ag Bg . - .
B, A, B, A, B, A, B, A, B, A, .

- Ro Bg Ag By Ay By Ag By Ag By .
B, A, B, A, B, A, B, A, By A, . . .
Ao Bg Ag By Ag By Ag By Ag By .
B, A, B, A, B, A, B, A, B, A, . . .

* AOBOAOBOAOBOADBO“OBO’

Figure 3.23: Subset Partition for an Eight-Dimensional Lattice.

8This yields m — 1 bits/symbol, with the additional bit/symbol conveyed by the channel code.
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3.5.2 Variable-Rate Coded Modulation for Narrowband Fading Channels

We now propose a variable-rate coded-modulation technique which obtains some
of the coding gain predicted by (3.42). We also calculate the spectral efficiency of this
technique relative to the capacity limit and the uncoded case. The coded-modulation scheme
is shown in Figure 3.24. The channel code design is the same as it would be for a time-
invariant channel; thus, the lattice structure and conventional encodey are the same as those
in Figure 3.22. From §3.5.1, the channel coding gain, G, is independent of the transmit
signal constellation. We can therefore adjust the power and rate (number of levels or signal
points) in the transmit constellation relative to the instantaneous SNR, as described in §3.4,

without affecting the channel coding gain.

Kk bits ker blts
Uncoded Conventions) | Coded Subset
:’“" Bits > Encoder |8l :> Selector
One of 2** *Channe! Coding”
Subsets :
v *Source Coding®
Projoction From
N to 2 Dimensions
Queue Server
Uncoded Uncoded Signal MQAM
Data Bits > . Point Selector | ity D wocutator
. n(7)-2kM Bits t One of M(y)
7 Constellation
Y Points

Figure 3.24: Variable-Rate Coded-Modulation Scheme.

The source coding (modulation) works as follows. The signal constellation is a
square lattice with an adjustable number of constellation points M. Since we are using the
N-cube for our signal constellation, the shape gain is zero. Therefore, we can move the
constellation mapping before the point selection without changing the code performance,
i.e., we project the chosen subset in N-dimensional space onto a sequence of N/2 subsets
in two-dimensional space from which the M-QAM signal point is selected. The size of the
M-QAM signal constellation is determined by the transmit power, which is adjusted relative
to the instantaneous SNR and the desired BER, as in the uncoded case above.

Specifically, if the BER approximation (3.36) is adjusted for the coding gain, then
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for a particular SNR=7%,
BER =~ QC-I'S(WGCIM-])' (3.49)

Therefore, the number of constellation points and the signal power can be adjusted‘rel'ative'
to the instantaneous SNR to maintain a fixed BER:

1.59G.  P(v)

M) =1+ = @ER2) P

(3.50)

The number of uncoded bits required to select the coset point is n(y)—2k/N = log, M(7y)-
2(k + r)/N. Since this value varies with time, these uncoded bits must be queued until
needed, as shown in Figure 3.24. ,

The bit rate per transmission is log, M(7), and the data rate is log, M(7) -
2r/N. Therefore, we maximize the data rate by maximizing E[log, M] relative to the
power constraint (3.40). From this maximization, we obtain the optimal power control

policy for this modulation scheme:

P(Y) _ ) %3k 72 w/K (351)
0 7 < 70/Kc

where 79 is the cutoff fade depth, and K. = K'G.. The optimal policy is the same “water-
filling” as in the uncoded case, given by (3.44), with K replaced by K.. Thus, the coded

modulation increases the effective transmit power by G relative to the uncoded variable-

rate M-QAM performance. The resulting spectral efficiency is

£ = [ log, (71 )7r(7)d7. ' (3.52)

‘B YK ‘¢

If the constellation expansion factor is not included in the coding gain G., then we must
subtract 2r/N from (3.52) to get the data rate.

In Figure 3.25 we plot the spectral efficiency given by (3.52) in log-normal fading
over-a range of channel coding gains. Lattice codes which achieve these gains are described
in [44]. For comparison we also plot the efficiency of uncoded modulation (3.43) and the
capacity limit (3.29). From this figure, we see that a coding gain of 6dB comes reasonably
close to the capacity limit, and the added complexity required to implement higher-gain
channel codes is probably unwarranted for most applications. Figure 3.26 shows a similar
comparison for Rayleigh fading, where 6dB of channel coding gain again yields close to

optimal performance.
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Figure 3.25: Efficiency in Log-Normal Fading with Variable-Rate Coding.
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Figure 3.26: Efficiency in Rayleigh Fading with Variable-Rate Coding.
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Most coded modulation techniques for fading channels-do not assume channel
state information at the receiver. Instead, they rely on built-in time diversity in the code
to mitigate the effect of Rayleigh fading. Code designs of this type can be found in {50, 51].
Consider a built-in time diversity code of this type with coding gain G.. The system BER
with this code is determined by integrating (3.49) against the fading distribution of the
SNR:

BER = / 2e~15(1Ge/M V) (2 )gy - (3.53)

To calculate the spectral efficiency of built-in time diversity codes, we fix the BER
and SNR, and determine the value of M which achieves this BER in (3.53). Figure 3.27
shows the resulting efficiency of time diversity codes with different coding gains, and com-
pares their performance with that of the adaptive coded modulation. As expected, the
adaptive technique is far superior. Thus, it appears that when channel state information
is available at the transmitter, using this information for adaptive encoding yields a sig-
nificant increase in system performance, as long as the additional complexity of adaptive

constellation sizing is manageable.

10—
—— Variable Rate (Gc=6dB)
--= Variable Rate (Ge=3dB)
- = = Built-In Time Diversity (Gc=6dB)
sp - Built-In Time Diversity (Gc=3dB)

Spectral Efficiency

SNR (dB)

Figure 3.27: Variable-Rate and Time Diversity Codes in Rayleigh Fading.
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3.6 Channel Estimation

We have assumed throughout this chapter that the channel variation is tracked
perfectly at the receiver, and this information is sent to the transmitter via an error-free
feedback path?’. We now relax the assumption of perfect channel estimation, and study the
impact of channel estimation errors. First we consider channel estimation in narrowband
multipath channels with Rayleigh fading and log-normal shadowing. Since Rayleigh fading
. is usually too fast to measure accurately, we propose an estimation filter to minimize the dB
error of the log-normal estimate while averaging out the Rayleigh fading. We analytically
determine the statistics of the rms dB estimation error, and compute its value over a range
of fading parameters. A more detailed study, which includes simulation of the estimation
error, the effects of antenna diversity, and design of a fixed filter which is robust over a
range of fading parameters can be found in [52].

Once the statistics of the estimation error is known, we can determine this error’s
effect on the power control, modulation, and coding techniques proposed in §§3.4 — 3.5.
Specifically, we calculate the change in average power and data rate of our adaptive policies
when the power estimate used for the aaaptation is incorrect.

Although narrowband fading can be estimated concurrently with data detection,
wideband channel variation is usually measured by sending a periodic training sequence
known to both the transmitter and receiver [31]. Longer training sequences generally result
in better channel estimates, but with a corresponding loss in data rate, since no data is
transmitted during the training period. With respect to channel capacity, the periodic
estimation is equivalent to turning the transmitter off periodically. This limits the input
sequences that can be used for channel coding, thus reducing the channel capacity. We

conclude this section by bounding this capacity loss for the periodically estimated, or on-off
channel®.

"We also assume that the feedback path has no delay. Delays in the feedback path will induce errors in
the transmitter channel state information, and these errors will be proportional to the speed of the channel
variation.

®The on-off channel can also be used to model a time division multiaccess system.
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3.6.1 Optimal Filter for Power Estimation

The power control policies of §3.3 adapt the transmit power based on the instan-
taneous value of the channel fade level. We now consider estimation techniques for the
received signal power. Assuming the statistical fading model of §2.2.2, the received power
experiences two multiplicative forms of fading: rapid Rayleigh fading, and slower log-normal
shadowing. In general the Rayleigh fluctuations are too quick to use for the power adapta-
tion, so the goal is to track (and adapt to) shadow fading while aver}i,ging out the Rayleigh
fading. Therefore, the low pass power measurement filter must be sufficiently narrowband
to average out the Rayleigh fading, yet sufficiently wideband to track the shadow fading.

The received power p(t) is given by the multiplicative form of (2.19), p(t) =
r(t)s(t), where r and s are, respectively, the Rayleigh and log-normal fade levels. We
assume narrowband Rayleigh fading, so the multipath power has an exponential distribu-
tion. Since P = T3, we can specify T to be one and use 5 to characterize the mean received

power. The distribution of r is then
p(r)=e""; r>0. (3.54)
Taking natural logs, we get that the distribution for R = logr is
p(R) = eR~", (3.55)

We use natural logs throughout the analysis; to get results in dBs, we simply multiply the

natural log results by 10/log10.

From (2.26), the autocorrelation of r, with a normalized power of one, is given by
A (1) = J3(27vT/]N), (3.56)

where v is the vehicle velocity and A is the signal wavelength. If there are m independent
samples of the process r(t), as with m-branch space or time diversity receivers with uncor-
related branch signals, then the autocorrelation for the sample average of the m branches
is A.(7)/m.

For the shadow fading, we assume log-normal statistics,s0 S = log s has a Gaussian
distribution. We denote the mean and standard deviation of § by u and o, respectively.

From (2.30). the autocorrelation of 5 is given by

As(1) = a?e v/ Xe,
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Power Measurement Filter

The power measurement approach is shown in Figure 3.28. The received signal
is passed through a square-law envelope detector and then amplified using a linear or log
amplifier. We consider both types of amplifiers, since the statistics of the Rayleigh fading
are simpler for a line.ar amplifier, while the statistics of the log-normal fading are simpler
for a log amplifier. Moreover, the log amplifier reduces the estimation problem to classical
parameter estimation in the presence of additive noise, while for the linear amplifier, the
estimation is done for multiplicative noise. In both cases, the estimation filter w(t) is
designed to minimize the dB error of the shadow fading estimate, denoted by $ and S, for
the linear and log amplifiers, respectively. When a log amplifier is used, the measurement
method is refered to as the log-power method; when a linear amplifier is used, it is called

the linear-power method.

A
plh=rits P(t) or P(t) 7 §(t) or S(t)
—_— 323;'3.;?“ AMP Estimation |
Detector I/ Filter w(t)
LINEAR
OR LOG

Figure 3.28: Power Measurement Technique.

Arbitrarily choosing the estimation time ¢ = 0, we get the estimation values

§(0) = / ® w(=t)r()s(t)dt; Linear-Power Method (3.57)
and . .
$(0) = /_ w(~t)[R(t) + S(t)]dt; Log-Power Method. (3.58)

We consider two types of estimation filters: an integrate-and-dump (1&D) filter, and an RC
filter. Thus, w(t) = kg(t), where

ot) = f;Rect [T:T, - Igl] ; I&D filter
et Tm; RC filter

(3.59)

For both filter types, k represents the dc value of the filter’s frequency response (since g(t)
has unit area), and Ty, is the filter’s effective averaging time. The filter design then reduces
to optimizing k and Ty, to minimize the dB estimation error, assuming that the fading

parameters o and X, are known.
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The estimation error is given by

& ) log(3(0)/s(0)); Linear-Power Method
€={ (0)/5(0)) etho . (3.60),

5(0) - $(0);  Log-Power Method

and its dB value is
6 = (10/log 10)e. (3.61)
The estimation filter parameters should be set to minimize the valie of §. However, since
both the Rayleigh and log-normal fading are stochastic processes, § is a random variable.
We will show that § is approximately Gaussian distributed; therefore, to minimize 8, the

optimal measurement filter should force the mean of § to zero, and minimize its standard

deviation.

Linear-Power Method

From (3.60), the value of ¢ for the linear-power method is

30) _f° s(1)
Ol /_ _w(=)r(t) [m] dt. (3.62)

Generally speaking, the averaging time of the filter w(t) should be large relative to the decor-

n>

€

relation time of 7(t), and small compared to that of s(t). Therefore, the integral of (3.62)
is approximately equal to a sum over several independent samples of the exponentially-
distributed variable r, which yields an approximate Gamma distribution [31]. Since the
Gamma distribution has the same general shape as the log-nbrmal distribution, with appro-
priately chosen parameters we can approximate the distribution of §(0)/s(0) by a log-normal
distribution.

Using this log-normal approximation, we get that ¢ = log[3(0)/s(0)] is Gaussian

distributed. Let a and b denote, respectively, the mean and standard deviation of e. Then
3(0)/s(0) = e2*+5¥*, (3.63)

and
(3(0)/5(0))? = e2a+2*, (3.64)

Using (3.62), w(t) = kg(1), and the independence of r and s yields

3(0)/3(0) = kW, (3.65)
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and
(3(0)/5(0))? = k*W,, (3.66)
where
W, = /_° (~1)5@)/s(0)dt - (3.67)
and
W, = / / 9(=t)g(—t) AL (t— z')[s(‘z(sé;')]dtdtur / _mg( 1)g(~ t')[s(tz)fé;,)]dtdt’
(3.68)

Since log-normality is preserved under multiplication and division, the variates s(t)/s(O)
and s(1)s(1')/s%(0) are log-normal, and their means and variances can be determined from
As(7)®. Given these means and variances, the values of W; and W, can be computed from
(3.67) and (3.68), respectively.

Combining (3.63)-(3.66) yields

a = log(kW?), (3.69)

b = \/log(W,/W32). (3.70)

From (3.69) and (3.70), setting the filter gain to .

and

= VW2 /W} (3.71)

forces the mean of € to zero without affecting the standard deviation. With this choice

for k, the dB measurement error, §, becomes unbiased and the rms dB error is simply the

A = (10/10g10)/log(W,/W2). (3.72)

It can be shown that the value of A depends only on three dimensionless param-

standard deviation of §:

eters: the standard deviation o of log s, the ratio of shadow fading correlation distance to
wavelength, X./A, and the normalized measurement time vT,,/A [52). Since k is given by
(3.71), minimization of the dB error reduces to minimizing A relative to T,,. A plot of this
minimum A over a range of decorrelation distances and ¢ values is shown in Figure 3.29.
The log-normal approximation for §(0)/s(0) (or equivalently, the Gaussian approximation

for ) and the rms dB errors of Figure 3.29 have all been verified by simulation in [52).

°Exact expressions for these terms can be found in [52).
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Figure 3.29: Rms dB Error for Linear-Power Method.

Log-Power Method

For the log-power method, € = 5(0) - 5(0) is given by

$(0) - 5(0)

| /_ Ooo w(-t)[R() + S(t)}dt - 5(0)
[ /_ooo w(—t)R(i)dt] + [ /_ : w(—1)§(t)dt - 5(0)] . (373)

We now use (3.73) to approximate the distribution of €. Since the Gaussian distribution is
preserved under addition, the second bracketed term in (3.73) is Gauss-distributed. For the
first bracketed term, the width of the estimation filter is large relative to the decorrelation
time of R(t). In addition, independent sums of random variables with distribution given by
(3.55) converge rapidly to Gaussian. Therefore, the distribution of the first bracketed term
in (3.73) is also approximately Gaussian, and hence so is e.

Since S has mean u and standard deviation o, we can write S(t) as the sum
S(t) = p + ou(t), (3.74)

where u(?) is a zero-mean, unit-variance Gaussian process whose autocorrelation function
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is e=vI7l/Xe, Replacing w(t) by kg(t) in (3.73) and taking expectation yields
e=kR+ (k- 1)p. (3.75)

Two steps are required to drive  to zero. First, since the mean of the shadow fading, g,
is not known, we set £ = 1, which removes the second term in (3.75). Then, since we
assume F = 1, it can be shown that R equals Euler’s Constant, and this quantity must be
~ subtracted from the input to the low pass filter, which for k = 1 removes the first bias term
in (3.75). ]

After these two steps, € = 0, and the mean-square value of € is
€ = o2[1 - 2W; + Wa,) + Was, (3.76)

where, using (2.30) for Ag(t), we get

o ’
W = / g(=t)e~*1t Xegy, (3.77)
0 (0 - , )
Waa= [ [ g(=t)g(=test=tVearar, (3.78)
-0 V=00
and
0 0
Was = / / a(=t)g(~t") AR(t — t')dtdt'. (3.79)
-0 J-00

Computation of W, requires the autocorrelation function of R(t), which is not available in

closed form. However, it can be approximated with high accuracy by [52]
2
ARr(r) = ’_’6. [-6073(2mvr/2) + .393J3(2ﬂvr//\)e'l‘zs?’”l"'] . (3.80)

Using this approximation, W;, Wy,, and Wy, can be computed as functions of the fad-
ing and filter parameters. These values can be substituted into (3.76) to get €2, and the
corresponding rms dB error of A = (10/log10) Ve

It can be shown that, as in the linear-power case, the value of A depends only on
the parameters o, X./A, and vTr, /A [52]. Since we require k = 1 for zero mean error, we
can only adjust the value of T}, to minimize the value of A. A plot of this minimum A over
a range of decorrelation distances and o values is shown in Figure 3.30. This rms dB error
was also confirmed by simulation in [52].

Comparing figures 3.29 and 3.30, we see that the rms dB errors for the log power

method tend to be lower than those for the linear power method, but only by approximately
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Figure 3.30: Rms dB Error for Log-Power Method.

.3dB or less. Therefore, the shape of the measurement filter has little effect on the rms dB
error, as long as the filter parameters are optimized relative to the fading statistics. This
analysis can be easily extended to include the effects of antenna diversity; in [52] it is shown

that two antennas yield a reduction of at least 1dB in the rms dB error.

3.6.2 Estimation Error Effects

In §3.6.1 we analyzed power measurement filters to minimize the rms dB mea-
surement error. We concluded that even when the fading parameters are known, the dB
measurement error can be as high as 3dB. Moreover, since the fading parameters are not
always known, and the estimation filters must work over a range of vehicle velocities and
propagation environments, the rms dB error will generally exceed this nominal value. We
now determine the effect that these estimation errors have on the variable rate M-QAM
modulation and coding schemes of §§3.4 — 3.5.

We assume the multiplicative Rayleigh/log-normal fading model of the previous

section, so the instantaneous power is given by p(t) = r(t)s(t). Let v denote the instan-
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taneous value of the Rayleigh fading and ¥ denote its short term average (that is, the
instantaneous shadow fading value). Since Rayleigh fading is relatively fast, power estima-
tion techniques generally focus on determining the shadow fading value only (as in §3.6.1).
We therefore assume that v can be measured perfectly, but the short-term average ¥ cannot.
We denote the estimate for J by 5. Using the estimation error statistics derived in §3.6.1,

we have
§ = 10¢/1%, ' (3.81)
where ¢ is a zero-mean Gaussian variate with a standard deviation between one and four
dB. ‘
Since 4 is known perfectly, we can still maintain a given BER by adjusting the

power control policy P(7) and the number of constellation points M, as in (3.38):

1.5y  P(y)
M) =14 o mERys) P

Recall from (3.41) that the power control policy maximizing the average rate, subject to

the power constraint (P(y)/P) < 1, is

’1’m={ wTh T2 (3.82)
0 7 <K

where yx is the “cutoff” fade depth chosen to satisfy the power constraint, and K =
—1.5/log(BER/2) for uncoded modulation. With coding, K = —1.5G ./ log(BER/2), where
G. is the coding gain. ..

As derived in (3.43), the maximum transmission rate equals

5%/, n ()
= = log, { — ) 7(y)dy, 3.83
B - 82 po (7)dy (3.83)
and from (3.44), the power constraint can be written as
o _P(v) /°°( 1 1)
K——= = — — = | n(y)dy = K. 3.84
e TP =, 35 7)) T(dy (3.84)

The power control policy P(v)/P is optimal for any distribution on 7; however, the policy
implicitly depends on () through the cutoff value vx, which is determined by (3.84).

If the estimation error € = 0, then the distribution for 7 is exponential with mean
7. We will denote an exponential distribution for 7 with mean g by 7.(y|g). If € # 0, then

the estimate ¥ is known, but 7 is not. The distribution of 7 is then given by

m(7) = /_ re(v17)p(TI5)d7, (3.85)
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where p(7]7) is determined by inverting (3.81) to get ¥ as a function of § and ¢, and then
using the statistics of € to get the distribution of 7.

We can use one of two techniques to calculate the cutoff value when the estimate
of ¥ is imperfect:

1. Calculate 7x from (3.84) using () given by (3.85).

2. Assume € = 0 and calculate yx as if § = 7.

From §§3.4-3.5, the first approach is optimal for maximizing the spectral efficiency
under the given power constraint. However, this approach requires knowing the standard
deviation of ¢, which varies between one and four dB depending on the vehicle speed,
estimation filter, and shadow fading statistics. Since these parameters are usually unknown,
we will consider how the estimation errors impact the a\'ferage transmit power and data rate
under the second approach.

Using the second approach, the power control policy will use the cutoff value 7},

which satisfies

[’ i (i - :1;) Te(717)dy = K. (3.86)

x \TK

Let v denote the cutoff value which satisfies (3.86) when € = 0 (i.e. when 7= 5). It is
easily shown from (3.86) that if € > 0, then 7} will be greater than 7x. Using v}, instead
of 7x in (3.84) and (3.83) with the true distribution of gamma (7(y) = m(7|7)) yields the
average transmit power and data rate under this policy. For 7% > 7k, both the average
power and rate will be smaller than if yx had been used. Conversely, if € < 0, then 7}
will be less than g, resulting in a larger average power and data rate. These effects are
illustrated in Figures 3.31 and 3.32: Figure 3.31 shows the change in average transmit power
as a function of the estimation error ¢, and Figure 3.32 shows the corresponding average
data rate.

We can also consider the same estimation error effects on the modified constant

power policy of §3.3.2, which compensates for fading above a certain cutoff fade depth 7¢:

’

PO)_| B 12 (3.87)
P 0 <7

where

Pr= [ L :° %r('y)d'y]-l . (3.88)
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The average data rate with this policy, assuming a coding gain of G, is

R 00
5 = lomll + GePa] [ m(am)er, (3:89)
Yo

and this expression is maximized relative to 7o to get the maximum data rate!®. If the

estimate of 7 is in error, then the modified policy will determine Yo by maximizing

o0
Jogll+GePR) [Cmrly (3.90)
relative to 49, where
- ot 1 = -t
Pa= [ Inmn] (3.91)
v 7

Let y5 denote this maximizing cutoff value. The average transmit power using 76> PR, and

the true distribution of v is

(B3 = °° L. (1), (3.92)

and the corresponding data rate is

R 0
5 = lomall + GeR) [ mlaima. (393)

0
We plot the average transmit power and data rate of the modified constant pow.er policy
with estimation errors, given by (3.92) and (3.93), respectively, in Figures 3.33 and 3.34.
These curves show global maximum values for both data rate and power, regardless of how
large or small the estimation error may be. This behavior in the average transmit power
is good from an interference and power conservation perspective, since regardless of the

estimation error, the transmit power will not deviate above this global maximum.

3.6.3 Periodic Estimation: The On/Off Channel

The estimation techniques outlined above are for instantaneous power estimation
of narrowband fading channels. These techniques do not apply to wideband channels with
nonzero delay spread, since the channel impulse response cannot be estimated instanta-
neously. For wideband channels, a sequence of bits known to both the transmitter and

receiver can be used to learn the channel [31]. This bit sequence is generally refered to

19This rate is based on a particular log-normal shadowing value¥. Since ¥ will vary slowly over time, the
data rate (3.89) will change with this slow variation.
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as a training sequence. After initial training, the channel estimate can be updated by ei-
ther using data decisions to modify the channel estimate (decision-feedback equalization),
or sending the training sequence periodically to update the channel estimate. The former
approach has the advantage that after the initial training sequence, data transmission need
not be interrupted to update the channel estimate. However, this approach gives rise to
decision- feedback errors, which may cause the channel estimate to diverge. Moreover, for
time division systems, where users share the same frequency band using periodic time slots,
the channel corresponding to each user slot is different, and therefore the channel must be
re-estimated during each time slot. Periodic channel estimation introduces some capacity
loss, since data transmission is turned off at periodic intervals. We will now precisely bound
this capacity loss, relative to the capacity derived in § 3.1, for the continuous-time state
space channel of § 2.4.2. -

In our model, a data sequence is transmitted over the channel for time T and then
a known training sequence is transmitted over the channel for time T,. This is equivalent,
relative to the data rate, to turning the transmitter off for T'. seconds after every T seconds
of data transmission. We therefore refer to it as the on/off channel. This model also applies
to a time division system, where the off time for a given user, user A, equals the time slots
occupied by all the other users.

We assume that the channel state is constant while the data is being transmitted,
only changing during the estimation period. The effect of continuously changing channel
parameters, and the resulting channel estimation errors, are quantified in [53]; we will not
address this issue. We also assume that the channel memory is less than the estimation
time T,. The second assumption implies that data transmitted before the training sequence
does not affect data received after the training sequence. Combining this with the first
assumption, we can model the periodically-estimated time-varying channel using the time
diversity model of Figure 3.1, with the channel input multiplied by a periodic rectangular
wave r(t), as in Figure 3.35. For this channel model, the estimate S is derived during the
training period Te, and is assumed to equal the true channel state. We will let C° denote
the capacity of the time-varying channel depicted in Figure 3.35. We also assume a transmit
power constraint of P.

Consider now a time-invariant channel ¢; with impulse response h(t), average
power P;, and periodic off time T, over T seconds of data transmission, as shown in Fig-

ure 3.36. Let C?(P;) denote the Shannon capacity of this channel. Then by the same
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Figure 3.35: Time Diversity System with Perjodic Estimation.

capacity argument in §3.1, the capacity of the time diversity system in Figure 3.35 equals
the weighted sum of the periodically estimated channels C¢:

ce = max, Z m:.C2(P,), . (3.94)

where PM and 7 are defined by (3.6) and (3.2), respectively. We now derive upper and
lower bounds for C?; upper and lower bounds for C° are then easily derived by using either

all upper or all lower bounds for C¢ in (3.94).

n{t)

t y(t)
. il he(t)

W 1

Figure 3.36: On/Off Time-Invariant Channel.

To calculate an upper bound for C?, we introduce a random delay after the multi-
plier of Figure 3.36. This is illustrated in Figure 3.37, where 6 is the random delay uniformly
distributed on [0, T+T]. If z(t) is wide-sense stationary (WSS), the signal after the random
delay, v(1), is also WSS with spectrum

V() = X(f)*5(S), (3.95)
where

X(f) = FlEz(t)z(t - 7)), (3.96)
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Figure 3.37: On/Off Channel with Random Delay.

and
S(f) = FIEs(t - €)s(t — T = £)). (3.97)
The bracketed term in (3.97) is periodic in 7, as shown in Figure 3.38.

TIT+T, R A
I
TT{T+T, +

';'. T-:-T.
Figure 3.38: E¢[s(t — £)s(t — T — £)).

The capacity of the time-invariant on/off channel is the maximum mutual informa-
tion between u(t) and y(t) in Figure 3.37, which we denote by C}'"¥. By the data processing
inequality [42), this is less than C}*¥, the maximum mutual information between v(¢) and
y(1). Since v(t) is WSS, C!"¥ is given by Gallager’s result for time-invariant channels [40,
page 424]. Thus, for average power constraint P; and spectral noise density N(f), the
capacity C? = C;'¥ is bounded above by

[HOHX () + S(fﬂ] af. (3.98)

. 1
C!<CY = max /—lo 14
e x(n:fxngp J 2 g[ N(f)
We now derive a lower bound, using a fixed set of codewords and a specific encoding
and decoding scheme. Let h,(t) be the estimated channel impulse response and z(t) be the
corresponding codeword that achieves capacity for the time-invariant channel h.; without

estimation. Assume T > T.. We define a new codeword Z(t) as follows.
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[ z(1) t<T
0 T<t<T+T.
z(t-2T.) T+T.<t<2T+T.
0 2T+ T <t<2(T+Te)
#t)=A{ . e ) (3.99)

z(t - 2nT,) n(T+T)<t<(n+1)T+nT,
0 (n+1)TH+nT.<t<(n+1)(T+T.)

Basically, the new codeword repeats the T, seconds of the original codeword imme-
diately proceeding the off time just after the off time, and doesn’t transmit anything during
the off time. This repeating allows the receiver to concatenate the received signal such that
it is equivalent to the original codeword transmitted on the time-invariant channel he;.

If §(t) is the response of the on/off channel to (), then we process §(t) to get
y(1) as follows.

y(t) = JO LTI+ 90— 2TN[T+2Te <t < 2T+ T +...+
gt = 2nT)nT + (n+ 1)T) < t < (n+ )T+ nT]+...  (3.100)

The concatenated output y(?) is equivalent to the output of a channel with impulse response
h,(1) to the input signal z(t). Denote the capacity of the unestimated time-invariant
channe] corresponding to h,(t) with average power P; as Ci(P:). Due to the concatenation,
the on/off channel requires T + T. seconds to receive (T — T.)C: bits, so the attainable rate
for the on/off channel must be weighted accordingly. On the other hand, if we assume that
the repeated portions of the codeword have the same average power as the entire codeword,
then if P; is the average power of the codeword z, the corresponding codeword () has
average power P;T/T + T.. We can thus increase the power of the original codeword z to
Pi(T+T.)/T without violating the average power constraint for z. Combining these results
we get the following lower bound for C?:
x5 (23,
In the limit as T. /T — 0, the upper and lower bounds in (3.98) and (3.101) both

approach the capacity of the time-invariant channel Ch;. Thus, the effect of the off time on

(3.101)
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channel capacity becomes small when the off time is negligible relative to the on time, as

would be the case for estimation of a slowly-varying channel.

3.7 Summary

We have presented several techniques for increasing spectral efficiency on time-
varying channels, where the channel can be estimated and this estimate fed back to the
transmitter. We first calculated the capacity of a general time-varying channel assuming
perfect channel information at the transmitter; this capacity specifies the maximum spectral
efficiency of a channel for an arbitrarily small error probability, with no restriction on the
complexity or delay of the encoder or decoder. We then applied this result to channels with
a time-varying impulse response, and showed that the optimal input power spectrum for
this channel is derived from a water-filling in time and frequency of the channel impulse
response.

Next, we applied the capacity results to narrowband fading channels. We found in
this case that spectral efficiency is maximized when transmit power, data rate, and coding
are all adapted relative to the channel fading. Moreover, the optimal scheme is intuitive
in the sense that it increases power and data rate to take advantage of favorable channels.
We compared this optimal scheme with a common power control policy which inverts the
channel fading; numerical results show that our optimal policy is significantly better in
terms of both spectral efﬁciency and outage probability. The capacity analysis also sug-
gested a variable-rate M-QAM modulation technique for fading channels. We determined
the spectral efficiency of this technique, and found a closed-form expression for its maxi-
mum coding gain relative to Shannon capacity. Finally, we proposed a variable-rate coded
modulation scheme for M-QAM constellations, and proposed specific coding strictures to
achieve near-capacity rates with moderate coding complexity. -

All of these techniques assumed perfect channel estimation in zero time. We then
analyzed the impact of channel estimation on capacity. We first proposed a power mea-
surement filter for narrowband fading channels, and evaluated its rms dB error. We then
determined the effect of this estimation error on our optimal power control and adaptive
coded modulation scheme. Finally, we bounded the capacity loss from periodic channel
estimation, where no data is transmitted during the estimation sequence. There are sev-

eral obvious extensions to the estimation analysis. Power control algorithms which use the
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statistics of the estimation error should be considered. In addition, the spectral efficiency
of joint channel estimation and data transmission should be compared with that of peri-
odic estimation. Finally, the impact on spectral efficiency of wideband channel estimation
errors should be evaluated. There is an obvious tradeoff between the amount of time spent
estimating the channel and the corresponding estimation error. We have bounded the ca-
pacity loss resulting from the estimation time; if we also determine the impact on capacity
of estimation error, then combining these two results would yield the optimal estimation

* time, relative to channel capacity, of a time-varying channel.
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Chapter 4

Spectrally-Efficient Techniques for
Time-Varying Nonfeedback

Channels

The adaptive techniques proposed in the previous chapter assume that the channel
is estimated at the receiver, and this estimate fed back to the transmitter. However, a
reliable feedback path is not always available. Moreover, the feedback path will generally
exhibit a nonzero delay; thus, the channel estimate may be outdated by the time it reaches
the transmitter, especially for rapidly-varying channels. For these reasons, nonfeedback
approaches must also be considered. Therefore, we now explore signal processing and coding
techniques to increase spectral efficiency on time-varying channels without feedback.

We use the discrete-time finite-state Markov channel (FSMC) model of §2.4.1.
First we calculate the capacity of this channel. We then propose a low-complexity decision-
feedback decoder, which uses the Markov transition probabilities for maximum-likelihood
sequence detection. We also calculate the decoder performance for a two-state variable
noise channel.

If the correlation properties of the channel variation are not known, then the chan-
nel memory can be dispersed through interleaving to remove burst errors, and memoryless
channel encoding can be used. These techniques are discussed in §4.3. An alternate ap-
proach uses unequal error protection codes, described in §4.5. This type of coding prioritizes

the transmitted bit stream, and allows some loss of low-priority data when the channel is
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bad, thus providing robust communication of some data even under adverse channel condi-
tions. We will examine both the theoretical performance limits of such coding techniques,

as well as some practical code designs.

4.1 Performance Limits for Finite-State Markov Channels

Our capacity results are an extension of the analysis by Mushkin and Bar-David
[54] for the Gilbert-Elliot channel to the more general Finite-State Markov channel (FSMC)
of §‘2.4..1.1. The Gilbert-Elliot channel is a stationary two-state Markov chain, where each
state is a binary symmetric channel (BSC), as in Figure 4.1. The transition probabilities
between states are g and b respectively, and the crossover probabilities for the “good” and

“bad™ BSCs are pg and pp respectively, where pg < pg.

1-pG 1.p8
0 0] b 0o 0
n (S ) K
1 — 1 9 1 — - 1
1.pG 1.p8

Figure 4.1: Gilbert-Elliot Channel

Let z, € {0,1}, yo € {0,1}, and z, = z, ® y. denote respectively the channel
input, channel output, and channel error on the nth transmission. In [54], the capacity of

the Gilbert-Elliot channel is derived as
€ = Jim 1~ E{h(ga)] = Jim 1 - E[a(g})], (4.)

where h(p) = plogp + (1 - p)log(1 ~ p), gn = p(2n = 1|2""1), g2 = p(2n = 1|21, So), and
So is the initial channe] state.

The FSMC is a more general model, since the channels are not necessarily BSCs,
and the input/output alphabets are only required to be finite. If the transmitter and
receiver have perfect state information, then from §3.1, the capacity of the FSMC is just
the statistical average over all states of the corresponding channel capacity. On the other
hand, with no information about the channel state or its transition structure, capacity is
reduced to that of the Arbitrarily Varying Channel [55]. We consider the intermediate case,

where the channel transition probabilities of the FSMC are known.
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4.1.1 Conditional State Distribution

The conditional channel state distribution is the key to determining the capacity
of the FSMC. 1t is also a sufficient statistic for the input given all past inputs and outputs,
thus allowing for the reduced complexity of the maximum-likelihood decoder we propose in
§4.3. We now show that the state distribution conditioned on past input/output pairs can
be calculated using a recursive formula. Thus, it is 2 Markov chain. A similar formula is
derived for the state distribution conditioned on past outputs alone,l under the assumption
of independent channel inputs.

Let K be the size of the channel state space. We denote the conditional channel
state distributions by the K dimensional random vectors 7, = (wp(1),...,7,(X)) and

Pn = (pn(1)....,pa(&)), where
pn(k) = p(Sn = Cklyn-l)v ' (4.2)

and
Tn(k) = p(Sn = eklz™ 1, y" ). (4.3)
The following recursive formula for 7, is derived in Appendix 4.A.1:

_ Ziek PUnlSn = ¢, 2a)p(Sn = cjle™ 1,y 1) Py

Sa41=¢€ x"‘, ") = . 4.4)
Pner = el ) = e PaIS = errzi(Sn = e,y
This expression can be written in the following vector form,
TnD(Zn,yn)P ‘ .
= —_— = , 4.5
Tn41 TnD(Zn, yn )L f(Zny Yn, 7rn) (4.5)

where D(z,,yn) is a diagonal A" x K matrix with kth diagonal term pi(yn|zn), and 1 =
(1,...,1)T is a K dimensional vector. Equation (4.5) defines a recursive relation for 7.
Thus, 7, is a Markov chain with state space A = {a € R¥|a; > 0,3 a; = 1}. The chain

has initial value x¢ = (p(So = ¢1),...,P(So = ¢ck)), and transition probabilities

P Tng41 = Cl'|7"n = ﬂ) = Z ll(zmyn) : f(wn»ymﬂ) = G]P(yn|7l’n = ﬂ’zn)p(xn)' (46)
Ipn€X
yn€Y

When the initial state is known (So = ¢; for some 7), the distribution 7q is a “delta” function,

7l'0(j)= { 0 ];él . (4.7)
1 =1
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. - A _ _
In this case we denote the state distribution 7, by 7%, so 7%, = p(Sn|z"~1,y""1, 5 = ¢;).
For independent inputs, we can obtain a similar recursive formula for p:
jek P(¥nlSn = ¢;)P(Sn = ¢;ly™ 1) Pi
Lkex P(YnlSn = ck)p(Sn = cily™=?)
The derivation is similar to that of Appendix 4.A.1, using (2.43) instead of (2.41) and

removing all z terms. We can also write (4.8) in vector form:

_ PnB(yn)P _ i
Pny1 = PnB(yn).]; = f(ympn)a . (49)

(4.8)

P41 = P(Sn41 = c;ly") =

where B(y,) is a diagonal A" x K matrix with kth diagonal term p(y,|Sn = cx)!. Thus, p,
is a Markov chain with initial value pg = 7 and transition probabilities
Plprtr = alpn = B)= 3 1y : f(yn:B) = alp(¥nlpn = B). (4.10)
ynEJ’
When the initial state is known, we denote p,, by pi, where pf, = p(Saly™1, 8o = ).
We next show that under some mild constraints on C, the Markov chains 7, and
pn converge in distribution when the inputs are i.i.d., and the resulting limit distributions

are independent of the initial states. Moreover, these limit distributions are continuous

functions of the input distribution p(z).

4.1.2 Convergence of the State Distribution

To obtain the weak convergence of 7, and p,, we assume that the channel inputs
arei.i.d., then apply convergence results for partially observed Markov chains [56). Consider
the new stochastic process U,, = (Sn,Yn,Zn) defined on the sta,te space = C x Y x X.
Since §, is stationary and ergodic, and z,, is i.i.d., U, is statlonary and ergodic. It is easily

checked that U,, is Markov.
Let (5,y,z); denote the jth element of I, and JE |U4]. To specify the individual

components of the vector U, we use the notation

A
(6 ¥6)2G)) = (S, 9,2);.

The J x J probability transition matrix for U, PY, is

PLL; = p[(sn-}-hyn-l-]’xn-{-l) = (S)yvx)_jl(sna yn’xn) = (S$y,z)k)]a (411)

!Note that B(ys) has an implicit dependence on the distribution of Zn.
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independent of n. The initial distribution of U , 75, is given by
UA
o = p(So = ¢k, Y0 = ¥, %0 = z) = mo(k)pk(yolzo)p(zo). (4.12)

Let gyz :U = Y x X and g, : U — Y be the projections Iy.z(Sns Yns Zn) = (Yn, Zn)
and gy(Sn,¥Yn,Zn) = (yn), respectively. These projections form the new processes W, =
9yz(Un) and V,, = g,(U,). We regard W, and V,, as partial observations of the Markov
chain Uy; the pairs (U,,W,) and (Un,Vy) are referred to as pa.rfia]ly observed Markov
chains. We denote the distribution of U, conditioned on W by x¥ = (z¥(1),...,7Y(J)),

where
1 (5) = p(Un = (5,9,2);1W"™), (4.13)
Similarly, p¥ = (pY(1),...,pY(J)) denotes the distribution of U, conditioned on V7, where
PR(G) = p(Un = (8,y,2);lV™). (4.14)
Note that
() = pUn=(S,9,2)W")
= p(Sn = Si)lz™ y™)1zn = 2(5), ¥n = y(5))
= ma(k)[zn = 2(),¥n = Y5)) (4.15)

where S(;) = cx. Thusif 7Y converges in distribution, 7,, must also converge in distribution.
Similarly, p, converges in distribution if p¥ does.
We will use the following definition for subrectangular matrices in the subsequent

theorem.

Definition = Let D = (D;;) denote a square matrix. If D;, ;, # 0 and D;, j, # 0 implies
that also D;, ;, # 0 and D;, j, # 0, then D is called a subrectangular matrix.

We can now state the convergence theorem, due to Kaijser [56], for the distribution of a

Markov chain conditioned on partial observations.

Theorem 4.1.2.1 Let U, be a stationary and ergodic Markov chain with transition

matrix PV and state space Y. Let g be a function with domain & and range Z. Define a
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new process Z, = g(Uys). For z € Z and U(;) the jth element of U, define matrix M(z) by

P,-‘JJ if g(U) = = .

0 otherwise

M;;(z) = { (4.16)
Suppose that PU and g are such that there exists a finite sequence z,...,zm of elements
in Z that yield a nonzero subrectangular matrix for the matrix product M(z;)...M(zm).
Then p(Up|Z™) converges in distribution and moreover, the limit distribution is independent
" of the initial distribution of U.

We first apply this theorem to 7Y

Assumption 1 Assume that there exists a finite sequence {(yn,zn)}7,, such that the

matrix product M(y1,21)... M(ym,Zm) is nonzero and subrectangular, where

Pg if gy.r[(s’ yam)j] = (y’m)

(4.17)
0 otherwise

M ;(y,2) = {
With this assumption we can apply Theorem 4.1.2.1'to 7 ¥; thus, 77 converges in distribu-
tion to a limit which is independent of its initial distribution. By (4.15), this implies that
7 also converges in distribution, and its limit distribution is independent of 3. We thus

get the following lemma.

Lemma 4.1.2.1 For any bounded continuous function f, the following limits exist and

are equal for all ¢:
Jim E[f(mn)] = lim E[f(w})]. (4.18)

The subrectangularity condition on M is satisfied if for some input z € X there exists a
y € Y such that pi(y|z) > 0 for all k. It is also satisfied if all the elements of the matrix P
are nonzero.

From (4.5) and (4.6), the limit distribution of 7, is a function of the i.i.d. input
distribution p(z). Let P(X) denote the set of all possible distributions on X'. The following

lemma, proved in Appendix 4.A.2, shows that the limit distribution of 7, is continuous on
P(X).
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Lemma 4.1.2.2 Let p® denote the limit distribution of Ty as a function of the i.i.d. dis-

tribution @ € P(X’). Then uf is a continuous function of 8,506, — 0 implies that uém — puf,

We now consider the convergence and continuity of p,’s distribution. Define the

matrix N by

Ni,j(y)={ Pg ifgy[(5$ymx)j]= () , | (4.19)

0 otherwise

and note that for any y € Y and z € X,
Mi;(y,2) = Nij(y)I(z() = z). (4.20)

To apply Theorem 4.1.2.1 to pY, we must find a sequence ¥1,. ..,y which yields a nonzero
and subrectangular matrix for the product N(y;)...N(y;). Consider the projection onto Y
of the sequence {(yn,2n)}7; from Assumption 1. Let {y,}™., denote this projection, and
define the matrices M 2 M(y,z1)...M(Yym,2m) and N = N(y1)...N(ym). Combining
(4.20) and the fact that all the elements of M are nonnegative, it is easily shown that if M ;
is 11011negati\'e for a particular ¢ and j, then N, ; is nonnegative also. From this we deduce
that if M is nonzero and subrectangular, then N must also be nonzero and subrectangular.

We can now apply Theorem 4.1.2.1 to p¥, which yields the convergence in distri-
bution of p¥ and thus p,. Moreover, the limit distributions of these random vectors are

independent of their initial states. Thus, we get the following result.

Lemma 4.1.2.8 For any bounded continuous function f, the following limits exist and

are equal for all i:
lim E[f(on)] = lim_ E[f(s})] (4.21)

From (4.9) and (4.10), the limit distribution of p,, is also a function of p(z). The following

lemma, also proved in Appendix 4.A.2, shows that this limit distribution is also continuous

on P(X).

Lemma 4.1.2.4 Let v denote the limit distribution of p, as a function of the i.i.d.

distribution 8 € P(X). Then »? is a continuous function of 8, so 6,, — 6 implies that

vom — 8,
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4.1.3 Entropy, Mutual Information, and Capacity

We now derive the capacity of the FSMC based on the distributions of 7, and py.
We also obtain some additional properties of the entropy and mutual information when the
channe] inputs are i.i.d.

By definition, the Markov chain S, is aperiodic and irreducible over the finite
state space, so the effect of its initial state dies away exponentially with time [57). Thus,
the FSMC is an indecomposable channel [40, page 105]. From [40], the capacity of an

indecomposable channel is independent of the initial state, and is given by

C = lim max ~I(X™Y"), (4.22)
n=0 P(¥n) N

where I(-;-) denotes mutual information and P(X ") denotes the set of all input distributions

on A". The mutual information can be written as

I(X™Y™) = H(Y™) - HY"|X™), _ (4.23)
where H(Y) = E[-logp(y)], and H(Y|X) = E[-logp(y|z)]. It is easily shown [42] that
H(Y™) = i H(YnlY™ 1) (4.24)
and "
HY™|X™) = Z] H(Y| X, ¥™1, X1, (4.25)

Lemma 4.1.3.1

K
H(Y )Xo, X" LY ) = E [— log Zp(y,,m,,,sn = ck)wn(k)] = H(Y3|Xn,m), (4.26)
- k=1

and
K
HYaY™ 1) =E [- 1og ) p(ynlSn = Ck)pn(k)] = H(Yalpn). (4.27)
k=1
Proof  We have

H(Yn|Xn, X", Y™ 1) = E[-logp(ya|zn,z"1,y" 1)

K
=B [- logzp('ynlzm Sp = ck)p(sﬂ = cklzn—l,yn_l)}
k=1

K
= E [— log Zp(ynlx,,,S,, = ck)n-n(k)J
k=1

= E[-logp(yn|zn,mn))
= H(Ynlxna Wn)- (4.28)
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The argument for (4.27) is the same, with all the z terms removed and 7 replaced by p,,.

a
Using this Lemma in (4.24) and (4.25), and substituting into (4.23) yields the ca- -

pacity in terms of the distributions of 7, and p,,; we summarize this in the following theorem.

Theorem 4.1.3.1 The capacity of the FSMC is given by

. 13 K
C = lim max o [E [- log Y p(ylS = Ck)p.(k)] [ logZp(ylz §= Ck)vrx(k)]]
=1 k=1 =1
. (4.29)
where the dependence on 6 € P(A™) of the distributions for 7, p;, and y is implicit.

Using Lemma 4.1.3.1, we can also express the: capacity as

C = Jlim max — Z [H(Yilei) - H(YilXi, m)] (4.30)

Although Gallager’s theorem [40, page 109] guarantees the convergence of (4.29), the ran-
dom vectors 7, and p, do not necessarily converge in distribution for general input dis-
tributions. We proved this convergence in §4.1.2 for i.i.d. inputs. We now derive some

additional properties of the entropy and mutual information under this input restriction.

Lemma {.1.3.2 When the channel inputs are stationary,

H(Yn|Xn, X*LY™1) > H(Yn4| Xn41: X7 YT)
H(Yn-l-I'Xn.+l’ Xn’}/n’ SO)
> H(Ya|Xn, X™1, Y"1, 50). (4.31)

v

Proof = We first note that the conditional entropy H(Y |X)is a concave function of p(y|z)
for p(z) fixed [42]. To show the first inequality, let f denote any concave function. Then

n—l,yn—-l])

lle

f(plynlzn,z f(@lyns1|Tns1,23,93))
f(E(p[yn+l lxn-Hv z", yn]Ixn-’rl »yZ3, y?))
E(f(p[yn+l |xn+l’ zn, yu])lzﬂ-i-l’ 3'2" yg)

f(p[yn+1|zn+lvznv !/"]), (4'32)

lla. Ve |le

where a follows from the stationarity of the channel and the inputs, b and d follow from

properties of conditional expectation [57], and c is a consequence of Jensen’s inequality.
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The second inequality results from the fact that conditioning on an additional
random variable, in this case the initial state So, always reduces the entropy [42]. The

proof of the third inequality is similar to that of the first:

lle

f(Plynt1lzns1,2", 4™, So]) FEPYns11Tnt1,2™ 3" 51)|Tns1,2", 3™, So0))
F(EPYnt11241,23, 32, $1]|Zn41, 2", 3", So))

E(f(P[yn+llzn+lv 33a y;l7 Sl])lzn-{-l’ zn’ yn, SO)

Il Vo |[lo

f(olyn+112n41,23, 97, 51))
f(p[ynlxnazn-ls yn_l,SO]), (433)

Il

where a and d follow from properties of conditional expectation, b follows from (2.42), ¢

follows from Jensen’s inequality, and e follows from the channel and input stationarity. O

Lemma 4.1.3.3 For i.i.d. input distributions, the following limits exist and are equal:

Jim H(Y,|X,, X771, y"1) = Jim H(Yo]Xq, X1, Y"1, S5). (4.34)

Proof From Lemma 5.1,

K
Jim H(Ya]Xn, X", Y1) = lim B [— log Y p(yle, S = Ck)vrn(k)] : (4.35)
k=1

Similarly,

K
nli_‘rr;0 H(Yn|Xp, X", Y"1 85) = nh__ngoE [-— long;p(ylx,S = ck)w;(k)] , (4.36)
where 7, = w3 for some i. Applying Lemma 4.1 to (4.35) and (4.36) completes the proof.
O
We now consider the entropy in the output alone. The following lemma is proved
using essentially the same argument as in Lemma 4.1.3.2 with all the z terms removed from
(4.32) and (4.33); the details can be found in Appendix 4.A.3.

Lemma 4.1.8.4 For stationary inputs,

H(YLY™ 1) > H(Y,a|Y™) > H(Yn41lY™, S0) > H(Ya|Y™ 1, So). (4.37)
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Finally, we prove the analog of Lemma 4.1.3.3 for H (YalY™-1).

Lemma 4.1.3.5 Fori.i.d. input distributions, the following limits exist and are equal:

Bim H(Y. Y™ 1) = lim H(Y,[Y™,S). (4.38)

Proof  Following a similar argument as in Lemma 4.1.3.3, we have that

) K
Jim H (YalY 1) = Jim E [— log Y p(ylS = ‘-'k)Pn(k)] ) (4.39)
k=1
and
K
lim H(Y|Y""!,80) = lim E [— log > p(ylS = ck)p;(k)] ) (4.40)
k=1

where p7, = py for some i. Applying Lemma 4.1.2.3 to (4.39) and (4.40) completes the
proof. (m]
Having established the basic properties of the entropies with i.i.d. inputs, we now

evaluate I;;q4.

Lemma 4.1.3.6 The mutual information maximized over all i.i.d. input distributions
P(X)is

Lia & lim maxl](_‘}(n;'yn)

n=co p(X) n
= nll_{'ng gl(% [H(Yalpn) = H(Ya|Xn, 7))
K K
= lim max [E [— log > p(vlS = ck)pn(k)] ~E [— log 3 p(ylz, S = ck)wn(k)“ .
nTeePA) k=1 k=1
(4.41)
Proof  For 6 € P(X) fixed,
HY™X") = 3 H¥m|Xm Y™ 1, X™1) (4.42)

m=1
by (4.25), and the terms of the summation are nonnegative and monotonically decreasing
in m by Lemma 4.1.3.2. Thus

n—ov

lim % > H(Ym| X, Y™, X1 = lim H(Yp|Xa, X%, Y"70), (4.43)
m=1
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Similary, from (4.24),
HY™) =Y H(YnY™ ), (4.44)

m=1
and by Lemma 4.1.3.4, the terms of this summation are nonnegative and monotonically

decreasing in m. Hence
lim — 2 HYnulY™ ) = lim H(Yn IY""I) (4.45)

n—oo N
m"'l

" The limits of (4.43) and (4.45) exist by Lemmas 4.1.3.3 and 4.1.3.5. Moreover, since
I{X™Y")= H(Y™) — H(Y"*|X™), we can combine (4.42)-(4.45) to get that for any ¢ > 0,

there exists an N such that foralln > N,

I(xm Y")] max [H(¥aly ™) - H(YolXn, X", Y™ 1)) < € (4.46)

7 Lo

The lemma follows by taking the limit of (4.46) as n — oo, and applying Lemma 4.1.3.1. O
Finally, the following theorem uses Lemmas 4.1.2.2 and 4.1.2.4 to interchange the

limit and maximization in (4.41). Thus, we get I,,d in terms of the hxmt distributions on 7

and p.

Theorem 4.1.3.2

Iijg = max -lo ¢ 9 9d _
4= oem)[/peAyey gp (ylp))p(ylp)u(p)

[0 X logntule, mptale, o) |, (aa1)
fx
where v and uf are the limit distributions of p and , respectively, for input distribution

0, p°(ylp) = iss Toex P(3l2, § = cx)B(z)p(k), and p(ylz, ) = TK | p(ylz, S = ex)r(k).

Proof  Foranii.d. input distribution of 8, let vf = p(p,) and pf = p(r,). Using the

notation of (4.47), we can then rewrite (4.41) as

N g nf o 007\
Lig = lim  max [/peAyeZy( log 2 (ylp)) p°(vle)v(dp)

[ .. = (~logatulz, m)p(sle, M=)l ar) (4.48)

!ley
relX
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For any integer m, let Pp,(X) C P(X) be a finite subset defined as follows: For any
distribution ¢ € P(X), ¢ € Pm(X) iff for all z € X there exists a set of integers k; < m

such that ¢(z) = kz/m. Clearly, limm—o Pm(X) = P(X). Substituting this into (4.48),
we get

]n =l li / - fm frm fm -
¢= lim lim a,,.énﬁf‘(x)[ GAE;( logp*(ylp)) # (vle)va™(dp)

[ X (- lognsle, ) plsle, mm(@hun(an) | . (449)

yey
€A

Let 6= € P(X’) be the distribution that achieves the maximum in (4.47), and 6%, €
Pm(X’) be the distribution that achieves the maximum in (4.49). Then limn,_ 8%, = 6°.

With this notation, we can rewrite (4.49) as follows.

Tia = Jim, lim, [ /,, " (- 1og 2% (y1p)) 5% (ylp)%(dp)—
vey
[, T Clogptule mptule, mOn (et @m) | (450)
yey
reX

But limp—oo pi™ = p= by definition of p, and g, and limpoco % = v%° by
Lemma 4.1.2.4. Moreover, by the triangle inequality,

| = ) < |l = b 4 b - B, (4.51)
SO
a‘
n'krlxwp =u. (4.52)

Similarly, using Lemma 4.1.2.4 we get that

Om — ,0°
. ’l,llr_.noo v =07, (4.53)
Finally, p(y) is linear in p(z), so
s O — n0°
dim _p™=(ylp) = p” (ylp)- (4.54)

Since both bracketed terms in (4.50) are bounded by log|)|, we can bring the limits (4.52),
(4.53). and (4.54) inside the integral and summation, yielding



102

Iiia = [ /,, " ,,%; (~1022" (v10)) 2" (10} (dp)-

[T (- logplale, Mp(sle, M@ @m) . (455)
TEA ey
T€X
The theorem then follows from the definition of 6*. (w}

Note that by definition, I;;4 is a lower bound for the capacity C given by (4.29).

4.2 TUniformly Symmetric Variable Noise Channels

.The Gilbert-Elliot channe] has two features which facilitate a closed-form solution
to its capacity: its conditional entropy H(Y *|X™) is independent of the input distribution,
and it is a symmetric channel, so a uniform input distribution induces a uniform output
distribution. We now define two classes of FSMCs, uniformly symmetric channels, and
variable noise channels, which each have one of these features. The mutual information
and capacity of these channel classes have additional properties which we outline in the
lemmas below. We also show that for the class of FSMCs with both of these features, called
uniformly symmetric variable noise channels, I;;4 equals the channel capacity. Moreover,
we will see in the next section that the decision-feedback decoder achieves capacity for uni-
formly symmetric variable noise FSMCs. FSMCs with symmetric PSK inputs and variation
due to amplitude fading or quantized variable-power additive white noise are contained in

this channel class.

Definition: For a discrete memoryless channel, let M denote the matrix of input/output
probabilities, where M;; 2 ply=jlz=1),j € Y,i€ X. A discrete memoryless channel is
output symmetric if the rows of M are permutations of each other, and the columns of M

are permutations of each other2.

Definition: A FSMC is uniformly symmetricif every channel c; € C is output symmetric.

2Symmetric channels, defined in [40, p. 94], are a more general class of memoryless channels: an output
symmetric channel is a symmetric channel with a single output partition.
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Lemma 4.2.1 For uniformly symmetric FSMCs, H(Yx|pn), H(Yalp}), H(Yy|7y,), and
H(Yy|ry) are all maximized for p(z") uniform and i.i.d., and these maximum values equal

log |V].

Proof  From [42], H(Ynlpn) < H(Y;) < log|¥| and similarly H(Y,|o3) < H(Y,) <
log|Y|. But since each ¢ € C is output symmetric, for each k the columns of M* are
permutations of each other. Thus, if the marginal p(z,) is uniform, then p(y.|S, = ck) is
also uniform, so p(yn|Sn = cx) = 1/|Y|. We therefore have that for any pn € A,

K

p— K -— g — 1 o — 1
P(¥nlon) = D P(unlSn = ck)pn(k) = ] Y on(k) = o (4.56)

k=1 k=1
and similarly, p(y»|p}) = 1/|Y|. Thus,
H(Yalen) = D 3 p(pn)P(ynlen) [~ 10g p(ynlpn)]

Pr€EA yn€Y

= 3 p(pn) Y P(¥nlpn) [~ 108 P(ynlpn))

pmeEL yn€Y

= Y s ¥ |%llogm

PrEA yn€Y
= log|yl, (4.57)
and similarly. H(Y,|p}) = log|Y|. Since (4.57) only requires that p(z,) is uniform for each
n, an i.i.d. uniform input distribution achieves this maximum. Substituting = for p in the

above argument yields the result for H(Y,|r,) and H(Y,|73). o

Definition: Let X, and Y; denote the input and output, respectively, of a FSMC. We
say that a FSMC is a variable noise channel if there exists a function f such that for
Zn = f(X5,Yn), Z is a sufficient statistic® for $*, and p(Z"|X™") = p(Z").

If Z" is a sufficient statistic for S™, then
T = p(Sa| X", Y7, 201 = p(Sq1Z2771). (4.58)

Using (4.58), and replacing the pairs (X ,,Y,) with Z,, in the derivation of Appendix 4.A.1,
we get the recursive relation

nD(zn
Tn4l = ':TD% é f(2n, 7"11)’ (4°59)

3Z = f(X,Y) is a sufficient statistic for S if S is independent of X and Y given Z [42).
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where D(z,) is a diagonal K x K matrix with kth diagonal term p(z,|Sn = cx). From
(4.59), 7, is a Markov chain with state space A and transition probabilities
(o1 = al|my = ) = Z 1{(zn) : f(2n, B) = a]p(zn|mn = B). (4.60)
zn€Z :
Lemma 4.2.2  For uniformly symmetric variable noise FSMCs, H(Yy|Xn,7,) and
H(Yy|Xn,7%) don’t depend on p(z™).

Proof  We consider only H(Y,|X,,7y), since the same argument applies to H(Yy|Xn,75).
Since each ¢, € C is output symmetric, the sets {{pi(y|z) : y € Y};z € X'} are permutations

of each other. Thus,

H(Yp|Xn,7n)

2.2 (— logZpk(ynlzn)vrn'(k)) 2 Pr(Unl@n)Tn(K)p(22)p(7n)
k k

™ Tn Yn

Z Z (_ 1052 pk(ynlzn)ﬂ'n(k)) Pk(ynlxn)]’(ﬂ'n)- (4.61)
k

Tn Yn
So H(Yn|Xn,7s) depends only on the distribution of 7,. But by (4.60), this distribu-
tion depends only on the distribution of Z"~1. The proof then follows from the fact that
P(Z"IX") = p(Z"). o

Consider a FSMC where each ¢, € C is an additive white noise channel with noise
ng. If welet Z =Y — X, then it is easily checked that this is a variable noise channel.
For such channels, however, the output alphabet ) is infinite. In general, the output of an
additive white noise channel is quantized to the nearest symbol in a finite output alphabet;
we call this the quantized additive white noise (Q-AWN) channel:

If the Q-AWN channel has a symmetric multiphase input alphabet and output
phase quantization [58, page 80], then it is easily checked that Pk(y|z) depends only on
Pk(|y — z|), which in turn depends only on the noise n; thus, it is a variable noise channel?.
We show in Appendix 4.A.4 that variable noise Q-AWN channels with the same input and
output alphabets are also uniformly symmetric. Uniformly symmetric variable noise chan-

nels have the property that I;;y equals the channel capacity, as we show in the following

‘If the input alphabet of a Q-AWN channel is not symmetric or the input symbols have different am-
plitudes, then the distribution of Z = |Y — X| will depend on the input. To see this, consider a Q-AWN
channel with a 16-QAM input/output alphabet (so the output is quantized to the nearest input symbol).
There are four different sets of Z = [Y — X| values, depending on the amplitude of the input symbol. Thus,
the distribution of Z over all its possible values (the union of all four sets) will change, depending on the
amplitude of the input symbol.
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lemma.

Lemma 4.2.3 Capacity of uniformly symmetric variable noise channels is achieved with

uniform i.i.d. inputs, so C = I;;y. Moreover, C = limy o Cp = limy,_, o Cx, where

A
Crn = max H(Yzlpn) = H(Y3]|Xn,70) (4.62)
P(Xn)
increases with n, and .
= A Ve »* rd »
Cn = ;?%)H()ﬂlpn)_ H(}ﬂlxﬂ’”n) (4‘63)

decreases with n.

Proof From Lemmas 4.2.1 and 4.2.2, C,,, C%, and C are all maximized with uniform
ii.d. inputs. With this input distribution, Cy, = log |Y| - H(Y,|Xy,7,) and Cx = log|Y| -
H(Ys|Xn, 7). Applying Lemmas 4.1.3.2 and 4.1.3.3, we get that H(Y,|Xy,7,) decreases
with n, H(Y,|Xn, 7};) increases with n, and both converge to the same limit, which completes
the proof. m]

The BSC is equivalent to a binary input Q-AWN channel with binary quantization
[58]. Thus, a FSMC where ¢ indexes a set of BSCs with different crossover probabilities is
a uniformly symmetric variable noise channel. Therefore, Proposition 4 of [54] is a corollary
of Lemma 4.2.3. Moreover, Lemma 4.2.3 holds for FSMCs where C consists of any finite
number of BSCs. .

4.3 Decision-Feedback Decoding

In principle, communication over a finite-state channel is possible at any rate below
the channel capacity. However, good maximum-likelihood coding strategies for channels
with memory are difficult to determine, and the decoder complexity grows exponentially
with memory length. Thus, a common strategy for channels with memory is to disperse the
memory using an interleaver; if the span of the interleaver is long, then the cascade of the
interleaver, channel, and deinterleaver can be considered memoryless, and coding techniques
for memoryless channels may be used [58, page 115]. However, this cascaded channel has
a lower inherent Shannon capacity than the original channel, since one is restricted to

memoryless channel codes.
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The complexity of maximum-likelihood decoding can be reduced significantly with-
out this capacity degradation by implementing a decision-feedback decoder. Figure 4.2 shows
a block diagram for a system with decision-feedback decoding. The system is composed of
a conventional encoder for memoryless channels, block interleaver, FSMC, deinterleaver,
and a decision-feedback decoder. Figure 4.3 outlines the decision-feedback decoder design,
which consists of a channel state estimator followed by a maximum-likelihood decoder.
We now show that, if we ignore error propagation and decoding délay, a system employ-
' ing this decision-feedback decoding scheme on uniformly symmetric variable noise channels
is information lossless: it has the same capacity as the original FSMC, given by (4.41).
Moreover, we will see that the output of the state estimator is a sufficient statistic for the
deinterleaver output, given all past inputs and outputs. Therefore, the maximum-likelihood
decoder input (yn,T,), conditioned on z,, is independent of 2"~1. We can thus determine
the maximum-likelihood input sequence on a symbol-by-symbol basis, eliminating the com-
plexity and delay of sequence decoders. We will also calculate the capacity penalty of the

decision-feedback decoder for general FSMCs (ignoring error propagation), and the system

cutoff rate. -
X y &
N _| INTER- DEINTER- n DECISION- n

Figure 4.2: System Model

STATE ESTIMATOR MAXIMUM-LIKELIHOOD DECODER
. ,
X0t Moeray
Lo P2 | B Lueme Lmom [z ] | g
[ } \ [
ﬁ DELAY
n-1

Figure 4.3: Decision-Feedback Decoder

The interleaver works as follows. The output of the encoder is stored row by

row in a J x L interleaver, and transmitted over the channel column by column. The
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deinterleaver performs the reverse operation. Because the effect of the initial channel state
dies away, the received symbols within any row of the deinterleaver become independent as
J becomes infinite. However, the symbols within any column of the interleaver are received
from consecutjve channel uses, and are thus dependent. This dependence is called the latent
channel memory, and the state estimator enables the maximum-likelihood decoder to make
use of this memory.

Specifically, the state estimator uses the recursive relationship of (4.5) to estimate
Ta. It will be shown below that the maximum-likelihood decoder operates on a memory-
less system, and can therefore determine the maximum-likelihood input sequence on @ per
symbol basis. The input to the maximum-likelihood decoder is the channel output y, and
the state estimate 7,, and its output is the z, which maximizes log p(yn,#n|Zs), assuming
equally likely input symbols®. The soft decision decoder uses conventional Viterbi decoding

techniques with branch metrics
A
m(y,7) = log p(y, 7|z). (4.64)

If the input sequence is coded, then there will be some delay in the soft-decision
decoder’s calculation of ', so the decision will not be immediately available to feed back to
the state estimator. The identical problem affects decision-feedback equalizers (DFEs) [59].
Recent DFE designs which alleviate this problem include parallel DFEs, which keep track
of all possible symbol decisions [60], and interleaver/deinterleaver pairs, which rearrange
the order of received symbols prior to decoding such that delayed reliable decisions can be
used for feedback [61]. We assume that the same techniques can be applied to our decision-
feedback decoder, thus we ignore decoding delay in this analysis. Error propagation analysis
of DFEs may also help to determine the effect of wrong decisions in our decoder performance
[62]), which we ignore in this study.

We now evaluate the information, capacity, and cutoff rates of a system using the
decision-feedback decoder, assuming #, = w, (i.e., ignoring error propagation). We will
use the notation yj £ yn to explicitly denote that y, is in the jth row and /th column of
the deinterleaver. Similarly 7 ;; £ 7n, and zj £ z, denote, respectively, the state estimate
and interleaver input corresponding to y;;. Assume now that the state estimator is reset

every J iterations, so for each /, the state estimator goes through j recursions of (4.5) to

®1f the z, are not equally likely, then log p(z.) must be added to the decoder metric.
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calculate 7j;. By (4.6), this recursion induces a distribution p(w ;) on 7 that depends only
on p(A7). Thus, the system up to the output of the state estimator is equivalent to a set
of parallel 7-output channels, where the m-output channel is defined, for a given j, by the
input z;;, the output pair (yj;,7;), and the input/output probability

Pyt milzji) = zk:Pk(yjllzjl)"jl(k)l’(“ﬂ)- (4.65)
For each j, the m-output channel is the same for | = 1,2,...,L, and therefore there are
J different m-output channels, each used L times. The first 7w-output channel (j = 1)
is equivalent to the FSMC with interleaving and memoryless channel encoding, since the
estimator is reset and therefore 7yy = m, 1<I< L. .

The jth m-output channel is discrete, since z; and y;; are taken from finite al-
phabets, and since 7j; can have at most |X'|/]Y})’ different values. It is also asymptotically
memoryless with deep interleaving (large J), which we prove in Appendix 4.A.5. Finally,
we show in Appendix 4.A.6 that for p(A'7) fixed, the J 7-output channels are independent,

and the average mutual information of the parallel channels is

Iy = %I()’J,H;X’) = }iﬂa’jlm) - H(Y;|X;,7;). (4.66)
Let ’
A 1 1
Cs= 2y, 7§H(1’jlﬂ) - H(Y;|Xj,7;) = 5o 7;0.1" (4.67)
where
C; £ H(Ylr;) - HY;\Xj,m5), (4.68)

for the maximizing distribution p(XJ). The capacity of the decision-feedback decoding
system is then

Cy Jim Cy (4.69)

Comparing (4.69) to (4.30), we see that the H(Y|X, ) terms are common to C and C df-

Therefore, an upper bound for the capacity penalty of the decision-feedback decoder is

. 1
C—Cy < J{n;;?g)jglﬁ(yjlm) - H(Yj|r;)]. (4.70)

Let I;;4(45) denote the mutual information I of the decision-feedback decoder for
i.i.d. inputs. Then
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J

Lia = Liia(ay) < Jim max %J; [H(Yjlp;) - H(Yj|x;)]. (4.71)
By Lemmas 4.1.3.3 and 4.1.3.5, H(Y;|r;) and H(Y;|p;) converge fori.i.d. inputs. M‘ore;over,'
H(Yjlp;) is monotonically decreasing in j by Lemma 4.1.3.4, and an argument similar to
that of Lemma 4.1.3.2 shows that H(Y;|r;) is also. Thus, the limit in (4.71) can be moved
inside the summation, yielding the following upper bound for the rate penalty of a decision-
feedback decoder with i.i.d. inputs:

L; _I','_ < . _ ( ( 8 _ 0
¢ = lidan) S max, /,, A [ES:( log »’(416)) #°(yle) | (v*(dp) - u(dp)), (4.72)

where 1/ and p? are as defined in Theorem 4.1.3. Finally, by Lemma 4.2.1, I;;4 and Lid(ay)
are maximized with uniform input distributions. Thus, the bracketed summation in (4.71)
equals log || for any p. Therefore, the right side of (4.72) vanishes for uniformly symmetric
channels. Moreover, since uniformly symmetric variable noise channels have C = I;;4, the
decision-feedback decoder preserves the inherent capacity of such channels.

Although capacity gives the maximum data rate for any maximum-likelihood en-
coding scheme, established coding techniques generally operate at or below the channel
cutoff rate [58]. Since the m-output channels are independent for fixed p(X'7), the random

coding exponent for the parallel set is

J
E.(1,p(X¥7)) = )_R;, (4.73)
=1 .

where - .

Rj=-logy [Zp(xj)J Y p(ylz, S = ex)mi(k)p(n;) | - (4.74)
Y, z k=1
The cutoff rate of the decision-feedback decoding system is
J
a . 1

Ry = }Lnolo 51(1;3}) 7; R;. (4.75)

We show in Appendix 4.A.7 that for uniformly symmetric variable noise channels, the
maximizing input distribution in (4.75) is uniform and i.i.d., the resulting value of R ; is

increasing in j, and the cutoff rate Rg4y becomes

2
K
[z ﬁJ Y- pule,5 = en (k@) |, (476)
T k=1

where p is the invariant distribution for # under i.i.d. uniform inputs.

Rys = jllrgoRj =-log )
v, TEA
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4.4 Capacity and Cutoff Rates for a Two-State Variable

Noise Channel

We now compute the capacity and cutoff rate of a two-state Q-AWN channel with
variable SNR, Gaussian noise, and 4-PSK modulation. The variable SNR can represent
different fading levels in a multipath channel, or different noise and /or interference levels.
The model is shown in Figure 4.4. The input to the channel is a 4-PSK symbol, to which
noise of variance ng or npg is added, depending on whether the channel is in state G (good)
or B (bad). We assume that the SNR is 10dB for channel G, and -5dB for channel B.
The channel output is quantized to the nearest input symbol, so from sections 4.2 and 4.3,
the capacity and cutoff rates are achieved with uniform i.i.d. inputs. The state transition
probabilities are depicted in Figure 4.4. We assume a stationary initial distribution of the
state process, so p(So = G) = g/(g9 + b) and p(So = B) = b/(g + b).

TWO-STATE CHANNEL

Figure 4.4: Two-State Fading Channel

Figure 4.5 shows the iterative calculation of (4.6) for p(7 ,(G) = «), where T2(G) =
p(S» = Glz"~1,y"=1). In this example, the difference of subsequent distributions after 15
recursions is below the quantization level (da = .01) of the graph. Figure 4.6 shows the
capacity (C;) and cutoff rate (R;) of the jth r-output channel, given by (4.68) and (4.74)
respectively. Note that C;=; and Rj=; in this figure are the capacity and cutoff rate of the
FSMC with interleaving and memoryless channel encoding; thus, the difference between
the initial and final values of C; and R; indicate the performance improvement of the
decision-feedback decoder over conventional techniques.

For this two-state model, the channel memory can be quantified by the parameter
u £1- g — b, since for o € {G, B} [54],

P(Sn = 0|S0 = 0) — p(Sn = 0|50 # &) = p". (4.77)
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Figure 4.7: Decoder Performance versus Channel Memory

In Figure 4.7, we show the decision-feedback decoder’s capacity arid cutoff rate (Cys and
Rgs respectively) as a function of u. V\”e expect these performance measures to increase
as yu increases, since more latency in the channel should improve the accuracy of the state
estimator; Figure 4.7 confirms this hypothesis. Finally, in Figure 4.8 we show the decision-
feedback decoder’s capacity and cutoff rates as a function of g. The parameter g is inversely
proportional to the average number of consecutive bad channel states (which correspond to
the 15dB fading channel); thus, Figure 4.8 can be interpreted as the relationship between

the maximum transmission rate and the average fade duration.

4.5 Unequal Error Protection Codes for Fading Channels

We now consider the case where the correlation structure of the channel variation
is unknown. In this case, the channel state varies arbitrarily over its state space. The capac-
ity of such Arbitrarily Varying Channels (AVCs) was first studied by Blackwell, Breiman
and Thomasian [63]; more recent treatments can be found in [55, 64], and the references
therein. In general, the capacity-achieving code of an AVC assumes the worst-case channel
state for probability of error calculation. Similarly, practical code designs for time-varying

channels typically specify a (maximum or average) error probability for all received data
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Figure 4.8: Decoder Performance versus g

bits. A higher data rate can be achieved if the input sequence is prioritized into high- and
low-priority bit streams, where the error probability of the high-priority stream is lower
than that of the low-priority stream. Then, even under worst-case channel conditions, the
high-priority bits will get through. This type of channel coding requires bit prioritization
by the source encoder, which is inherent to some voice and video compression schemes,
such as sub-band coding [65]. It can also be applied to heterogeneous traffic streams with
different BER criterion, like voice and data. We now explore some of these Unequal Error
Protection (UEP) techniques for fading channels. We first derive the maximum average
data rate of a narrowband fading channel with optimal UEP coding. We then describe
two practical implementations of UEP coding: time-multiplexing of coded bit streams, and

coded modulation with multiresolution codes.

4.5.1 Performance Limits

We assume that the fading channel under consideration is constant for the duration
of a symbol transmission, and that the range of the received SNR can be partitioned into a

finite number of intervals®. Thus, the channel can be modeled as a discrete-time state space

5This model was used to characterize Rayleigh fading in {67).
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channel, where each state is an AWGN channel with a different SNR, as in the two-state
variable noise channel of §4.4.

Let K denote the number of channel states, and n; denote the noise power associ-
ated with state c;, where the n’s are increasing (n; < n; for ¢ < j). Define the incremental

noise power by

ne

Vi

{ ni i=1 . (4.78)

b
ni—ni—1 1>1

son; = Zj;:, v;. Since the AWGN channel ¢; has the noise power :§=1 v;, the set of channels
€1,...,c) with common input can be represented by the incremental noise channel shown

in Figure 4.9.

V1 vz k
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/Figure 4.9: Incremental Noise Channel

The fading channel can be considered as an incremental noise channel with only
one of the ¢; channels active on each transmission (the ¢; corresponding to the current fade
level). We will use this fact below to determine the average rate of the fading channel from
the rate region of the incremental noise channel, which we now obtain. The maximum
rate of the incremental noise channel can be considered in the more general framework
of degraded broadcast channels [68]. The degraded broadcast channel models a system
with one transmitter and many receivers sharing a particular frequency band, where the
channel quality between the transmitter and each receiver is different, as would generally
be the case when the receivers are in different locations. The goal of the transmitter is to
send as much information as possible to each of the receivers. Thus, the incremental noise

channel models a system of one transmitter and multiple receivers, where receiver i obtains
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the transmitted signal plus AWGN of power n;. Assume for now that the transmitter
sends independent information to each receiver. The rate vector (R1,...,Rk) that can be
achieved simultaneously on the set of incremental noise channels €1,...,Ck is refered-to as.
its rale region, and the maximum rate region is called the capacity region [42). The capacity
region of the channel of Figure 4.9 was determined by Bergmans [69] to be the convex hull

of all rate vectors (Ry,..., Rg), where R; is given by

P
R;=log|1 il
og ( + Y a,-P) (4.79)

for any set of a;s that satisfy E{‘;l a; = 1, where B and P are, respectively, the total
channel bandwidth and power allocated to the channel set, and a; is the fraction of power
allocated to channel c;.

The intuitive explanation for (4.79) is the foll.owing [69]. Since n; < n; for i < j,
user ¢ correctly receives all the data transmitted to user j. Therefore, user i can correctly
decode and then subtract out user j’s message, then decode its own message. However, user
J cannot decode the message intended for user ¢, since it has a less-favorable channel; thus,
user i's message, with power a; P, contributes an additional noise term to user j’s received
message. This explains the additional noise terms in the denominator of (4.79).

This capacity region is achieved by superposition codes, which form the theoretical
basis for the multiresolution coded modulation described in the next section. Superposition
codes are constructed by using multiple codebooks to generate the coded data [42]. There
is a codebook associated with each of the channels in the channel set ¢;,...,cx. The
general idea behind superposition codes is to have a refinement in the code structure, so
that the receiver associated with each channel can determine the coarse code structure (the
code clouds), while more favorable channels can determine some of fine code structure (the
codewords within the clouds). The best channel can distinguish all of the coarse and fine
code structure.

Suppose now that we remove the assumption of independent information for each
receiver. Since user ¢ automatically receives the information sent to all receivers with j > 1,
if we assume that this information is also desired by user ¢, then we can include this as an
additional component to user ¢’s information rate. The capacity region with this common

information is then

K K
(Rj....,Rx) & (ER,-,ZR,-,...,RK). (4.80)

1=1 =2
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This common information could be the high-priority bits of a source encoding scheme.
Thus, all channels (cy,...,cx) would receiver the high-priority bits; the best channel ¢;
would receive all high and low-priority bits, and the number of lost low-priority bits would
increase with 1. )

We now return to the fading channel model. The capacity region in (4.80) gives the
simultaneous rates achievable for all channels (cy,...,cx). For the fading channel, however,
only one channel ¢;, with rate R, is realized on each symbol transmission. Thus, the data
rate R on each symbol transmission is a random variable with distribution

p(R=r)={”(°=°f') r=Ri (451)

0 else

where ¢ denotes the channel state for that transmission. The average transmission rate of

the incremental noise channel is thus

K
R= Ep(c = ¢;)R;. (4.82)

i=1

With this transmission scheme, if the fade level realized on a particular transmission corre-
sponds to channel ¢;, then Z}":,;H R, bits of information will be lost on this transmission.

With channel estimation and transmitter feedback, however, the expected trans-
mission rate R equals the actual transmission ra.té. This is because the transmitter knows
how much information was lost on each transmission, and can retransmit this data on a
subsequent transmission. We illustrate this process for a K = 2 incremental noise channel.
Let R = (R1 + R», R2) be the capacity region for the channel. Using the terminology
of Bergmans [68], on each transmission we will have 2Rz cloud centers corresponding to
the information transmitted to the second channel and 2%i satellite codewords appended
to each cloud center corresponding to the additional information transmitted to the first
channel. If the channel realization for this transmission is the first channel, then the re-
ceiver will successfully decode the 2R1+R2 codewords. The feedback mechanism informs the
transmitter that the first channel was realized, hence the transmitter knows that all the
transmitted information was successfully decoded. If the second channel is realized, then
only the 2Rz cloud centers can be successfully decoded. The feedback mechanism informs
the transmitter that the satellite codewords were lost, and these satellite codewords are
then appended to the next set of cloud centers to be transmitted. Thus, no information is

lost. and rate R, is achieved when the second channel is realized, rate R; + R; when the



117

first channel is realized. The fraction of time that the ith channel is realized is p(c = ¢;), so
the actual rate asymptotically approaches the average rate. As expected, this average rate

(4.82) equals the capacity of a time-varying feedback channel (3.7) that was derived in the
previous chapter.

4.5.2 Multilevel Coding Techniques

Practical implementation of a multilevel code was first studied by Imai and Hi-
rakawa [70]. Binary UEP codes were later considered both for combined speech and channel
coding [65], and combined image and channel coding [71]. These implementations use tradi-
tional (block or convolutional) error-correction codes, so coding gain is directly proportional
to bandwidth expansion. More recently, two bandwidth-efficient implementations for UEP
have been proposed: time-multiplexing of bandwidth-efficient coded modulation [72], and
the coded-modulation techniques of §3.5.1 applied to both uniform and nonuniform signal
constellations [66, 73, 74]. All of these multilevel codes can be designed for either AWGN
or fading channels, depending on the distance criterion of the code, which will be discussed
in more detail below. We now briefly summarize these UEP techniques; specifically, we
describe the principles behind multilevel coding and multistate decoding, and the more
complex bandwidth-efficient implementations.

A block diagram of a general multilevel encoder is shown in Figure 4.10. The
source encoder first divides the information sequence into M parallel bit streams of de-
creasing priority. The channel encoder consists of M different binary error-correcting codes
C1,...,Cps with decreasing codeword distances. For AWGN channels, the binary encoder
should maximize the Euclidean distance between codewords; for fading channels, the Ham-
ming distance should be maximized [75). The ith priority bit stream enters the ith encoder,
which generates the coded bits s;. If the 2M points in the signal constellation are numbered

from 0 to 2M — 1, then the point selector chooses the constellation point s corresponding to

M
s=) s x 2L (4.83)

i=1
For example, if M = 3 and the signal constellation is 8PSK, then the chosen signal point
will have phase 27s/8.
Optimal decoding of the multilevel code uses a maximum-likelihood decoder, which

determines the input sequence that maximizes the received sequence probability. The
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maximum-likelihood decoder must therefore jointly decode the code séquences S1y.:09Sm-
Hence, if the encoder memories are of length u;,..., 1, the number of states in the op-
timal decoder is 241+-+#M_ This leads to very high complexity in the optimal decoder,
even if the memories of the individual encoders C},...,Cps are small. Due to this complex-
ity, the suboptimal technique of multistage decoding, introduced in [70], is used for most
implementations. Multistage decoding is accomplished by decoding the component codes
sequentially. First, the most robust co:ie, C\, is decoded, then Cj, and so forth. Once
the code sequence corresponding to encoder C; is estimated, it is assumed correct for code
decisions on the less robust code sequences.

The binary encoders of this multilevel code require extra code bits to achieve
their coding gain, thus they are not bandwidth-efficient. An alternative approach recently
proposed in (73] uses time-multiplexing of the bandwidth-efficient coset codes described in
§3.5.1. In this approach, different conventional coded modulation schemes, such as lattice or
trellis codes, with different coding gains are used for each priority class of input data. The
transmit signal constellations corresponding to each encoder may differ in size (number
of signal points), but the average power of each constellation is the same. The signal
points output by each of the individual encoders are then time-multiplexed together for
transmission over the channel, as shown in Figure 4.11 for two different priority bit streams.
Let R; denote the bit rate of encoder C; in this figure, for i = 1,2. If T} equals the fraction
of time that the high-priority C; code is transmitted, and T, equals the fraction of time
that the C; code is transmitted, then the total bit rate is (R1Th + R T2)/(Th + T3), with
the high-priority bits comprising RyT1/(R1T; + R2T3) percent of this total.

The optimal coding results for the degraded broadcast channel suggest that the
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Figure 4.11: Transceiver for Time-Multiplexed Coded Modulation

time-multiplexed coding method yields a higher gain if the constellation maps S; and 5, of
Figure 4.11 are designed jointly. This revised scheme is shown in Figure 4.12 for 2 encoders,
where the extension to M encoders is straightforward. In fact, the coded modulation of
Figure 3.22 in Chapter 3 can be considered as a two-level code of this type. Recall that
in this scheme, bits are encoded to select the lattice subset, and uncoded bits choose the
constellation point within the subset. The binary encoder properties reduce the BER for
the encoded bits only; the BER for the uncoded bits is determined by the separation of
the constellation signal points. We can easily modify this scheme to yield two levels of
coding gain, where the high-priority bits are encoded as in Figure 3.22 to choose the lattice
subset, and the low-priority bits are encoded using a binary encoder, whose output selects
the constellation signal point.

More complex multilevel code designs use non-uniform signal constellations. For
example, in [73], the nonuniform 32-QAM signal constellation of Figure 4.13 is considered.
In this scheme, the high-priority bits are encoded with an eight state trellis encoder, yielding
two coded bits per transmission, and the low-priority bits are encoded using an eight state
trellis encoder and two uncoded bits, resulting in three coded bits per transmission. The

two high-priority coded bits are used to determine the quadrant of the transmitted signal
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Figure 4.12: Joint Optimization of Signal Constellation

point, or equivalently, one of.the four constellation superpoints shown in Figure 4.13. The
three low-priority coded bits are then used to select one of the 8-PSK points centered around
the superpoint. Coding gains for this scheme, for different percentages of high-priority bits
and different spacings between the superpoints and between the 8-PSK points, are calcu-
lated in [73] and compared with those of the time-multiplexing technique depicted in Fig-
ure 4.11. This compariso;{ shows that the time-multiplexing scheme performs better when
the percentage of high-priority bits is small; otherwise, coded-modulation with nonuniform
signal modulation is better. This result is somewhat surprising, since the capacity analysis
for degraded broadcast channels predicts that coded modulation with nonuniformly spaced
codewords should always outperform time-multiplexing [42). This discrepancy between the-
ory and practice may result from the fact that the theoretical results do not consider code

complexity, or that they rely on random coding schemes, rather than specific code designs.

4.6 Summary

We have examined techniques for spectrally-efficient communication on time-varying
channels without feedback. We first considered finite-state Markov channels, where the

channel variation is governed by a Markov process with statistics known to both trans-
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Figure 4.13: Nonuniform 32-QAM with embedded 4-PSK

mitter and r_eceiver. After deriving the Shannon cap.acity of this channel, we proposed
a decision-feedback maximum-likelihood decoder, which uses the Markov transition prob-
abilities to estimate the channel state distribution. This estimate allows the decoder to
make maximum-likelihood decisions on a symbol-by-symbol basis, even though the channel
memory is infinite. We defined a class of channels for which the decision-feedback decoder
achieves channel capacity, and bounded the capacity loss of our scheme for general chan-
nels. The capacity and cutoff rate of our decoding scheme was then compared to those of
conventional memoryless encoding methods for variable noise channels. We found that the
decision-feedback decoding method, for a small increase in complexity, yields a significant
capacity increase which is most pronounced on slowly-varying channels.

When the channel varies arbitrarily, multilevel codes can be be used to maintain
high-priority data transfer even under worst-case channel conditions. This type of coding
prioritizes the transmitted bit stream into data classes; this data prioritization is already
inherent to many speech and video source coding techniques. We first determined the
average data rate possible with optimal multilevel coding for variable noise channels. We
then discussed some practical implementations of this type of coding. Surprisingly, when
high-priority data comprises a large percentage of the transmitted bit stream, a simple
multiplexing scheme, which is theoretically inferior to multilevel codes with constellation

optimization, in practice performs better.
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Appendix 4.A.1

In this section, we derive the recursive formula (4.4) for 7,. First, we have

P(Snlz™, y™) a P(Zn,s Yn|Sn, 271, yn-l)p(sm zn-l,yn—l)
p(z",y)
P(Yn|Sn, Tn, 271, 4" 1)p(20|Sn, 2", 4" 1)p( S, 21,y 1)
p(z™,ym)
P(Yn|Sn, xn)p(xnlxn-l)P(Sm z"1, yn—l)
p(z™,y") _

P(Yn|Sn, 3n)p(znlzn_l)p(snlxn_la yn-l)p(zn—l,yn-l) (4.84)

p(z,y*) ’
where a, b, and d follow from Bayes rule and ¢ follows from (2.42). Moreover,

p(xn’ yn) = Z p(zn’ ynssn = ck)
keK

= Z p(zm anSn = Ckv'cn-lv yn—l)p(sn = Ck, zn—]’yn—l)
kex

= D P(YalSn = ck,2n, 2", 5" )p(20 S, 21, 41 )p(S,, = k2™ 1y )
kek

= D P¥nlSn = ek, za)p(eale™ )p(Sn = chle™ 1,y N)p(z""1, yn1), (4.85)
ken

lle

llo

lin

where we again use Bayes rule and the last equality follows from (2.41). Substituting (4.85)

in the denominator of (4.84), and canceling the common terms P(zn|z™"1) and p(zn-1,yn-1)

yields
p(ynlsm 3n)p(sn|xn-li yn-l)
Salz™, y") = , 4.86
) = P UnlSn = v )P B = T 37 T) (4:86)
which, for a particular value of § n, becomes .
P(ynlsn =, xn)P(Sn = cllzn-l,yn—l)
Sp=cllz™,y") = . 4.87
P e ) = ek P To = er e PG = ooy (48D
Finally, from (2.40),
P(Snt+1 = cfz”, y") = Z p(Sn = clz", y")Pj1. (4.88)

JEK
Substituting this into (4.87) yields the desired result.
Appendix 4.A.2

We must show that for all §,,,0 € P(X), if 6, — 6, then ufm — pb, and vom — 0,

We first show the convergence of v, From [57, page 346], in order to show that »m —, Vo,
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it suffices to show that {¢¥®=} is a tight sequence of probability measures? , and that any
subsequence of ¥#» which converges weakly converges to .

Tightness of the sequence {¢%=} follows from the fact that A is a compact set.
Now suppose there is a subsequence %=« 20 which converges weakly to 1. We must show
that 9 = v, where 1? is the unique invariant distribution for p under the transformation
(4.10) with input distribution p(z) = 6. Thus, it suffices to show that for every bounded,

continuous, real-valued function ¢ on A,
J#wian = [ [ daydsp’dals), (4.89)

A - . T
where p?(a|B) = p(pns1 = alpn = B) is given by (4.10) under the input distribution 6.
Applying the triangle inequality, we get that for any %,

o(v)e(dy) - $(a)y(dB)p’(dalB)
A A

<| [ snwan- [ S (an)| (4.90)
+| [ wan- [ [ seps s’ als) (491)
+| [ [ otnappiidale)- [ [ ¢(a)¢(dﬁ)p(dalﬂ)|- (4.92)

Since this inequality holds for all &, in order to show (4.89), we need only show
that the three terms (4.90), (4.91), and (4.92) all converge to zero as k — co. But (4.90)
converges to zero since v% converges weakly to 9. Moreover, (4.91) equals zero for all
k, since v% is the invariant p distribution under the transformation (4.10) with input

distribution 8. Substituting (4.10) for p®(a|B) in (4.92) yields
/0% O - } 8
| [ st @pptiiaais) - [ [ olarotds)p’(dels)

3 /A o(f%(y, B))p% (y|B) P (dB) - > /A o(f°(y, 8))p°(v1B)v(B)dB|, (4.93)

yey yey

—1 ~

where f? is given by (4.9) with p(z) = 6, and

K
P18 = Y D p(yle, S = ex)B(k)8(). (4.94)

z€A k=1

A sequence of probability measures {vm;m > 1} is tight if for all ¢ > 0 there exists a compact set K
such that ¥»(K) > 1 — ¢ for all vp,.
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Since Y is a finite set, (4.93) converges to zero if for every y € ),
]A $(f(v,8))p" (y1B)v**(dB) - /A ¢(f"(y,ﬂ))p"(ylﬁ)¢(dﬂ)| - 0. (4.95)
Fix an arbitrary y € Y. Applying the triangle inequality to (4.95) yields
[ 9% @ Pl a8) — [ 8, B0 w1BYaB)|
<| [ 8w oo @) - [ 87w Bl ap)|  (496)
a A
+| [ o wop o) - [ dfw o eipus)|. @)

But for any fixed y and 3, 6 — 6 implies that f%(y,B8) — f%(y,B), since from

(4.9), the numerator and denominator of f are linear functions of 8, and the denominator is

nonzero. Similarly, §; — 6 implies that for fixed y and 8, p®(y|8) — p°(y|B), since p°(y|B) is
linear in 6. Since ¢ is continuous, this implies that for fixed y and 3, o(f%(y, B))p%(y|B) =
&(f%(y,B))p°(y|B). Since ¢ is also bounded on A, (4.96) converges to zero by the dominated
convergence theorem [57]. Moreover, for fixed y and 6, f%(y, ) and 2°(y|B) are linear in
B, so ¢(f%(y,B))p?(y|B) is a bounded continuous functions of B. Thus, (4.97) converges to
zero by the weak convergence of 1% to 1.

Since the {uf} sequence is also tight, the proof that u®m — u follows if the limit
of any convergent subsequence of {u®~} is the invariant distribution for 7 under (4.6). This
is shown with essentially the same argument as above for ¥® — 1, using (4.6) instead of
(4.10) for p(a|B), p°(ylz, B) instead of p?(y|B), and summations over X’ x ) instead of .

The details are omitted.

Appendix 4.A.3

To prove Lemma 5.4, we must show that
H(Yo|Y"™ 1) 2 H(Ya|Y™) 2 H(Yap1|Y™, S0) > H(Y,|Y™, So). (4.98)
For the first inequality, let f denote any concave function. Then

f(p[ynlyn-l]) 2 f(p[?/n+l|y?])

2 F(E@Ynnly")lvD))
> E(f(plynsily™)led)
4

S(Plyn+1ly™]), (4.99)
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where a follows from the stationarity of the inputs and channel, b and d follow from prop-
erties of conditional expectation [57], and c is a consequence of Jensen’s inequality.
The second inequality results from the fact that conditioning on an additional

random variable reduces entropy. Finally, for the third inequality, we have

f(Plyn+11y™, So]) S(E(P[yn+11y™, S1lly", So))

F(E(pyn41ly™, S1]ly™, 59))

E(f(plyn+11¥2, S1D)Iy™, So)

f(plynt11yz, S1),s .
S(p[yaly™?, So)), (4.100)

where a and d follow from properties of conditional expectation, b follows from (2.42), ¢

ll& Ve Il le

lle

follows from Jensen’s inequality, and e follows from the channel and input stationarity.

Appendix 4.A.4

‘We consider a Q-AWN channel where the output is quantized to the nearest input
symbol and the input alphabet consists of symmetric PSK symbols. We want to show that
for any &, P,§ = Pi(y = jlz = i) has rows which are permutations of each other and columns

which are permutations of each other. The input/output symbols are given by
Ym = Tm = Aexp?™/M m=1,... M. (4.101)

Define the M x M matrix Z by Z;; = |y; — z;| and let gi(Z;;) denote the distribution of
the quantized noise, which is determined by ni, A, M. By symmetry of the input/output
symbols and the noise, the rows of Z are permutations of each other, and the columns are
also permutations of each other.

If M is odd, then

_) aly-zl) |y-zI=0
Pi(ylz) = { aully — 22 else , (4.102)

and if M is even,

a(ly — z| ly—z| =0 or |[y—=z| = 24
pr(ylz) = { ) TRt

k(ly — z[)/2 else

Thus, P,‘J depends only on the value of Z;;; the rows of P,§ are therefore permutations of

each other, and so are the columns.
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Appendix 4.A.5

We will show that the w-output channel is asymptotically memoryless as J — oo.

Indeed, since the FSMC is indecomposable and stationary, for asymptotically large J,

P(Sn+dySn) = p(Sn+0)p(Sn) (4.104)

for any n, and thus also .
p("n+.]7 7rn) = p(?rn+_1)p(7rn). (4'105)
Therefore, since 7j; and wj-(l_l) are J iterations apart, 7; and 7;(_;) are asymptotically
independent for large J.
In order to show that the #-output channel is memoryless, we must show that for
any j and L,
L
p(y’t, w2ty = ] pyin, mitlz ). (4.106)
=1

We can decompose p(y’L, 77L|ziL) as follows:

L -
(vt b |2?) = T plyin, mile s, y? (1), w03 0-0)), (4.107)
=1

Thus we need only show that the /th factor in the right hand side of (4.107) equals

p(yj1. 75|z ;1) in the limit as J — oo. This result is proved in the following lemma.

Lemma 4.A.5.1 For asymptotically large J,

(s, milz s,y 1), 02300 = p(yy, malasi). (4.108)

Proof

p(ysis itk 1, 3701, iU-1)z0-1))
= p(yilmji, z1, U=, w301 2il=Dyp( |2y, 470D | £3(-1) 7i(11))
= p(yjilmjt, zi)p(mjly’ =1, w301, £il-1))
= p(y5ilmjn 0)p(7 1|7 (j41)0-1))
= pyjlmji,zj0)p(m;0)
= p(yjt, mitlzsi), (4.109)
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where the second equality follows from (2.40) and (2.41), the third equality follows from
(4.5). and the fourth equality follows from (4.105) in the asymptotic limit of deep interleav-

ing.
Appendix 4.A.6

The 7-output channels are independent if

J
p(y’,77le?) = ] p(ys,mjle ;). (4.110)
j=1 .

This is shown in the following string of equalities.

J
p(y’,7lle?)y = T pyj,mjlzjoyi =, it 231y
i=1

J
H P(yj'Wj, Zj, yJ—la 7"1_17 xj-l)p(ﬂ'jlxj? y"-l’ ”J—la 31-1)
Jj=1

J . . .

II p(yslm;,z5)p(mjlas, y7 2 m =0 290y
i=1
J

= II p(yilmjsz5)p(n;), (4.111)
Jj=1

where the third equality follows from (2.41) and the last equality follows from the fact that
we ignore error propagation, so /=1, /=1, and 74! are all known at time j.
We now determine the average mutual information of the parallel 7-output chan-

nels for fixed p(A'7). The average mutual information of the parallel set is
Iy= :II-I(Y",w";X"). (4.112)

From above, the parallel channels are independent, and each channel is memoryless with

asymptotically deep interleaving. Thus, we obtain (4.66) as follows:
-}I(Y",r’;X") = HY', =) - B(Y',n|XY)
= HY|r)+ H(x')- (HY|n?,X7) + H(x!|X 7))
= HY/|r))- (HY|x?, X7)

J
= Y HY;lYi L nd) - H(Y;lY 27, X7)

i=1
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J
= Y H(Yjln;) - H(YIm;, X;), (4.113)

i=1

where the third equality follows from the fact that p(r/|z”) = p(x7), and the last inequality
follows from the fact that

HY;|Y7, %) = HYlpjpn7) = H((Yjlmy), (4.114)

since p; = Ey7y.

Appendix 4.A.7

In this section, we examine the cutoff rate for uniformly symmetric variable noise
channels. The first four lemmas show that for these channels, the maximizing distribution
of (4.75) is uniform and i.i.d. We then determine that R, as given by (4.74), is monotoni-
cally increasing in j, and use this to get a simplified formula for R 4 in terms of the limiting

value of R;.

Lemma 4.A.7.1 For all j, R; depends only on p(&;).

Proof From the proof of Lemma 6.2, 7; is a function of Z™~1, and is independent of
X7=1. So p(x;) doesn’t depend on the input distribution. The result then follows from the
definition of R;. (|

Lemma {.A.7.2 An independent input distribution achieves the maximum of Ry;.

Proof  Let ﬁ" denote the maximizing distribution of R, and assume that under p*, the
inputs are not independent. Define the independent input distribution 5 by (z;) = P*(z;).
Since by the previous lemma, R;,j = 1,2,... is the same for inputs governed by p* or 5,

the distribution p must also achieve Ryy. 0

Lemma {.A.7.3 For a fixed input distribution p(X'7), the J corresponding 7-output

channels are all symmetric [40, page 94).
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Proof ~ We must show that for any j < J, the set of outputs for the jth m-output channel
can be partitioned into subsets such that the corresponding submatrices of transition proba-
bilities has rows which are permutations of each other and columns which are permutations .
of each other. We will call such a matrix row/column permutable.

Let n; < |X)|V|’ be the number of points § € A with p(m; = 6) > 0, and let
{6:}72, explicitly denote this set. Then we can partition the output into n; sets, where the
ith set consists of the pairs {(y,8;) : y € Y}. We want to show that the transition probability
matrix associated with each of these output partitions is row/column permutable, i.e. that
for all i, 1 < ¢ < nj, the |X| x |Y| matrix

; A
P =plyj=y,mi=6bilej=2z), z€X,ye)y (4.115)

has rows which are permutations of each other, and columns which are permutations of
each other.

Since the FSMC is a variable noise channel, pi(y|z) depends only on z = f(z,y)
forall k,1 < k < K. Therefore, if for some k', pi(ylz) = prr(y'|2’), then f(z,y) = f(=',y').
But since z = f(z,y) is the same for all k, this implies that

p(ylz) = pe(y'l2") VK, 1< k< K. (4.116)

Fix &’; then by definition of uniform symmetry, py/(y|z) is row/column permutable. Using
(4.116), we get that the |X'| x || matrix

K

Pe=) p(ylz), z€X,yey (4.117)
k=1

is also row/column permutable. Moreover, multiplying a matrix by any constant will not
change the permutability of its rows and columns, hence the matrix

K
Py = Zpk(ylr)] §ip(rj = &),z € X,yey (4.118)
k=1

is also row/column permutable. But this completes the proof, since

K
py; =y, 7= 6ilz; =2) = Zpk(yj = ylz; = z)bip(7; = §;). (4.119)
k=1

(W]
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Lemma 4.A.7.4 For i.i.d. uniform inputs, R; is monotonically increasing in j.

Proof  Forii.d. inputs,

2 .
K
R;= —10g# 2 p(m)Y [Z szk(ylw,s = Ck)ﬂj(k)] : (4.120)

;€A y€Y |z€X k=1

Let

2
K
faHEY [Z szk(ylr,s = Ck)”j(k)] ) (4.121)

yeY |z€X Y k=1
so R; = —log 3pE[f(n;)]. We must show —log rE[f(m;)] < - log W’.P-E[f(wj“)], or
equivalently, E[f(7;)] 2 E[f(7;4+1)]. Following an argument similar to that of Lemma 5.2,

we have

_ 2
K
f(=5) = 1> \ Y pi(ylz, S = Ck)”j(k)]

yeY |z€X \ k=1
- % 2
= Y I3 D p(ulz, S = ci)p(S; = Cklr"“,y"")]
yeY _IG/T\ k=1

2
k’ .
Z Z \ Zpk(ylxss = Ck)P(Sj+1 = Ck|$?a 3/51)]
| TEX \ k=1
r

lle

vey

2
K
= > (X Zm(ylx,SHk)E[P(Sm=ck|x",y")lw£‘,y5‘)]}

yeY |z€X k=1

B 2

b K
2 Z E Z JZpk(ylx,S = Ck)p(Sj-H = ck'-'rna yn)]

YEY | z€X \k=1

K 2

= > | \IZPk(ylw»S = ck)p(Sj41 = Cklx",y”)]

yey [zex k=1
= f(mj41), (4.122)

where a follows from stationarity and b follows from Jensen’s inequality. Taking expectation
of both sides in (4.122) yields the desired result. 0

Lemma 4.A.7.5 For uniformly symmetric variable noise channels, a uniform i.i.d. input

distribution maximizes R4s. Moreover,
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Ry = lim R;. 4.123)
if J

j—o0
Proof  From Lemma 4.A.7.2, the maximizing distribution for R 4y is independent. More-
over, from Lemma 4.A.7.3, each of the 7-output channels are symmetric, therefore from
[40, page 144], a uniform distribution for p(X;) maximizes R; for all j, and therefore it
maximizes Rqs. Moreover, by Lemmas 4.A.7.4 and 4.1, for i.i.d. uniform inputs, R; is
monotonically increasing in j-and converges to a limit independent of the initial channel
state. Therefore,

j—oo

1 .
Ry = Jim 7; R; = lim R;. (4.124)
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Chapter 5

Multiuser .Systems

The previous chapters dealt with increasing spectral efficiency on single-user chan-
nels; we now consider the case where multiple users share the same channel. There are
several methods for dividing the channel frequency spectrum among many users: the most
common are time division (TDMA), frequency division (FDMA), code division (CDMA),
and hybrid combinations of these methods. Currently, there are four standards with differ-
ent spectrum-sharing techniques for digital cellular phone systems alone: one for Europe,
one for Japan, and two for North America. The debate among cellular and personal com-
munication standards committees and equipment providers over which approach to use has
led to countless analytical studies claiming superiority of one technique over the other. In
many cases the a priori assumptions used in these analyses bias the results in favor of one
technique over the other alternatives; usually the technique that is of some economic inter-
est to the authors of the study. In this chapter we provide an unbiased evaluation of the
different spectrum-sharing techniques for both time-invariant and time-varying broadcast
and multiple access channels.

We begin with a summary of the capacity and achievable rate regions for time-
invariant AWGN channels. We consider only broadcast and multiple access channels, which
model two-way transmission in systems where many users are communicating with a single
transceiver, as in cellular, satellite, TV broadcast, and packet radio systems. We will see
that CDMA (with interference cancellation and no power control) and FDMA techniques
both achieve the maximum total rate for multiaccess channels, and CDMA achieves the
maximum rate region for broadcast and multiaccess channels. In addition, if power control
is used to equalize received power in a broadcast system, then CDMA, FDMA, and TDMA
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all have the same rate regions. Finally, without interference cancellation CDMA is generally
inferior to both FDMA and TDMA. Although CDMA with interference cancellation is
always at least as good as the other techniques, it also requires more complexity in both the
transmitter and receiver, which may preclude its use in low-power mobile receivers [76]. We
will also summarize the derivation by Cheng and Verdi of the capacity region for wideband
time-invariant ISI channels [77]. For these channels, FDMA and CDMA with interference
cancellation have the same rate regions for equal user priorities, and CDMA is superior
when the user priorities are not equal.

We then extend the time-invariant analyses to time-varying memoryless channels.
For FDMA and TDMA spectrum sharing, the users are orthogonal, and the time-varying
capacity results of Chapter 3 can be applied. We also show that the time-varying capacity
region of CDMA with interference cancellation dominates both time and frequency division
techniques, and we discuss the capacity region of CDMA without interference cancellation.

The capacity of cellular systems cannot be evaluated using the methods outlined
above, since spatial reuse is not incorporated into the multiuser channel model. Reusing
frequencies at spatially-separated cells allows more efficient use of the frequency spectrum,
however it also introduces intercell interference, which reduces the capacity of all users. The
tradeoff between increased spectrum efficiency and decreased user capacity is quantified by
the area spectral efficiency, defined as the data rate/Hz/unit area of all users in the system.
We calculate this efficiency as a function of reuse distance for FDMA with a very simple
signal and interference model. Optimization of power control and reuse distance to maximize
this efficiency for more complicated models is also discussed. We conclude the chapter with

some interference mitigation techniques.

5.1 Rate Regions for Memoryless AWGN Channels

When several users share the same channel, the channel capacity can no longer be
characterized by a single number. At the extreme, if all but one user occupies the channel,
then the single-user capacity results of Chapter 3 apply. However, since there is an infinite
number of ways to “divide” the channel between many users, the multiuser channel capacity
is characterized by a rate region, where each point in the region is a vector of achievable
rates that can be maintained by all the users simultaneously. The set of all achievable rates

is called the capacity region of the multiuser system. In this section we analyze two time-
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invariant memoryless AWGN channels: the broadcast channel and the multiaccess channel.
We examine rate regions for these channels using CDMA with and without interference
cancellation, TDMA, and FDMA spectrum-sharing techniques. The maximum rate region,
achieved using CDMA with interference cancellation, relies on the concept of superposition
codes and successive decoding, as described in §4.5. Specifically, the user with the highest
priority decodes all lower priority messages and subtracts them before decoding his message;
the lower priority users treat higher priority messages as noise. We will elaborate on this
technique for the two channel models under consideration in the following sections. We will
also show that the rate region of CDMA without interference cancellation is inferior to all
the other spectrum-sharing techniques. As in the single-user case, the capacity region gives
the maximum set of rates without constraint on the complexity and delay of the coding,

decoding, and spectrum-sharing method.

5.1.1 Broadcast Channels

The broadcast channel consists of one transmitter sending information to many
receivers over a common channel, as shown in Figure 5.1. The transmitter must encode
information meant for the different receivers into a common signal. The capacity region of
the broadcast channel characterizes how much information can be conveyed to the different
receivers simultaneously.

We consider rate regions for a two-user discrete AWGN broadcast channel only;
the extension to multiplé ﬁsers is straightforward [78]. Thus, there is one sender of power
P, and two distant receivers, each with AWGN of power n;, i = 1,2. We also assume that
the data pulses are Nyquist, so the signal bandwidth B = 1 /T, where T denotes the length
of each data pulse. We can order the channels relative to the noise powers without loss of
generality, so that ny < ny, i.e., receiver 1’s channel is less noisy than receiver 2’s. If we
denote the transmitted signal by X, then user 1 receives the signal Y; = X + N;, and user
2 receives the signal Yo = X + N, where N; denotes the noise sample of the ith receiver.
The transmitter wishes to send independent messages to receivers 1 and 2 at rates R; and
R, respectively. ‘

We encountered this broadcast channel model in §4.5 when we analyzed unequal

error protection codes for fading channels. We now consider the capacity region of this
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Figure 5.1: Broadcast Channel.

channel model in the multiuser context, as analyzed by Bergmans [69]!. If we denote the
total power and bandwidth allocated to both users by P and B, respectively, then the

single-user capacity C; of receiver i’s channel is given by:
B P
Ci= Elog [1 + n,_B] . (5.1)

If the transmitter allocates all the power and bandwidth to one of the users, then the other
user receives no data; therefore, the set of simultaneously achievable rates (R, R;) includes
the pairs (C,0) and (0,C2). These two rate pairs bound the multiuser capacity region.
We now consider rate pairs in the interior of the region, which are achieved using more
equitable methods of dividing the channel resources.

One scheme for dividing the bandwidth and power between the two users is time
division, where the full power and bandwidth is allocated to user 1 for a fraction 7 of the
total transmission time, and then to user 2 for the remainder of the transmission. This
time division scheme achieves any rate pair (7C;,(1 — 7)C3), so a straight line connecting
the points (C;,0) and (0,C3), as shown in Figure 5.2, bounds the rate region achievable

through time division. A problem with this scheme is delay: since the transmissions to each

VBergmans’ results were for continuous-time channels, however it can be shown that the same formulas
hold for discrete-time channels with Nyquist data pulses [42].
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Time Division Rate Region

Figure 5.2: Rate Region with Time Division.

user take place sequentially, the second user must wait to receive data until after the first
user finishes with the channel. The more common method of time multiplexing alleviates
this delay problem, since the channel is periodically alternated between the users. However,
multiplexing introduces some capacity loss due to code restriction; this loss was bounded
in §3.6.3.

An alternative approach for spectrum-sharing is frequency division. In this method
the 7th user is allocated power P; and bandwidth B; of the total, so P; + P, = P and
By + B> = B. The set of achievable rates, for fixed P; and B;, is then given by

B, P ]
R, = —
1 5 log [1 + 5
_ B L
Hp = 5 log [1 + | (5.2)

It was shown by Bergmans [69] that, for n; strictly less than n, and any fixed frequency
division (By, B;), there exists a range of power allocations (P1,P2) whose corresponding
rate pairs dominate a segment of the time division rate region, as illustrated by the shaded
region in Figure 5.3. Moreover, the rate regions achievable through time division can always
be exceeded by optimizing both the frequency and power division in (5.2). Finally, the
frequency division rate region boundary intersects the time division line at the point where
the power allocation P; is proportional to the bandwidth B;. This intersection point II has
a negative derivative with respect to a;, and so there must be another intersection point
for a smaller value of ay, as shown in Figure 5.3. However, these rate region properties

are valid only when n; # n;. When the noise powers are equal there is no performance
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difference among these spectrum-sharing techniques: time division and frequency division

have the same rate regions [68].

Time Division with Variable Power

Optimum Frequency and Power Division

Fixed Frequency Division (B,B)

Time Division

Figure 5.3: Rate Region with Frequency Division.

We can also view the broadcast channel with time division as a time-varying
channel with two channel states, where each state is an AWGN channel of power n;. If we
allow one user to use more average power than the other, then we can achieve the same
capacity with time division as with frequency division. To see this, let P; and P, denote the
power allocated to users 1 and 2 respectively, where the channel is occupied by user 1 for
a fraction 7y of the total transmission time, and by user 2 for the remaining time fraction
7o = 1 — ;. To satisfy the total power constraint we must have 71 P; + 7P, = P. The set

of variable-power time division rates is then given by

B P,
Ry = n—=log [1+ —L] s

2 ’ﬂ.}B
B P
= —1 14+ — 5.3
R, TzQOg[+ngB]’ o (83)

where B denotes the total channel bandwidth. Define B; = 7B, and m; = 7;P;, so the

power constraint becomes 77 + mp = P. Making these substitutions in (5.3) yields

B
R, = —llog[1+ a2 ],

2 TL]B]
_ Bg o ]
Ry, = 5 log [1 + maBa) (5.4)

Comparing this with (5.2), we see that with appropriate choice of P; and 7, any point in
the frequency division rate region can also be achieved through time division with variable

power.
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The degraded broadcast channel rate region, given by (4.79), was shown in [79)
to strictly dominate the regions achievable through either time or frequency division, when
ny < n2. This region is achieved through superposition codes, where the message to each
receiver is jointly encoded into a message that uses the full available bandwidth and power.
For decoding, the user with the worse channel (user 2) treats the message component
intended for user 1 as noise. In theory, user 1 can decode user 2’s message perfectly; it
then subtracts user 2’s message component from the total received message, leaving only
the component intended for user 1. The rate region of (4.79) for superposition coding with

two users reduces to -

_ B (23] PJ
_ B QzP ]
R, = 2 log [1 + m , (5.5)

where a; denotes the fraction of total power allocated to user i, s0 @; = 1 — ap. The
rate regions for all the spectrum-sharing methods, and the superiority of (5.5), is shown in
Figure 5.4. Moreover, Bergmans shows in [79] that (5.5) defines the capacity region, i.e.,
the maximum achievable set of rate paffs. However, superposition coding is superior only
when n; # np; otherwise, all the spectrum-sharing methods we have described have the
same rate region [68]. Therefore, if the constant power policy of §3.3.2 is used to equalize
the received SNR of all the users, then each of the spectrum-sharing techniques yields the

same performance.

Superposition Coding
Fixed Frequency Division (B,.Bz)
Optimum Frequency/Power Division

Sy sition without
Sug:zfvo Decoding

Time Division

Figure 5.4: Superposition Rate Region.

In practice, successive decoding of superposition codes adds complexity and delay
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in the decoding process, as well as the potential for feedback errors when user 2s message
is not decoded properly. Superposition coding is mostly done using spread spectrum tech-
niques [38], and successive decoding for this implementation is generally too complex to
build into a low-power portable device (76]. We will discuss practical implementations for
successive dé}:oding in more detail in §5.4.2. Most commercial spread spectrum receivers
don’t use successive decoding; they treat all messages intended for other users as noise,

resulting in the two-user rate region

_ B 01P
R, = 2]°g[1+—n13+02P , .
_ B ay P ] '
R, = 5 log [1 + mB+aPl’ (5.6)

where a; + az = 1. By taking second derivatives of R, and Ry with respect to a;, we see
that (R, R2) as a function of a; is convex, with end points C; and C3, as shown in Fig-
ure 5.4. Therefore, both time division and frequency division always dominate superposition
coding without successive decoding. The fixed frequency division scheme also dominates this
suboptimal technique over some range of rate regions, in particular the shaded region shown

in Figure 5.3.

5.1.2 Multiaccess Channels

The multiaccess channel consists of K transmitters sending information to one
receiver over a common channel of bandwidth B, as shown in Figure 5.5. The transmitters
must encode their individual signals such that they can be determined from the received
signal, which consists of the sum of signals from each transmitter. The rate region of the
multiaccess channel characterizes how much information can be received simultaneously
from all the transmitters.

The multiaccess model consists of several transmitters, each with power P;, sending
to a receiver which is corrupted by AWGN of power n. If we denote the ith transmitted
signal by X;, then the received signal is given by

K
Y=ZX.'+N, (5.7)

=1
where N is an AWGN sample of power n. The two-user capacity region of this channel was

determined by Cover to be the closed convex hull of all vectors (R, R;) satisfying [42]

R; < —log [1+—]
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Figure 5.5: Multiaccess Channel.

Rl + R2 < Elog [1 + P] +BP2] (58)
This region is shown in Figure 5.6, where C; and C? are given by
B F1 .
C,—Elog [1-}-5], 1=1,2, (5.9)
B P
Ci = Elog [1 + nB T Pz] (5.10)
and
B P,
Ci.= —Iog [1 + wB T Pl] (5.11)

The point (C1,0) is the achievable rate vector when transmitter 1 is sending at its
maximum rate and transmitter 2 is silent, and the opposite scenario achieves the rate vector
(0,C2). The corner points (Cy,C3) and (C},C2) are achieved using the successive decoding
technique described above for superposition codes. Specifically, let the first user operate
at the maximum data rate C,. Then its signal will appear as noise to user 2; thus, user 2
can send data at rate C3 which can be decoded at the receiver with arbitrarily small error
probability. If the receiver then subtracts out user 2’s message from its received signal, the
remaining message component is just users 1’ message corrupted by noise, so rate C; can
be achieved with arbitrarily small error probability. Hence, (C;,C3) is an achievable rate

vector. A similar argument with the user roles reversed yields the rate point (C1,C>).
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Figure 5.6: Multiaccess Channel Capacity Region.

Time division between the two transmitters operating at their maximum rates,
given by (5.9), yields any rate vector on the straight line connecting C; and C,. With
frequency division, the rates depend on the fraction of the total bandwidth that is allocated
to each transmitter. Letting B, and B, denote the bandwidth allocated to each of the two

users. we get the following rate region:

B P,
< = -
Ry < Zllog [1+nB] :
B, P,
< - S .
Ry < Stlog [1+ oA (5.12)

Clearly this region dominates time division, since setting B; = 7B and B, = (1 - 7)B
in (5.12) yields a higher rate region than (7C,,(1 — 7)C3). Varying the values of B; and
B; subject to the constraint By + B2 = B yields the frequency division curve shown in
Figure 5.6. It can be shown [42] that this curve touches the rate region boundary at one
point, and this point corresponds to the rate vector which maximizes the sum R; + R;. To
achieve this point, the bandwidths B, and B; must be proportional to their corresponding
powers Py and P;.

. As with the broadcast multiuser channel, we can achieve the same rate region with
time division as with frequency division by efficient use of the transmit power. If we take
the constraints P; and P, to be average power constraints, then since user ¢ only uses the
channel 7; percent of the time, its average power over that time fraction can be increased

to P;/7;. The rate region achievable through time division is then given by

B P ..
Ci= r,-;log [1 + m] ,1=1,2, (5.13)
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and substituting B; 2 7iB in (5.13) yields the same rate region as in (5.12).

Superposition codes without successive decoding can also be used. With this
approach, each transmitter’s message acts as noise to the others. Thus, the maximum
achievable rate in this case cannot exceed (C1,C3), which is clearly dominated by frequency
division for some bandwidth allocations; in particular the allocation that intersects the rate
region boundary. More work is needed to determine when, if ever, this suboptimal technique

achieves better rates than time or frequency division.

5.2 Rate Regions for Wideband Multiaccess Channels

We now describe the capacity rate region of the Gaussian wideband multiaccess
channel. This section is mainly a summary of a paper by Cheng and Verd [77]. Recall from
§3.2 that the capacity of a single-user time-invariant additive Gaussian noise channel was
achieved with spectrum S.(f) given parametrically by (3.20). We first consider the two-
user multiaccess channel where both channels have the same frequency response H,(f) =
Hy(f) = H(f) and power constraints Py and P, respectively. In this case, the Karhunen-
Loeve expansion can be used to decompose the channel into a set of independent parallel
AWGN channels with different noise levels, as in the proof of the capacity theorem for single-
user wideband channels [40). The capacity region of the wideband channel is then given
by the sum of capacity regions corresponding to the individual memoryless channels. The
memoryless multiaccess channel capacity region was given by (5.8); the two-user capacity

region for the wideband channel, which is a sum of these memoryless regions, is [77):

T . 2 ’
Ri < % /0 log [1 + S(—sz,'(ﬂfgf—)'] df, (5.14)
™ 2
Ry +R; < %/0 log [1 + %ﬂl] ) (5.15)

where S;(f),i = 1,2 is the transmit power spectrum of user i’s transmission with total
power less than or equal to P;, and Sy5(f) = 51(f) + S2(f) is the joint spectrum of the two
users. Note that the spectrum S§y3(f) maximizing the rate sum R, + R, is determined by
water-filling as if there was a single user on the channel with power P, + P,:

S12(f) = [Ar2 = N(f)/|H(F)*, (5.16)

where Aj3 is chosen such that the total power in S12(f) equals P, + P;.
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The capacity region of (5.15) forms a pentagon, as shown in Figure 5.7. The
point (Cy,0) is achieved when only user 1 occupies the channel, which reduces it to a
single-user channel; therefore, Cy equals the capacity of the single-user channel H(f) with
power P;. The transmit spectrum for user 1 which achieves this capacity is §1(f) = [A; -
N(f)/|H(f)|?]*, where A; is chosen such that the total power in S1(f) equals P;. The

same argument with the user roles reversed achieves the rate point (0,C3).
R 2 .
C,1

t > 31
c c,

Figure 5.7: Capacity Region for Hy(f) = Ha(f).

The value of C7 in Figure 5.7 is given by

C; = %/;log [1 + ———Sl'(fh)f'ggfw] df, (5.17)

where S7(f) = $12(f) — S2(f) for 512(f) given by (5.16) and S2(f) = [A2— N(f)/|H(f)I*]*
has total power P,. The geometric interpretation for S;(f) is shown in Figure 5.8. Intu-
itively, the point (C7,C3) is achieved when the sum of the spectra for users 1 and 2 equals
$12(f), and user 2’s spectrum is optimal for the single-user channel H(f) with power P,.
The value of C3 is obtained in a similar manner by reversing the roles of the two users. The
line connecting points (C},C3) and (Cy,C3) is achieved through time division.

In general, it is unlikely that different users will have the same channel impulse
response. When H; # H,, there is no common Karhunen-Loeve kernel that can decompose
both H, and H; into sets of independent channels. However, using circular channel methods
of (80, 81], an orthogonal decomposition of the channel can be found that is independent
of the channel impulse response [77). Using this decomposition and the capacity region

formula derived in [82], Cheng and Verdi obtained the following expression for the capacity
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Figure 5.8: Transmit Spectra for Achieving the Rate Point (C3,Ca).

region of a two-user Gaussian multiaccess channel with H, # Hj:

ot SNH(NP] . .
R1 < EL IOg [’1 + _jva)—] df, 1= 1,2, (518)
L SINOH(NI? | Sa(H)Ha(S))? "

where S;(f), the input spectrum of the ith user, is any nonnegative real-valued function
with total power less than or equal to P;.

For each 4, let C; denote the single-user capacity for channel H; with power P;,
so C; equals the right side of (5.18) with S;(f) obtained from the water-filling equation
(3.20). The rate point (Cy,0) is then achieved when only user 1 occupies the total channel
bandwidth with a transmit spectrum of power P, that is optimized to the single-user channel
Hy. A similar argument for user 2 achieves the rate point (0,C3), and time division yields
any point on the straight line connecting (C;,0) and (0,C2). Moreover, if the channels H,
and Hj do not overlap in bandwidth, then the rate region (Cy,C3) can be achieved since
the users are orthogonal, and can therefore optimize their transmit spectra independently.
If the channels H; and H, do overlap, then the overlapping portion of their spectra can be
divided between the two users using frequency division; the optimal transmit spectra for the
orthogonal frequency bands is then obtained independently via water-filling, as shown in

Figure 5.9. Alternatively, the overlapping portion of the channels H, and H; can be shared
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Figure 5.9: Frequency Division for H, # H,.

between the two users with a superposition coding scheme. It turns out that frequency
division maximizes the rate sum R; + Rj2. This fact was derived in [77] using equivalent
channel models, where the equivalent channel is a scaled version of H;,7 = 1,2, as shown
in Figure 5.10. If the input power is multiplied by the scale factor k;, then the capacity of
the equivalent channel is the same as the original channel capacity, and is achieved with

the input spectrum of the original channel multiplied by k;.

¥,

MK, f
Jx,
HA0V(K,

Figure 5.10: Equivalent Channel Model.

Appropriate choice of k; and k; allows the input spectral densities that maximize
the rate sum to be derived via water-filling. The scaling is required since in general, the
water-filling on each individual channel results in a different water level, therefore the op-

timal division of the channel bandwidth and power cannot be determined from a single

2Recall that this was also the case for multiaccess channels without ISI (§5.1.2).
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diagram. Suppose, however, that we fix the water level to be 1, and plot the two curves
EAN(f)/|Hi(f)|? and k2N(f)/|H2(f)|? on the same diagram. The optimal spectrum for
each user is then determined by adjusting the parameters k; and k; such that the total
amount of water in the joint water-filling diagram, k1 P; + k2 P2, equals one, and the amount
of water in the region where k; /|H1(f)|? < k2/|Ha2(f)|? equals ky Py, as in Figure 5.11.

Kk N()
IH, ()12

Figure 5.11: Spectral Densities for Equivalent Channel Mode].

This combined water-filling maximizes the rate sum for the following reason. We
want to maximize the combined rate of the two users. By scaling the two channels, we
effectively reduce the equivalent two-user channel to a single-user channel with spectrum
He,(f) = max(H1(f)/k1, H2(f)/k2). The spectral density which maximizes the rate on this
single-user channel, S, is determined by water-filling. But this optimal spectrum must
equal the sum of the tw;) users’ equivalent channel spectra: Seq(f) = k151(f) + k252(f).
Since for a particular frequency fo, one of the two equivalent channels has a less noisy
impulse response, all of the powex-' in Seq(fo) is assigned to that more favorable channel.

Specifically, the optimizing spectrum for each user is given by
kiSi(f) = Seq(f)1 [max[H1(f)/kr, Ha(f)/k2) = Hi/ki]. (5.20)

Suppose we are interested in the wideband capacity region at points other than the
maximum rate sum. Then starting from the maximum rate sum point (R}, R3), user ¢ can
increase its rate above R}, and then user j # ¢ must lower its rate below Rj;. We say that
the user which increases its rate has user priority. To achieve points on the rate region other
than the maximum rate sum, the superposition coding and subsequent decoding methods
of the previous section are used. The message of the low-priority user is decoded perfectly

and subtracted out of the total message, so that the spectrum of the low-priority user does
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not affect the high-priority message. However, the spectrum of the high-priority message
is treated as noise to-the low-priority user; therefore, the spectrum of both users must be
designed jointly. The joint design of the spectra uses a similar technique as the equivalent -
channel scaling, with an offset in the water-filling formulas that is proportional to the user

priority. Details of this technique can be found in [77].

5.3 Time-Varying Rate Regions

In the previous two sections, we analyzed the rate regions for multiuser time-
invariant channels. We now consider the maximum achievable rates for time-varying mul-
tiuser channels with channel estimation and transmitter feedback. The rate regions for
such channels combine the superposition coding ideas of the previous two sections with the

single-user power control techniques outlined in §§3.1 — 3.3.

5.3.1 Narrowband Broadcast AWGN Channels

The two-user time-varying narrowband broadcast channel has one sender of av-
erage power P and bandwidth B, and two receivers with AWGN of time-varying power
ni(f),i = 1,2. We assume that the set of values over which n;(t) varies is finite, and that
the noise variation follows the discrete-time model of §2.4.1. The receivers have perfect
channel estimation and error-free delayless transmitter feedback, so at time ¢ the transmit-
ter has perfect estimates of ny(t) and n(t). The transmitter can vary its instantaneous
power P(t) relative to the noise samples, subject only to the averagé power constraint
P(t)= P.

We first consider the time division method of sharing the common channel band-
width. In this case, we allocate average transmit power P and bandwidth B to the first
user over the time interval [0,7T] and to the second user over the time interval [vT,T].
This method reduces the two-user channel to a single-user channel corresponding to user
1’s channel over the first time interval, and user 2’s channel over the second interval. There-
fore, we can maximize each user’s rate over their respective time intervals independently,
and the total rate region is just the sum of these maximum rates weighted by the frac-
tion of time each user occupies the channel. Since the channel variation is stationary, the
maximum rate of the second user can be calculated for transmission over the time interval

[0.(1-7)T). In the limit as T — oo, the maximum rate of each user becomes the single-user
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time-varying capacity derived in §3.1. Thus, we can achieve any rate point
(R1, Ry) = (rC1(P),(1 - 7)C2(P)), 0<7<1, (5.21)

where C;(P),7 = 1,2, is the capacity of the time-varying channel with average power P,
bandwidth B, and time-varying noise n;(t). Applying the time-varying capacity formula
(3.7), we get

Ci(Py=max 3 mCi(®;) (5.22)

(e n,, :p(ni(t)=n;, >0)

Nt

where 7;, = p(ni(t) = n;,), C;,(®;,) equals the capacity of a time-invariant AWGN channel
with noise power nj;, bandwidth B, and average signal power $;;, and the ®;;s are subject

to the single-user power constraint
> 7,8 <P (5.23)
Combining (5.21) with (5.22) yields the following expression for the time division rate region:

R < rgaxZﬂ’j,TCj,(‘I)jl),

n ny,
Ry < max} m;,(1-7)C;(25), (5.29)
72 n,,
where the maximum is subject to the power constraint (5.23). The time-varying power
of each user can be optimized independently, since time division renders the two users
orthogonal.

We can also consider (5.24) as a weighted sum of time-invariant capacity rate
regions by letting the noise variances nj, and n;, represent a set of channel states. Since
there is only a finite number of values for n;, and nj,, there is also a finite number of
values for the variance pairs (n;,,n;,), and these variance pairs characterize the two-user
channel at any point in time. Let X' denote the number of distinct variance pairs (n P TR R
N = (nk,,ni,) denote the kth of these distinct pairs, and 74 denote the probability of the
pair Ni. Suppose we allocate power ®;; to user i when the channel is in state N;. Since

the average power of each user equals P, the ®,s are subject to the power constraint

K
Y md, <P, i=1,2 (5.25)
k=1
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Let C,(®k,) denote the capacity of a time-invariant AWGN channel with noise
power ny,, bandwidth B, and signal power Oy,

B ®,.
Chi(®x,) = 5 log [1 + M—"B] . (5.26)

With this notation, we can express (5.24) as a weighted sum of these time-invariant rate

regions with spectrum-sharing through time division. The set of achievable rates is thus

- K
(R1,R2) = ) mi(7Chy(®hy), (1= 7)Chy (Bk,))
k=1

K K
(T Z 7kChy (24, ), (1 - 7) Z: Tk Cry (P, )) , (5.27)
k=1

k=1

where the ®y,s are subject to the constraint (5.25). Optimizing (5.27) subject to (5.25)
defines a straight line connecting the points Cy(P) and C,(P), where
Ci(P) = o :Z:va%a. . Zk: 7kChr, (D, )- (5.28)
Fixed frequency division, which divides the total channel bandwidth B into nonover-
lapping segments B; and B,, also reduces the two-user channel to independent single-user
channels. The total average power P can be divided between the two users in any way such

that their power sum P, + P, = P. For P, and P; fixed, the rate region is given by
Ry £ maxz TkChy (Y&, , B1),
Vi, 4

Ry < rggXZkaz(‘I’kz,Bz), (5.29)
2 %

where Cy, (¥, , B;) denotes the capacity of a time-invariant AWGN channel with noise power
ny,, average signal power ¥4, and bandwidth B;, and the maximization is subject to the

power constraint i
Y m¥y, = P (5.30)
k

As in the time-invariant case, the time division rate region will dominate the fixed
frequency division rate region over some range of power allocations P; and P,, in particular
when all of the power is allocated to one of the frequency bands (e.g. P, = P,P, = 0).
We now show that the fixed frequency division rate region intersects the time division line
at the point where the power allocation between the two channels is proportional to the

bandwidth. This was also true in the time-invariant case.
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Let (®y,, Pk, ), denote the maximizing power set in (5.25) for time division, and
let (B;, B3) denote a bandwidth partition for frequency division. The distance from a given

frequency division rate point (R, R;) to the time division line (7C,,(1 — 7)C3) is given by
L L N (5.31)

This distance is positive for points above the time division line, and negative for points
below the time division line, as illustrated in Figure 5.12. Substituting (5.29) and (5.24)
into (5.31) yields
d= szCk,(‘I’k,,Bﬂ Z’chkz(‘l’kz,B2) _
2 7kCh, (24,) L mikChy (P1,)

where V), is the power allocated to frequency band B; when the channel is in state Ng.

1, (5.32)

Time Division

/ (tC,, (1) C,)

_(R,R,)

/ Fixed Frequency Division

Figure 5.12: Distance Between (R1, R;) and the Time Division Line.

Let o; 2 B;/B,i = 1,2 define the fraction of bandwidth allocated to user i.
Suppose also that when the channel is in state Nj we let VUi, = a;®;,. This power allocation

satisfies the average power constraint, since
Piotar = 2 T (Ur, + ¥y,) = ZM (a1®, + a2®,) = P. (5.33)
k k

The frequency division and time division rates for the ith user are given by

Y= a *i®] _ B, ]
Ck.‘(q’knBt) - Q:Blog [1 + nk.-B{ = a,BlOg [1 + nk'.B N (5.34)
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and

D,
Cul®r) = Blog 1+ 25.], (5.35)

"

respectively. Substituting (5.34) and (5.35) into (5.32) yields

¢ [
i a1 Y mBlog [1+;‘k—:‘1§] a; Y 7 Blog [1+n—';?§]
3 T, |
> 7 Blog [1 + ﬁlg > mrBlog [1 + n_;‘:LB-]

-l=a14+a;-1=0. (5.36)

Thus, the frequency division and time division regions intersect at this point. We’ve seen
in the time-invariant case that frequency division dominates a portion of the time division
line over some range of power allocations. Since the values of 7 for which frequency division
dominates will be different for the different N channels, it is not obvious that this will be
true in the time-varying case, although we conjecture that it is.

However, if we allow both the power and the bandwidth partition to vary for each
channel Ny, then the resulting rate region dominates both fixed frequency division and time

division. The achievable rates in this case are given by

(Rh R?) = Z”k(ckl(q’kka; ): Ckz(q’kz,Bkz))) (537)

max
(q’kl v‘pk2 ka, kaQ) k

where the ¥y, s satisfy the power constraint
S k(U + Uiy) = P, (5.38)

and By, + By, = B forall k. Both the power and bandwidth allocations are optimized jointly
to achieve the maximum in (5.37), so the two users are no longer independent. Clearly, any
rate point achievable with fixed frequency division can also be achieved with this scheme.
To show that (5.37) also dominates time division, let (® x,,®,)f, denote an arbitrary set
of power allocations for the time division rate region. Choose an arbitrary time division
parameter 7. From §5.1.1, for a given channel N; we can find a bandwidth partition
{(Bi,+Bx,); Bk, + B, = B} and power partition {(¥x,,¥s,); ¥x, + ¥x, = @, Bx,/B +
@, By, / B} such that the frequency division rates achieved with these parameters dominate
the time division rates. Therefore, the weighted average of the frequency division rates will
dominate the weighted average of the time division rates.

The idea of reallocating bandwidth as the channel varies is closely related to dy-
namic channel allocation, where each user measures the noise (and interference) in a par-

ticular frequency band, and only occupies the frequency band if the noise is below some
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threshold [83). Suppose two users want to access the same frequency band, and the noise
level is below threshold for both, but lower for one of the users. The frequency allocation
of (5.37) suggests that instead of using a threshold level to determine which user should
occupy the channel (which for this example would not differentiate between the two users),
the channel is allocated to the user which gets the most capacity from it.

We now consider superposition coding, where both users occupy the full channel
bandwidth over all time. The achievable rates are again weighted averages of the achievable

rates on each channe]l Ny:

% (os] s %] gl
Ry, Ry) = — |log |1 ,log |1 )
(R, Ro) Z 2 g |1+ 11 B + T, 1[ng, 2 ng,) og|l+ naB + T, 1[nk, > ng,]
(5.39)
where 1[-] is the indicator function and the T'x;s must satisfy the power constraint
Z”’(r"l +Ty,)=P. " (5.40)

Since superposition codes dominate time and frequency division in the time-invariant case,
we expect this to be true for time-varying channels as well. Indeed, consider any achievable
rate point in the frequency division rate region (5.37). Associated with that point will be a
set of frequency divisions (By, , Bk, ), and a set of transmit power values (¥, , ¥, )K_; for
each of the /" channel states. Let ¥y = U}, + ¥,,. From §5.3.1 there exists a superposition
code with total power ¥, that dominates the frequency division code on channel Nj. Since
we can find such a dominating code for all k, the weighted sum of the superposition rates

dominates the frequency division sum.

5.3.2 Narrowband Multiaccess AWGN Channels

The two-user time-varying narrowband multiaccess channel has two transmitters
with average power P; and P,, respectively, and one receiver with bandwidth B and AWGN
of time-varying power n(t). We assume that n(t) varies over a finite set of values ny, ..., ng,
so nj characterizes the channel state with probability =, = p(n(t) = ni). We also assume
that at time ¢ both transmitters have perfect estimates of n(t). The transmitters may vary
their instantaneous transmit power P;(2) relative to n(t), subject only to the average power
constraint P;(1) = P; for i = 1,2.
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We first consider spectrum sharing through time division. With this technique we

can achieve any point

« S
(R1,R2) = ) mi (rCk(®1, ), (1 - T)Ci(®,)) (5.41)
k=1
where
2B 2
Ce(@or) & Flogt+ k], (5.42)

and Py, , the power allocated to the ith user for channel state n, is subject to the average

power constraint

Zﬁ‘k@k‘ = P, (5.43)
k

The ®4,s in (5.41) can be optimized independent of each other, since under time division the
two users are orthogonal. Optimizing (5.41) subject to (5.43) therefore defines a straight
line connecting the points Cy(P;) and Cy(P;), where

Ci(P;) = max 1.Ci (P, ). 5.44
P)= g 5785, oy SO0 »

Fixed frequency division partitions the total bandwidth B into nonoverlapping
segments B; and B;, which are then allocated to the respective transmitters. Since the
bandwidths are separate, the users are independent, and they can allocate their time-varying
power independently, subject only to the total power constraint P;. The fixed frequency

division rate region is thus given by

R, < maxZ‘n‘ka(\Pk,,Bl),
7%

Ry < max ) mCi(¥i,, B2), (5.45)
Vi, T
where v
o Bi ky ]
Ci(Wh,, Bi) = 2 log [”nkB.- , (5.46)

and the ¥y s satisfy the power constraint
D m¥y, = P (5.47)

We now show that fixed frequency division dominates time division. Suppose we
use the power allocations @, which achieve the maximum time division rate in (5.44) for

a fixed frequency division scheme. This power allocation is included in the set over which
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(5.44) is maximized, so we need only show that frequency division dominates time division

in this case. Using these ®y;s, we achieve the frequency division rates
(R1,R2) = Y_ mi(Cik(®4,, B1), Ci( B+, B2)). (5.48)
k .

The rate vector (5.48) is a linear combination of fixed frequency division rate vectors for the
nj channels. From §5.1.2, varying the bandwidth partition (B, Bs) yields a convex capacity
region for each channel ny. Therefore, varying B, and B; in (5.48) overa range of values for
which B, + B; = B yields a linear combination of convex regions, so the resulting capacity
region is convex. Moreover, since the power allocations are the same, the endpoints of the
regions defined by (5.48) and (5.44) are also the same (i.e., allocating all the transmission
time to user ¢ with time division is the same as allocating all the bandwidth to user ¢
with frequency division). Since the time division boundary is linear, the frequency division
boundary is concave, and the two boundaries have the same endpoints, fixed frequency
division strictly dominates time division with this power allocation.

We conclude by showing the dominance of superposition codes over frequency
division. Consider any point on the boundary of the frequency division rate region, as given
by (5.48). Corresponding to that point will be a bandwidth partition (B, B;) and a set of
transmit power values (®y,, 84, )., for each of the K channel states. Then from §5.1.2, a

superposition code can achieve any rate point

nB
O, + ‘sz]
niB !

Rg=glog[l+%],

Ri+R; = glog [l + (5.49)

and within this region there is a rate point which dominates frequency division on channel

ni. Thus, a linear combination of (5.49) dominates (5.48).

5.4 Interference in Cellular Systems

The capacity results above assume multiple users sharing the same frequency band
through either an orthogonal (FDMA/TDMA) or semi-orthogonal (CDMA ) partition of the
spectrum. As was discussed in §2.3, the spectral efficiency over a large geographical area for
any of these partition techniques can generally be increased by reusing the same frequency,

time slot, or code at spatially separated cells, where the power falloff with distance reduces
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the effect of the intercell interference. The magnitude of the intercell interference depends
on both the distance between the interfering transmitters and the intended receiver as well
as the propagation laws governing the interferers’ transmissions.

The interference distribution is generally assumed to be Gaussian. This is a reason-
able assumption for CDMA systems, where there are many intracell and intercell interferers,
so the Gaussian distribution follows from the law of large numbers. With FDMA or TDMA,
however, there is usually only a few dominant interferers3, so the white noise assumption
is generally not valid. For capacity calculations, Gaussian interference is a worst-case noise
assumption [84], and under this assumption the capacity-achieving transmit spectrum for
all users (i.e. signal and interference) is Gaussian. Most cellular systems are interference
limited, meaning that the receiver noise power is generally much less than the interference
power, and can hence be neglected.

In the following sections, we first define the area spectral efficiency, which quan-
tifies the effect of in-cell and out-of-cell interference on cellular system capacity. We then
outline some methods of interference mitigation including antenna sectorization, voice activ-
ity monitoring, and interference cancellation. We also discuss the effects of power control on
intracell and intercell interference, and conclude with a proposal for a hybrid power control
algorithm which adapts to the system traffic load, channel characteristics, and performance

specifications of each user.

5.4.1 Reuse Distance and Area Efficiency

Let the radius of a cell be normalized to one, and define the reuse distance Rp to
be the minimum distance between any two base stations that use the same code, frequency,
or time slot. .The reuse distance is illustrated in Figure 5.13 for frequency division. Let
the area spectral efficiency of a cell be defined as the total bit rate/Hz/unit area that is
supported by a cell’s base station. Since a code, time slot, or frequency slot is reused at
a distance Rp, the area covered by one of these partitions is roughly #(.5Rp)?. The area

spectral efficiency is therefore approximated by

3The interference comes from the closest ring of cells (Figure 2.7). On the forward link, one or two
mobiles which are close to the cell boundaries will generally dominate the interference. On the reverse link,
there are at most six interfering base stations for hexagonal cells.
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Figure 5.13: Reuse Distance.

-

A = E_?L_-I Rj/B
" n(5Rp)?’

where N is the total number of users per cell, R; is the data rate of the jth user, and B is

(5.50)

the bandwidth occupied by each user.

If we can shrink the reuse distance without changing the Rjs, then the area effi-
ciency can be increased. However, decreasing the reuse distance increases intercell inter-
ference (since the interference travels a shorter distance), thereby reducing the S/I of each
user. Since R; is an increasing function of S/I, the numerator and denominator of (5.50)
are both increasing functions of Rp. Therefore, in order to maximize the area efficiency
relative to Rp, we must first determine R; for all j as a function of Rp, then maximize
(5.50) relative to Rp.

As a simple example, consider an FDMA multiple access channel where the signal-
to-interference power of each user is exponentially distributed (as in Rayleigh fading). With
FDMA there is only one user per cell, so N = 1 in (5.50), and we only need to find the
rate R of this one user as a function of Rp. Assume that we have hexagonal cells of
diameter one. If the signal is transmitted from a midpoint between the base station and the

cell boundary, then the signal travels a distance of .25. If we assume a power falloff with
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distance of d=2, the average received signal power is S = P,(.25)2, where P, is the average
transmit power for both the signal and the interferers. We assume a pessimistic interference
model, with six interferers at the boundaries of the closest adjacent cells using the same
frequency bapd. The distance that each interferer travels is therefore Rp — .5, the frequency
reuse distance minus the cell radius. Since intercell interference generally travels a much
farther distance than the signal, we assume an interference power falloff with distance of
d~4, so the average interference power is T = 6P;(Rp — .5)~4. We use this model to obtain
the average signal-to-interference ¥ = §/T as a function of reuse distance, then calculate
R from the single-user time-varying capacity formula (3.25). This calculation yields: the

following table of efficiency values as a function of Rp.

Rp |7(dB) | R | A
-7.78 [ 34| 43
11.30 [3.34 [ 1.06
20.18 [5.95 | .84
26.02 [ 7.80 | .62

Blw|tN| -

The table suggests that for this simple model, Rp = 2 maximizes area efficiency.

The calculation of R; from (3.25) will depend on the distribution of the jth user’s
signal-to-interference ratio ;. In the previous example we assumed a Rayleigh distribution,
independent of the power control policy; in general this distribution will depend on the power
control policy of both the signal and the interferers. Therefore, the power control policy that
maximizes a single user’s data rate may not maximize the area efficiency, since increasing the
signal power of one user increases that user’s interference to everyone else. Determining the
power control policy that maximizes area efficiency is a complex optimization problem which
will depend on the spectrum partitioning technique, propagation characteristics, system
layout, and the number of users. This optimization may be too complex for analysis,
and therefore suboptimal techniques must be considered. We propose such a scheme, which
combines some of the benefits of both the constant power and the water-filling power control
policies, in §5.4.4.

If we fix the power control policy, and assume a particular set of system parameters,
then the distribution of v; can be determined either analytically or via simulation. The
distribution of v; for CDMA systems (i.e., with both intracell and intercell interference),
assuming Gaussian interference and the constant power control policy, has been determined
analytically in [38, 85, 86], and via simulation in [87, 88]. The distribution of 4 ; for CDMA
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under other power control policies, and for FDMA and TDMA under any form of power
control, has not yet been determined. With these distributions, a comprehensive comparison
of area efficiency under different power control policies and spectrum partitioning methods
could be done using the methods described above. However, even if such a study finds that
water-filling achieves the highest area efficiency, it still might not be the best power control
policy to use, since the user data rates change with the channel variation, and therefore
cannot be guaranteed over any given time interval. In §5.4.4 we will discuss some of the
' performance tradeoffs other than area efficiency which must be considered in the design of

power control policies.

5.4.2 Interference Mitigation

The area efficiency for any of the three spectrum-sharing techniques will be in-
creased if interference can be reduced while maintaining the same number of users per
cell and the same reuse distance. Several techniques have been proposed to accomplish
this, including speech gating, sectorization of the base station antennas, and interference
cancellation. We now describe each of these techniques in somewhat more detail.

Speéch gating takes advantage of the fact that in duplex voice transmission, each
speaker is only active approximately 40% of the time [89]. If voice activity is monitored,
and transmission suppressed when no voice is present, then overall interference caused by
the voice transmission is reduced. If we denote the average percentage of time that voice
is active by p, then through speech gating the average power of both intracell and intercell
interference is reduced by p.

Antenna sectorization refers to the use of directional transmit and receive antennas
at the base station. For example, if the 360° omni base station antenna is divided into three
sectors to be covered by three directional antennas of 120° beamwidths, then the interferers
seen by each directional antenna is one third the number that would be seen by the omni.
If Ns denotes the number of directional antennas used to cover the 360° beamwidth then,
on average, antenna sectorization reduces the total interference power by a factor of Ns.

Another method of mitigating interference in CDMA systems is multiuser detec-
tion. The received CDMA signal is a superposition of each user’s signal, where user i
modulates its data sequence with a unique spreading code. The multiuser detector for such

a received signal jointly detects the data sequences of all users: if the data sequences of
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the interference is known, then it can be subtracted out from the desired signal, as in the
superposition coding techniques described above. The optimal receiver for CDMA Jjoint
detection was derived by Verdi in [90]; it uses a bank of matched filters and the Viterbi
algorithm to determine either the maximum-likelihood set of received signal sequences or
the set of signal sequences with minimum error probability. However, the complexity of
this optimal receiver structure is exponential in the number of interfering users, making
the receiver impractical for systems with many interferers. The detection algorithm also
requires knowledge of the signal energies, which is not always available.

Several suboptimal multidetection schemes which are more practical to implement
have also been developed. A multiuser decorrelator for joint detection which does not re-
quire knowledge of the user energies and with complexity that is only linear in the number
of users was proposed in [91] and [92] for synchronous and asynchronous users, respec-
tively. Multistage detectors [93, 94] decode the users’ signals sequentially in decreasing
order of their received power. Specifically, the highest-power signal is detected using a
conventional CDMA receiver (i.e., all interference signals are treated as noise). This signal
is then subtracted from the total received signal, and then the highest-power remaining
signal is detected. This successive interference cancellation is done until all signals have
been estimated. The decision-feedback detector, proposed in [95], uses both forward and
feedback filters to remove multiuser interference. As with decision-feedback equalization,
this approach suffers from error propagation. The multistage detectors generally yield bet-
ter performance than the decorrelator and decision-feedback detectors at a cost of increased
complexity (although still linear in the number of users). These detectors were designed
for AWGN channels, while more recent studies have looked at multiuser detection in fading
channels [96, 97).

A common interference problem for CDMA systems with conventional detectors is
the “near-far” effect on the forward link, which refers to a signal having a poor transmission
path to the base station and the interferers having strong paths. In this case, the interference
power is still quite large even after despreading. Power control can reduce the near-far effect,
as we will discuss in the following section. However, multiuser detection schemes inherently
compensate for the near-far effect, since they are designed to detect all signals jointly. Since
strong interferers are easily detected and subtracted out, the multiuser detection schemes
generally work best when the received signals are at different power levels. Thus, the

water-filling power control policy might be well-suited for a CDMA system with multiuser
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detection, since the data rates of some users can be increased without causing degradation

to the weaker users.

5.4.3 Power Control Impact on Interference
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. Figure 5.14: Interference Effects.

In this section we describe the impact of power control on intracell and intercell
interference, including the near-far effect discussed above. Consider first the case of intra-
cell interference on the forward link (mobile to base station), where two users A; and A;
are transmitting to the same base station, as shown in Figure 5.14. Recall that intracell
interference only occurs in CDMA systems, since with FDMA or TDMA only one user is
assigned to each frequency or time slot in the cell. If both A; and A, transmit at the
same power level, then the signal received by the base station from A; will generally be
stronger than the signal received by A;. Therefore, the interference caused by A; to A, will
be strong even after despreading. This difference in received signal strength is called the
near-far effect. To compensate for this effect, the constant power policy of §3.3.2 is used to
equalize the receive power of all users within a cell. With this policy, the received power of
users A; and A; at the base station is the same, regardless of their individual path losses,
so the signal-to-interference power after receiver processing equals the spreading gain. The
water-filling policy of §3.3.1 has the opposite effect: since A; has a good signal path it will
increase its transmit power, while A, has a bad signal path, so it will decrease its signal
power. Moreover, this policy has a recursive effect: A, increasing its power causes A, to
have an even worse channel, so A, will lower its power. This decreases the interference to
A, so A; increases its power further, and so on. Roughly speaking, the constant power
policy equalizes the performance of all users in the cell, while water-filling tends to remove
all users from the cell except the one with the most favorable channel. Therefore, if we

consider only intracell interference effects, the water-filling policy is unacceptable when all
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the users within a cell require a guaranteed rate at all times. However, it may have a higher

throughput in a system where the users within a cell can tolerate long periods of no trans-

mission with an occasional burst of very high-rate data, as in packet radio systems. - This -
assumes that all the users within a cell will eventually have the best signal path to the base

station.

The effect of these two power control policies on intercell interference is quite
different. Again refering to Figure 5.14, suppose we have intercell interferers B; and B,
from cell B coupling into cell A. Without power control, the interference power from B;
will be strong, since it is close to the boundary of cell A, while the interference from B, has
much farther to travel to the base station of cell A, and will therefore be weaker. With the
constant power policy, B; will transmit at a high power since it is far from its base station,
and this will cause a higher level of interference in cell A. Since B; reduces power with
this policy, and it is far from cell A’s base station, the constant power policy has the effect
of magnifying the power of interferers near cell B’s boundary while reducing the power of
interferers close to cell B’s base station. Conversely, the water-filling power control will
cause B; to lower its power and B, to increase its power, so that the intercell interferers
in cell B have approximately the same amount of power coupling into cell A’s base station,
regardless of their location in cell B. Since the dominant intercell interferers are generally
near the cell boundaries, water-filling will significantly reduce intercell interference on the
forward link.

For the reverse link, the intracell interference and signal are both transmitted
from the base station, so their path loss at any point within cell A is tﬁe same. Therefore,
no power control is required to equalize the received signal strength of the signal and
interference (equivalently, the constant power policy for the reverse link is achieved with no
power control). Water-filling power control has the same recursive effect as in the forward
link: since A; has a good path, the base station transmits to A; at a high power, which
will cause interference to Aj, so transmit power to A, is reduced, and so on. Hence, the
effect of these two power controls policies on intracell interference is roughly the same for
both the forward link and the reverse link.

For intercell interferers, if the base station is sending to B; and B, at the same
power level, then the location of B; and B; will not affect the amount of power coupling
in to cell A. With water-filling, the base station will send at a higher power to B, and a

lower power to B;, but these interference signals have the same path loss to the mobiles in
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cell A. Therefore, it is difficult to say which power control policy will cause worse intercell

interference on the reverse link.

5.4.4 Hybrid Power Control

We now propose a hybrid power control scheme that incorporates the benefits of
both constant power control (guaranteed performance for all users) and water-filling (in-
creased efficiency when the channel is favorable). This scheme has the capability to accom-
modate different performance specifications for each user in the system, and to determine
when additional users can access the system.

The “best” power control policy, as part of the overall system design, will depend
on the performance criterion of each user, as well as on the overall system requirements.
These criteria may include average efficiency, minimufn guaranteed data rate, outage prob-
ability, delay constraint, total system throughput, maximum/minimum number of users,
and the overall system complexity. Many of these criteria require tradeoffs; for example,
we’ve seen in the single user case that the constant power control policy is fair to all users
in the system but has a lower average efficiency than water-filling.

It is also desirable that the system accommodate heterogeneous traffic with dif-
ferent performance criteria, for example a high-rate user with delay-tolerant data and a
user with low rate delay-constrained voice traffic. Moreover, if the overall traffic on the
system is low, then additional users should be able to access the system. We now propose
a power control and adaptive data rate scheme which combines both water-filling and con-
stant power control to achieve these two goals. The basic idea is to provide a higher level
of performance to users with favorable channels while maintaining a minimum performance
threshold for all users.

The algorithm requires global system knowledge in the base stations. Specifically,
we assume that each base station knows the transmit and receive power level of mobiles
within its cell, and in the adjacent interfering cells. Equivalently, the base stations know
the transmit power level and path loss of all intracell and intercell mobiles. Typically,
a base station only knows the transmit power level of mobiles within its own cell, and
the total interference level. The additional information we require can be obtained by an
information exchange between the base stations of their mobiles’ transmit power levels,

and through transmission of base station pilot tones to determine the path loss values for



163

intercell mobiles [98].

There are basically three steps to the algorithm, which we summarize below and

then describe in more detail.

1. Determine the power control vector for all users to maintain the threshold received

SNR required for minimum performance. This defines the feasibility region.

2. Increase the power of the users with the best channels by some increment. Confirm
that the new vector is feasible. Continue the process until a user drops below its

minimum required SNR.

3. As conditions change and /or new users request access to the system, the power control

vector is updated.

We initially assume that all users are transmitting at a power level such that their
received §/1 is sufficient to maintain the minimum performance specification (data rate and
BER) specified by each user. The S/I of user i in cell j is given by
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Sij = (5.51)

where G;, is the path loss from the ith user in the jth cell to its base station, P; is
the transmit power of the ith user in the jth cell, M is the total number of cells, A',, is
the number of users in the kth cell, G{m is the path loss of the kth user in the mth cell
to the base station in the jth cell, and B is the spreading gain if the system is CDMA
(otherwise B = 1). Since all these parameters are known, it is easy to see if the minimum
S/1 specifications for each user are met for a particular set of transmit power levels, or
power vector. A power vector which satisfies this specification lies in the feastbility region
of all possible power vectors. We assume that new users are only allowed on to the system
if a set of transmit powers can be found which lies in this feasibility region. Necessary and
sufficient conditions for the existence of feasible power vectors for a TDMA system have
been derived in [98].

Suppose we have a vector in the feasibility region, so that all users are operating
at their minimum S/I specification. If there is excess capacity available in the system, then
how should it be divided among all the users? One method would be to increment the power

of all users equally by an amount such that the power vector still lies in the feasibility region.



164

Such an increase would allow all the users to either increase their data rates or reduce their
BERs. However, some of the users might not be able to increase their data rate or gain
much from a decreased BER; for example, users with only voice traffic. Moreover, a slight
increase in power of one mobile might cause a large increase in interference to other mobiles,
so that this power increase is not being used efficiently. Based on the watef-ﬁ]]jng policy, we
therefore propose that the excess capacity be allocated to the users with the best channels
(high S/I), since they can gain the most capacity increase by a small power increase. This
" is the philosophy behind the second step in the power control a.lgorith.m: the users with
the best channels are allowed to increase their power b); some increment until the S/I of all
users lies on the boundary of the feasibility region. This also allows a single user to have
heterogeneous traffic, so that its minimum S/I can be specified for constant rate (voice and
data) traffic, and when a good channel is available, packetized high-rate data can be sent.
The intercell interference caused by this power increase is small, since generally the mobiles
with good channels will be close to their base stations (and therefore far away from other
base stations). However, intracell interference would be increased.

Since the system is dynamic, the path loss factors will be constantly changing,
which will require adjustments to the transmit power values such that they remain in the
feasibility region. Suppose now that we have completed the second step of the algorithm,
and the transmit power vector is on the feasibility region boundary. If a new user requests
access to the system at a particular minimum S/I, then clearly some of the power levels must
be lowered to accommodate it. Since some of the users are operating above their minimum
S/1 ratios, these users can return to these minimum levels, and then the feasibility of the
system with the new user can be confirmed. If there is no such feasible power vector, then
the new user is either denied access, or granted access at a lower S/I which can achieve a
feasible vector.

The advantages of this algorithm are its adaptability to changing conditions, its
efficient allocation of excess system capacity, its ability to accommodate heterogeneous users
with different data requirements, and its built-in capability to process new access requests.

Obviously much work remains to specify the exact details of the algorithm and determine

its performance.
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5.5 Summary

In this chapter we first reviewed the achievable rate regions for multiuser time-
invariant AWGN channels under TDMA, FDMA, and CDMA spectrum-sharing techniques.
We consider both broadcast and multiaccess channels, which model the reverse and forward
links, respectively, of a cellular system. We show that for both these channels, TDMA and
FDMA are equivalent if the TDMA power can be varied, and both these techniques are
inferior to CDMA with interference cancellation. We also show that without interference
cancellation, CDMA is inferior to the other techniques. We then combine the txme-varymg
single-user analysis of §3.3 with these rate region results to obtain the multiuser time-
varying rate region for narrowband broadcast and multiaccess channels. In general, the
relative performance of TDMA, FDMA, and CDMA is the same in this case as in the
time-invariant case.

These rate region results cannot be applied directly to cellular systems, since
frequency reuse is not taken into account. We therefore define the area efficiency as the
data rate/Hz/unit area, with interference effects included in the data rate calculation. We
compute the area efficiency for a simple interference model, and show area efficiency can be
used to determine the optimal frequency reuse distance. We also discuss some methods of
interference mitigation such as antenna sectorization, voice gating, and multiuser detection.

Power control is commonly used in CDMA systems to equalize interference within
a cell, however this aggravates the intercell interference. We analyze the impact of the
water-filling and constant power control policies on both intracell and intercell interference.
We then use the general conclusions of this analysis to propose a hybrid power control
policy which exploits the advantages of both policies. This hybrid scheme is also adaptive

to changes in channel conditions, user requirements, and overall system loading.
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Chapter 6

Wireless Networks

The wireless networking vision for the next decade, as shown in Figure 6.1, is to
provide high-speed, high-quality mobile voice and data communication anywhere and any
time. The previous chapters addressed techniques for the single-user and multiuser wireless
communication links that support these applications. We now consider internetworking of
various wireless subnetworks. The network infrastructure must be able to support different
applications with very different data types, coverage requirements, and system specifica-
tions. In addition, this infrastructure must provide seamless communication between the
different wireless applications, as well as interconnection to the backbone wireline network
supporting the Public Switched Telecommunications Network (PSTN) and Integrated Ser-
vices Data Network (ISDN ), as well as the Internet.

We begin this chapter by outlining the various wireless applications currently in
demand. We then examine the infrastructure necessary to interconnect these different ap-
plications. In Figure 6.1 internetworking is accomplished via a wireless gateway which
connects the wireless subnets to each other and to a high-speed fiber backbone. However,
this infrastructure creates an enormous bottleneck at the gateway. A hierarchical infrastruc-
ture alleviates this problem, and also provides more flexibility to accommodate the different
requirements of the various subnetworks. We propose such an infrastructure in §6.2.

Another major design element in the network is mobility management and routing.
Specifically, the network must be able to locate and route data between hundreds of millions
of mobiles located over a very large geographical area in an efficient manner. Existing
techniques for location of mobile units are paging and registration. The paging technique

is very wasteful of bandwidth if the mobiles are located over a large geographical area, so it
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Figure 6.1: Wireless Vision.

is certainly impractical for routing between the subnetworks of Figure 6.1. The registration
technique currently requires a mobile to register its location at a central database whenever
it is outside its home location. The central database will quickly fill up for a large number
of users, suggesting that distributed databases for mobile location must be used. In §6.3
we propose mobility management techniques similar to those used for call-forwarding in
the wireline Intelligent Network [99] and roaming in cellular systems. Routing strategies
through both the wireless and wireline infrastructure are also discussed in this section.
We conclude with a brief discussion about some other issues in the wireless network

design, including network security, pricing, and control.

6.1 Wireless Applications

In this section we describe the various wireless applications that are currently in
demand. We will also reference existing or proposed systems that meet these demands.

More details on these systems can be found in [100, 101] and the references therein.

1. Voice communication in or near the home. This demand is partially met by existing
cordless phone technology. Coverage of these systems is currently limited to within
close range of the wireless base. Second-generation cordless phones (DECT, CT-2)

aim to increase coverage by allowing the wireless headset to access many base stations
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within a given area, where the base stations are coordinated by a central switch. The
headsets are assumed to be stationary or slowly-moving, so there is no handover
between base stations. These base stations will also be set up in public areas like

airports and shopping centers.

. Voice communication in offices. The second-generation cordless phones will also act
as wireless PBXs to provide voice communication throughout office buildings. Some
handover in these systems may be required as people move between floors or down

long corridors.

. Yoice communication in vehicles. This demand is currently being met in the U.S. with
the analog cellular system AMPS. Second-generation systems are digital, providing
greater capacity and voice quality. Several different standards have been proposed for
these systems, including the GSM standard for Europe, the JDC standard for Japan,
and the IS-54 and IS-95 standards for the United States. None of these standards
are compatible. Further increases in capacity will be achieved by shrinking the cell
size from its current one to five mile radius (macrocell) to a one thousand foot radius

(microcell).

. Ubiquitous Jow-speed data and voice devices - the personal communicator. These de-

vices are targeted for use in homes and offices, as well as outdoors in residential and
urban areas. The devices must be “pocket-sized”, hence low-power. These communi-
cators are similar in concept to pagers, except that they allow two-way communication

and real-time voice. No products have yet been developed for this application.

. High-speed data in buildings. These systems are oriented towards replacing the Eth-

ernet with more easily configurable wireless network. Existing products include Mo-
torola’s Altair and NCR’s WaveLAN, both operating around 5 Mbps. Higher-rate
systems are still in the research stage. Many of the proposed high-rate systems are
asymmetric, with a very high-speed (10-100Mbps) broadcast channel transmitting to
low-power portable devices that return data at much slower rate. Due to the high-
speed requirements of the base station, and the power restriction in the portable

devices, the coverage area of these systems is small, on the order of several meters.

. Global low-speed packet data. This need is partially met through current satellite

paging systems, which are almost exclusively one-way. Satellite systems providing
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global full-duplex store-and-forward packet data services include Qualcomm’s Omni-
TRACKS system at 5-15 Kbps and Geostar at 1.2 Kbps.

7. Global and regional voice and data. Geostationary and low-earth orbit satellite sys-
tems which provide voice and data (5-20 Kbps) transmission with global or regional
coverage include Inmarsat, MOBILESAT, and MSAT.

The ultimate goal of the wireless revolution is ubiquitous high-rate data and voice
communication through a single low-power portable device. However, due to the different
requirements and coverage areas involved in such a system, it is unlikely that, given fore-
seeable technology, this goal will be met any time soon. Therefore, we will concentrate in

this chapter on the wireless subsystems designed to meet the needs enumerated above.

6.2 Network Architectures

Existing network architectures can be divided into basically two categories: circuit-
switched networks designed for voice and packet-switched networks designed for data. In
this section we will first review several existing architectural paradigms for these two types
of networks. We then use these examples as a baseline to sketch a wireless network infras-

tructure.

6.2.1 Circuit-Switched Network Architecture

In circuit-switched networks, two users that wish to communicate must first es-
tablish a dedicated transmission path between them which is held throughout the duration
of their transmission.. The dedicated line insures sequential arrival of the data, and the
data delay consists of the time necessary to establish the connection. These features make
circuit-switching the preferred technology for voice telephony. In this section we will discuss
the architecture for the PSTN, and its extension to cellular and cordless phone architectures.

The circuit-switched architecture for the PSTN is shown in Figure 6.2. The traffic
is generated from either telephones or data sets (such as modems), which are connected with
dedicated telephone lines to a local exchange office. If the call destination is not directly
connected to the local exchange, then the exchange determines the next local office on the
route to the final destination, and requests a connection to this office on the trunk (set of

multiple lines) connecting them. The trunk transmission may be via copper wire, fiber, or
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satellite radio. All trunks are full-duplex connections, so communication can take place in
either direction. If a trunk is available, it is reserved for this call. Each local exchange
office on the route to the final destination determines the next office along the route, and
establishes a trunk connection with this office. When the connection to the local exchange
office at the final destination is made, a dedicated line between the call initiator and final
destination is established through these reserved trunks, and data transfer can commence.
The route can either go through several other local exchange offices, or along a long-distance
trunk line. Local exchange offices which do not generate local traffic but merely serve as a
connection between other offices are called tandem offices. A private branch exchange, or
PBX, is a privately owned switch connected to the public network. The PBX is similar to
the local exchange office, except that it is privately owned. A remote multiplexor is used to
multiplex remote users via one transmission facility to a local office. It performs the same
function as a PBX, but is part of the public network rather than being privately owned.
The cellular and cordless phone architectures use the PSTN as a backbone infras-
tructure, as shown in Figure 6.3. The cordless phone local base station communicates with
a wireless headset via a duplex radio connection. More sophisticated headsets have several

channels available for the radio connection, with channel selection based on the amount
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Figure 6.3: Cordless and Cellular Extension to the PSTN.

of interference and noise measured on the available channels. The local base emulates the
standard telephone connection to the PSTN.

The main restriction of this architecture is the small coverage area of the local
base station and the susceptibility of the wireless headset-base connection to interference
and interception. The first of these restrictions is being corrected in second-generation
designs by changing the cordless phones from stand-alone consumer items to elements of
a geographically dispersed network. The wireless terminals will be able to access base
stations at thousands of public locations which connect directly to the PSTN [102]. In
business environments, cordless phones will have access to several base stations that hand
off the user between them as it moves from one location to another.

Cellular systems have a similar structure with an intermediate mobile telephone
switching office (MTSO) to control the base stations. Each base station services a subset
of the geographical area covered by the MTSO. The base stations are essentially dumb

terminals which transfer the wireless data from the mobiles via a (wireline) trunk to the
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MTSO. The MTSO monitors signal strength of each mobile on all the base stations, deter-
mines the base station which should service calls to a particular mobile, and controls the
handoff and channel allocation between base stations and mobiles. Calls between mobiles
within the MTSO’s service area are directly routed between the appropriate base stations
by the MTSO. Calls intended for PSTN destinations are routed through the local exchange
connected to the MTSO. To service subscribers in locations remote from their home service
areas, proprietary communication links are established between MTSOs to exchange mobile
location information and transfer calls.

There are several problems with this architecture, including limited capacity, cen-
tralized control, and poor mobility tracking and intersystem handoff. The capacity is limited
by the number of subscribers that can be serviced with each base station; therefore, the total
system capacity can be increased by shrinking the size of the cells, as was discussed in §2.3.
However, this increases the processing burden on the MTSO in two ways: it must monitor
more mobiles within a given geographical area, and it must hand off mobiles between base
stations more often due to the smaller cell size. The trend for future cellular architectures
is to distribute these control and monitoring functions among the base station, mobile, and
MTSO. Moreover, roaming and intersystem handoff will be managed with standardized

signaling systems linking MTSOs and databases. We will discuss this further in §6.2.3.

6.2.2 Packet-Switched Network Architecture

In packet-switched networks, the data stream is first decomposed into packets
(smaller data strings whose length varies according to the network), and each packet is
labeled with the address of its dest‘ination and a sequence number. Packet switches use the
destination address to determine the next packet switch to which it should send the packet.
There may be several valid routes to the final destination. Packets share the link and switch
facilities with other packets routed through the network, so switches must generally queue
packets until they can be forwarded, as shown in Figure 6.4. There are essentially two
types of packet-switching: datagram packet-switching and virtual-circuit switching. With
datagram packet-switching, packets from a given source are routed independent of each
other, and since some routes may take longer than others, the packet sequence numbers
must be used to order the packets sequentially at their final destination. With virtual-

circuit routing, the packets follow the same route through the network, as in the case of
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circuit-switching, except that they don’t have a dedicated path: some segment of the route
may be shared with packets traveling a different path..

Packet-switched data networks tend to fall into three categories based on the
geographical distance that they span: Local Area Networks (LANs), Metropolitan Area
Networks (MANs), and Wide Area Networks (WANs). The wireline LANs typically have a
diameter of a few kilometers, a total data rate of at least several Mbps, and are generally
owned by a single organization. The most common LANs are ALOHA packet radio, Eth-
ernet, token bus, token ring, FDDI, and DQDB. Details of these network designs can be
found in [103]. By contrast, WANs typically span entire countries, have much lower data
rates, and are generally owned by several organizations, including the ubiquitous PSTN,
since most WANS use leased lines of the PSTN for their backbone communications in-
frastructure. WAN examples include IBM’s SNA, DECnet-, and Siemen’s TRANSDATA,
among others. A MAN is a network which generally spans an entire region, like a city or
university campus, but uses essentially LAN technology or interconnected LANs. Details
on these network architectures and protocols can be found in [103, 104]

Many computers today are linked to one of the networks described above. There-
fore; computers connected to the same network can exchange information between them.
In order to build a global communications network connecting all computers, it is necessary
to internetwork the LANs, MANs, and WANs described above. ATM is emerging as the
standard protocol for information transfer between heterogeneous data networks [103]. The
most prevalent architecture for this network interconnection, which is likely to provide the
backbone infrastructure for the information superhighway of both wireline and wireless net-

works, is the Internet. A segment of the basic Internet architecture is shown in Figure 6.5.
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Descriptions of the specific networks shown in this figure can be found in (103].

The Internet is primarily a hierarchical network centered around the backbone
ARPANET. At the lowest level of the hierarchy are LANs, which are generally private
networks to connect computers in one office building or university department. These LANs
can be connected by bridges, which basically store and forward frames between different
LANs [104]. A linked set of LANs may span a group of offices or a university campus. In
order for a LAN or MAN to communicate with a host some distance away, it needs to transfer
its data across a WAN. A gateway, which connects dissimilar networks, is used to connect
LANs and WANs. The gateway is similar in function to a bridge, however it must generally
make more changes in the data structures to make the networks that it transfers between
compatible (for example, a gateway can convert between different addressing formats).
Finally, the WANs connect via a gateway to the ARPANET, which has worldwide network
nodes. Other global networks have recently been incorporated into the Internet to expand
access, including BITNET and NSFNET, among others. The Internet therefore connects
millions of globally dispersed computers through these sequences of network connections.
However, the Internet is designed for transfer of data, and does not guarantee any minimum
delay or maximum rate for data transfer. Therefore, it cannot accommodate a large number

of users with delay-constrained data, like voice or video.

6.2.3 A Proposed Architecture for Hybrid Wireless Networks

In order to support voice, video, and data traffic, the wireless network infrastruc-
ture will require a combination of circuit and packet-switched architectures. It will also
likely interconnect with the evolving PSTN/ISDN network and the Internet. The wireless
subsystems described in §6.1 have analogies with wireline networks relative to their cover-
age areas: cordless phone systems and high-speed indoor data systems cover roughly the
same area as wireline LANs, current cellular systems and secénd»genera.tion cellular and
cordless technologies will span distances of wireline MANs, and satellite systems cover the
large geographical regions of WANs, in fact many of the WANs on the Internet already use
satellite communication links. These analogies suggest that a hierarchical structure simi-
lar to that of the Internet will provide the most flexibility in the network architecture, as
well as backward compatibility with existing wireless subsystems. A proposed hierarchical

structure for the evolving network is shown in Figure 6.6.
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The cellular clusters in this figure represent self-contained wireless networks, for
example an AMPS cellular system, or a second-generation cordless phone system. We
assume that routing, handover, and control functions within these cellular clusters are
self-contained., although some of these functions could be better optimized by relying on
higher levels within the hierarchy, particularly for handover (105). The picocells of this
figure represent applications spanning approximately five to ten meters in diameter, and
therefore provide coverage within a small office, cubicle, or classroom. Microcells cover
applications over kilometer distances, and provide coverage over a city block or a floor
within a large office. Macrocells span roughly ten kilometers, and cover large areas within
cities or suburban areas. Finally, the satellite cell generally spans very large distances,
although directional spot beams can be used to provide coverage within the smaller cell
sizes of macrocells and microcells. Thus, satellite beams can be used to relieve congestion
within cellular systems that are below it in the network hierarchy.

The gateways of Figure 6.6 will perform the same function as gateways on the
Internet: converting protocols between networks to make them compatible. The wireless-to-
wireless gateways require multimode transceiver hardware, for example satellite and cellular
phone capabilities. To reduce transceiver size, it is desirable to use many of the same
hardware components for the different transceiver functions. However, this design goal has
proved difficult to accomplish in current dual-mode analog AMPS and digital IS-95 cellular
transceivers, whose modes of operations have much more in common than the modes of a
satellite/cellular phone transceiver. In any event, building light-weight handheld multimode
transceivers will become easier through technological advances in component size and power
reduction.

Communication between cellular systems within the hierarchy can be strictly
through the wireless infrastructure, strictly through the backbone wireline network, or
through some combination of the two. It is likely that the reliance on the wireline in-
frastructure will persist for quite some time, for several reasons. First of all, current cellular
and cordless phone systems use the PSTN for routing, and wireless LANs use the Internet.
New generations of these systems will require backward-compatibility with their older pre-
decessors. Moreover, the cost of building a completely wireless infrastructure may not be
justified by current or future demand. Therefore, the existing wireline infrastructure allows
for the introduction of new wireless services at an increment cost. Its also not clear that

a wireless infrastructure could ever fully support the demand for wireless services without
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a wireline backbone, given the capacity limitations of the wireless channel. Finally, the
exchange of backbone control and routing information between base stations within and
between cellular subsystems rﬁay be more effective using wireline network technology.

In the wireless communication services described in 6.1, the coverage area and
data rates for each system are inversely proportional. This is due mainly to the fact that
high data rates require high power, and power dissipates with distance. Moreover, the cost
of implementing a system with a large coverage area (e.g., launching a satellite or laying
fiber throughout a city), is generally much greater than the costs associated with a small
coverage system. Therefore, the bandwidth of the large coverage systems must be divided
among many users to recoup this cost. This inverse data rate-coverage area relationship
implies that, moving up the hierarchy of Figure 6.6, systems provide greater mobility but
less bandwidth. Hence, within the global communication infrastructure, there will be low-
mobility high-bandwidth communication islands connected by high-mobility low-bandwidth
bridges. In this context, the terms “high” and “low” are relative to the level within the
hierarchy of Figure 6.6.

The frequency spectrum available for wireless services is scarce, and thus many
of the systems within the wireless network hierarchy will operate in the same frequency
band. Spectrum-sharing techniques were discussed in the previous chapter in the context
of a single system. However, it’s not clear if these multiuser spectrum-sharing results apply

to users with different coverage areas, power levels, and propagation characteristics.

6.3 Mobility Management and Routing

In the PSTN and the Internet, terminals (or ports) are assigned identification
numbers associated with their physical location. However, within the wireless infrastructure
of Figure 6.6, the network must be able to locate and transmit data to an end user based
only on a personal identification number (PIN) which is independent of the user’s location
or communication device. The PIN is required to deliver true mobility to the user, since
it separates the user’s logical address from the physical address of the port used to access
the network. It also allows different applications to send to data a user’s address, rather
than a device address, eliminating the need for one user to have a separate address for each
wireless device (e.g., computer, cellular phone, fax machine). The network must manage

the association between the user’s PIN and current physical address in order to route traffic,
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regardless of the user’s location, type of wireless device, or layer of the network hierarchy
through which it is connected. Of course, the type of data that can be transferred is
ultimately restricted by the wireless device and network capabilities.

The process of locating a user and routing a call are somewhat separate, since once
a user’s location is known, there will generally be many possible ways of routing calls to
it. There are several methods for locating mobile users. One technique, currently used in
cellular systems, is for PINs to be assigned to a unique home location gateway. This is the
gateway through which the user generally connects to the wireless or wireline network. If a
user is not connected through this home gateway, the address of the gateway through which
the user is connected, (its visiting gateway), is sent to a home location database (HLD)
within the home gateway’s cellular cluster. For a call initiator to determine the location
of a particular user, it need only query the home gateway. These roaming mobiles that
are away from their home gateways will also be regjstered in the visitor location database
(VLD) of their visiting gateways. A particular cellular system may have multiple home
gateways, since it may connect to a higher level in the wireless network, the PSTN J/ISDN
network, and the Internet, as shown in Figure 6.6 for the shaded cellular cluster. All three of
. these home gateways can access the HLD and forward information about a user’s location.
The main disadvantage of this technique is the amount of control traffic necessary to keep
updating the location databases for highly mobile users. Moreover, if the network latency
is high relative to user mobility, the location information may be outdated by the time it is
received by the query intiator. '

The location information may also be stored at databases located higher up in
the wireless network hierarchy than the home location gateway. For example, the location
database for users within a picocell could be stored in a microcell or macrocell cluster above
the picocell in the network hierarchy. This reduces the amount of traffic associated with
location queries and updates, since these messages would not have to traverse as many
levels in the network hierarchy to reach the location databases. One disadvantage of this
method is the increased size and complexity of the location databases. It would also be more
difficult for wireline networks which connect directly to a user’s home gateway to get that
user’s location, since the information is stored higher up in the wireless hierarchy. A hybrid
solution would be to have location databases distributed at several levels throughout the
hierarchy. The most efficient means of distributing location information in these databases

would depend on the particulars of the wireless and wireline network interconnections.
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Routing through the network will be of two types depending on the data con-
straints: circuit-oriented routing which guarantees sequential data arrival within a delay
constraint for real-time data, and packet-oriented routing which has no constraint on the
time-arrival of the data packets. For circuit-switching, the network would need to locate the
mobile destination, and dedicate wireless or wireline links through the hierarchy between
the sender and destination. Packet-oriented routing could be done using techniques based
on the Internet routing protocol with some slight modifications for packet-forwarding as
mobiles relocate [106]. .

Since the wireline network already has established routing procedures, and will
eventually convert to fiber which has a much higher bandwidth and reliability than wireless
technology, it would appear that the most efficient routing schemes would connect into the
wireline network as soon as possible. However, it may be prudent to route circuit-oriented
data through one level higher up in the wireless network hierarchy than necessary. With
this technique, when a mobile passes between different systems at a particular hierarchy
level, call handover between these two systems can be managed by the higher-level network,
reducing the chance of call interruption [105]. Moreover, it’s not clear that going through
the wireline network is the most efficient routing scheme between two wireless systems,
especially if the systems have dual mode gateways which would allow them to talk to
each other directly. Developing and analyzing roﬂting protocols for the emerging wireless
network infrastructure is an important area of research that has received little attention
to date, despite the fact that it will ultimately determine the performance of ubiquitous

communication between mobiles.

6.4 Other Issues

Network Security - Wireless data transmission raises questions about network se-

curity and privacy, since anyone with a monopole antenna and simple radio can intercept
conversations, or attempt to access the network. This has been a major problem for analog
cellular systems. Conversion to digital technology on second-generation cordless and cel-
lular systems will allow encryption and authentication more readily than on their analog
predecessors. However, it’s not clear whether these techniques will be applicable to a gen-
eral wireless infrastructure of nonhomogeneous networks, with network control distributed

throughout the system.
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Network Pricing - Pricing for data transfer across a range of nonhomogeneous

networks will affect both user demand, and possibly routing strategies. The cost of routing
data will depend on the type of service guarantees required, which may determine whether
a call is routed through the wireless or wireline infrastructure. The cost of current cellular

technology has not dropped as was once anticipated, and if the price of services within

the wireless network are not competitive with wireline services then demand may not be

sufficient to support an interconnected wireless infrastructure. Pricing for different services

traversing wireline nonhomogeneous networks is an area of current research, and it would

seem that the addition of wireless services will only make the problem more difficult.

Local and Global Control - Network control functions include fault detection and

correction, performance monitoring, network topology monitoring, traffic monitoring and
billing, and security. These functions are generally assumed at both the local and global
levels within the network. Many of the control requirements for the wireless network in-
frastructure are similar to those in wireline networks, and current proposals for wireline
network management will be applicable to wireless networks also. However, the changing
topology of wireless networks will require many of these control functions to be performed
more frequently, and may change the level within the hierarchy where certain functions are

best performed.

6.5 Summary

After outlining some of the wireless applications currently in demand, we discuss
the implementation of a wireless network supporting these applications. We first propose
an architecture to interconnect various wireless and wireline subnetworks with different
coverage areas and requirements. We then discuss a few schemes for locating mobile units,
regardless of their physical location in the network. The routing of different types of data
is also discussed. We conclude by addressing network security, pricing, and control issues.
The topics in this chapter are still very much in the research stage, and the discussion
throughout is not meant to provide definitive proposals for the design of the global wireless
network, but rather to outline the various design issues that must be addressed to ultimately

connect all the wireless subsystems currently under development.
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Chapter 7

Conclusions and Future Work

The wireless communication vision of high-speed high-quality information ex-
change between portable devices located anywhere in the world faces many technical hurdles.
In this thesis we mainly focussed on techniques to improve the quality and achievable data
rates of single and multiple users over time-varying communication links. In particular,
we derived the capacity of a single-user time-varying channel with channel state informa-
tion available at the transmitter, and proposed a variable-rate coded modulation scheme
that achieved data rates approaching this capacity limit. We also developed a reduced-
complexity maximum-likelihood sequence detector for the case when only the distribution
of the channel variation is known. Multiuser rate regions for narrowband time-varying
channels under different spectrum-sharing methods were also evaluated. Finally, an infras-

tructure to support nonhomogeneous wireless applications was proposed.

7.1 Conclusions

Two important conclusions can be drawn from Chapter 2: the wireless communi-
cations link has many impairments, and these impairments vary greatly depending on the
characteristics and topology of the region over which the signal propagates. In particular,
changing the distance the signal propagates or the height of the transmitting or receiv-
ing antennas fundamentally changes the model for signal propagation. Therefore, analysis
of a system designed for a large coverage area will generally not apply to the system’s
performance over a small coverage area.

From Chapter 3 we conclude that optimizing the transmit signal spectrum to the
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channel variation maximizes the achievable data rate on time-varying channels. In partic-
ular, Shannon’s theorem of maximizing efficiency on fixed wideband channels through a
“water-filling” in frequency of the transmit power spectrum extends to a two-dimensijonal
water-filling in both frequency and time. Applying these results to narrowband channels,
we conclude that the policy which maximizes the average data rate transmits more power
and data when the channel is good and less power and data when the channel is bad. This
may seem intuitive, but it is the exact opposite of power control policies being implemented
in current cellular systems. However, this optimal policy does not take into account in-
terference to other users or guaranteed data rate and delay requirements. Since the.data
rate fluctuates with the channel variation, this may not be acceptable for applications with
delay-constrained data, like voice or video. The capacity analysis also leads to the design
of a variable-rate coded modulation scheme which achieves near-capacity rates.
Time-varying Markov channels, where the channel variation is not known but
its statistics are, were considered in Chapter 4. We found in this chapter that, even
though these channels have infinite memory, the channel variation statistics can be used
for- maximum-likelihood sequence estimation without a significant increase in complexity
or delay over the conventional method of interleaving and memoryless channel encoding.
Moreover, this maximum-likelihood detection scheme achieves channel capacity for a par-
ticular channel class. Finally, this scheme shows a significant capacity increase over the
conventional technique, and the increase is most pronounced on slowly-varying channels.
In Chapter 5 we looked at spectrum-sharing techniques for multiuser systems. We
found that TDMA and FDMA are equivalent if the transmit power can be varied, and we
also found that CDMA with interference cancellation is superior to FDMA/TDMA, and
inferior without the cancellation. However, these conclusions apply to spectrum-sharing
within a single cell of a cellular system, and don’t take into account intercell interference.
Including intercell interference in the achievable data rate calculation requires a new defi-
nition - the area efficiency. We define this quantity and use it to obtain the optimal reuse
distance for a simple interference model under an FDMA spectrum-sharing scheme. De-
termining the spectrum-sharing technique which maximizes area efficiency requires more
analysis and/or simulation to obtain the distribution of signal power under various power
control policies. We conclude this chapter by proposing a hybrid power control policy with
the benefits of both the constant power policy (guaranteed data rates) and the water-pouring

policy (increased data rates under good propagation conditions). This scheme also accom-



184

modates different user specifications and channel access requests. The main conclusion to
draw from this chapter is that there is probably no “best” method of spectrum-sharing and
power control. Therefore, nontraditional and hybrid methods should be considered along
with the more traditional approaches.

The main conclusion to draw from Chapter 6 is that internetworking the het-
erogeneous wireless subnetworks will be quite challenging, and the protocols and network
infrastructure for this internetworking should be addressed at a global level in the near
future. Second- and third-generation cellular and cordless phone systems are already being
built to adhere to a particular networking structure and set of protocols, which are based on
emerging PSTN/ISDN technology. Emerging wireless computing devices will likely adhere
to the Internet or ATM standards. Therefore, although the divide between communications
and computers will continue to blur as their respective devices become multimedia wireless
terminals, the networking protocols for these devices are likely to differ significantly, given
the disparate networking philosophy between communication and computer engineers to-
day. For this reason, global standards for interconnection of all these devices should precede
their development in order to make them compatible. Issues of routing, mobility manage-
ment, network security, pricing, and control of the wireless network may borrow from the
standards of wireline networks, but must also take into account the unique character of

terminal mobility.

7.2 Future Work

Much work remains to be done in the design and analysis of high-speed wireless
communication networks. Extensions to this thesis fall into four main categories: com-
munication link techniques, channel estimation and feedback, power control and spectrum

sharing, and wireless networks.

7.2.1 Communication Link Techniques

The variable-rate modulation and coded-modulation techniques of §§3.4 — 3.5
should be verified via simulations to determine their feasibility. The effects of channel
estimation error and delay should also be quantified. Different trellis and lattice structures
for the variable-rate coded-modulation technique should be considered, and their relative

performance determined both analytically and via simulation.
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Simulation of the decision-feedback decoder proposed in §4.3 would verify its per-
formance under different coding schemes. We must also examine the techniques outlined
in §4.3 to eliminate the effects of decoding delay in the decoder design. Analytic results or .
bounds on the effect of error propagation would also be useful.

We found that when channel state information is available at the transmitter
then variable-rate coding achieves good performance, and when this information is not
available, then unequal error protection codes are effective. Perhaps when the channel
state is known with some uncertainty, some combination of these techniques could be used,
resulting in variable-rate codes with unequal error protection. This type of coding merits

further investigation.

7.2.2 Channel Estimation and Feedback

There is a dichotomy in communication over time-varying channels relative to
how much time should be spent estimating the channel, and how much time should be
spent transmitting data. Channel estimates can be used at both the receiver and the
transmitter (if there is feedback) to increase data rates or decrease BER. Intuitively, the
better the channel estimate, the more it can improve performance. However, a good channel
estimate requires a long estimation éequence, which reduces the data rate. Therefore, there
should be some optimal estimation time which maximizes data rate for a given BER and
set of channel parameters. In §3.6.3 we determined the reduction in channel capacity as
a function of estimation time. If we could determine the combined effects of estimation
error and estimation time on channel capacity, then we could obtain the optimal estimation
time relative to channel capacity. A related topic is when to use feedback in time-varying
communication links. If the channel is changing very rapidly, then by the time the channel
is estimated :.ind fed back to the transmitter, the estimate may no longer be valid. In
addition, the feedback communication link is neither error-free nor delayless, as we assumed
in oﬁr analysis. Therefore, a valuable topic for further investigation is to determine, under
more realistic system constraints, when full or partial transmitter feedback improves system

performance.
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7.2.3 Power Control and Spectrum Sharing

Determining the “best”method of spectrum sharing and power control will depend
on the performance criteria of the individual users and the system. As described in §5.4.1,
the area efficiency under different spectrum-sharing techniques and power control-policies
quantifies the most efficient technique relative to system throughput, and calculating this
quantity under different power control and spectrum-sharing policies would be a valuable
addition to the debate on CDMA/TDMA/FDMA spectrum sharing. The hybrid power
control policy proposed in §5.4.4 should be evaluated both analytically for simple cases
and via simulation. Other hybrid power control and spectrum-sharing schemes may prove
superior to anything proposed thus far. Therefore, it is important to move beyond the
CDMA/FDMA/TDMA debate and look at other solqtions relative to the specific wireless

application.

7.2.4 Wireless Networks

Design and analysis of a wireless infrastructure to support existing and pending
wireless subnetworks and connect them to the wireline infrastructure is critical for ulti-
mately achieving the wireless communications vision. Once this infrastructure has been
defined, research on routing, mobility management, security, control, and service pricing
will be needed. The protocols for these functions will borrow heavily from those of existing
wireline technology. However, terminal mobility introduces the need for adaptability far
greater than in fixed wireline structures. Thus, it is not clear if modification of existing
protocols will suffice, or a completely new outlook is necessary. in addition, the wireless
radio link introduces increased flexibility in interconnection, since all wireless networks can
communicate directly with each other if they are within transmission range and have the
appropriate hardware. This flexibility should be incorporated into the protocol suite devel-

oped for the wireless infrastructure.
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