
Disassembly of Executable Code Revisited�
Benjamin Schwarz Saumya Debray Gregory Andrews

Department of Computer Science
University of Arizona

Tucson, AZ 85721fbschwarz, debray, gregg@cs.arizona.edu
Abstract

Machine code disassembly routines form a fundamental component of software systems that statically analyze
or modify executable programs. The task of disassembly is complicated by indirect jumps and the presence of non-
executable data—jump tables, alignment bytes, etc.—in the instruction stream. Existing disassembly algorithms are
not always able to cope successfully with executable files containing such features and fail silently—i.e., produce
incorrect disassemblies without any indication that the results they are producing are incorrect. This can be a serious
problem, since it can compromise the correctness of a binary rewriting tool. In this paper we examine two commonly-
used disassembly algorithms and illustrate their shortcomings. We propose a hybrid approach that performs better
than these algorithms in the sense that it is able to detect situations where the disassembly may be incorrect and limit
the extent of such disassembly errors. Experimental results indicate that the algorithm is quite effective: the amount
of code flagged as incurring disassembly errors is usually quite small.

1 Introduction

There has been a significant amount of attention focused on binary rewriting and link-time code optimization in recent
years [5, 6, 15, 17, 19]. A fundamental requirement of any software system that aims to statically analyze or modify an
executable program is accurate disassembly of its machine code instructions. The task of recovering these instructions
is often complicated by the presence of non-executable data—jump tables, alignment bytes, etc.—in the instruction
stream. This poses a chicken-and-egg problem: we cannot identify the instructions without knowing what is data, and
vice versa. The fact that link-time binary modification tools have to be prepared to deal with hand-coded assembly
routines, e.g., due to statically linked libraries, complicates the problem further because it means that we cannot always
assume that the code follows familiar source-level conventions (e.g., that a function has a single entry point) or uses
recognizable compiler idioms.

The presence of variable-length instructions—commonly found in CISC architectures such as the widely used
Intel x86—results in an additional degree of complexity, and renders simple heuristics for extracting instruction se-
quences ineffective. In this paper we examine techniques currently used for disassembly, discuss their drawbacks, and
introduce an improved method for the extraction of instructions from a statically-linked binary that contains relocation
information. Our algorithm is capable of identifying jump tables embedded within the text segment, offset tables for
position independent code (PIC) sequences, and data inserted for alignment purposes, e.g., to align loop headers. Most
importantly, it is able to avoid some disassembly errors that can occur when using existing disassembly techniques.

We have implemented our approach in PLTO, a post-link-time optimizer for the Intel x86 architecture. Experimen-
tal results indicate that our algorithm is able to cope with statically linked executables containing highly optimized
hand-coded assembly code with a high degree of precision, identifying potential disassembly problems rather than
failing silently and limiting the extent of such problems to a small portion of the input executables.

2 Preliminaries

2.1 Relocation Information

Linkers are capable of producing relocation tables at each stage during the linking process. By default, the final
executables do not contain relocation information because it is not needed by the loader to re-map the program.
However, many binary rewriting frameworks that carry out translation or optimization utilize such information. The
tables are used to identify the bit-sequences in the executable that correspond to addresses of the program. A single�This work was supported in part by the National Science Foundation under grants CCR-0073394, EIA-0080123, and CCR-0113633.

1

entry in the table usually contains:(i) a section offset,(ii) a bit that specifies whether the relocation is PC-relative or
absolute, and(iii) the width (typically the size of an address on the architecture) of the relocation.

Systems that analyze and transform machine code programs use this information in much the same way that linkers
do. After the code has been moved around, references to addresses have changed, and they need to be updated to reflect
their new position in the executable. Without knowledge about the locations of address, a binary modification system
has to be fairly conservative in the kinds of code transformations it is able to effect. The remainder of this paper
assumes that relocation tables are available in the executable. We do not feel this is unnecessarily onerous: a user
who is sufficiently concerned about performance to use a link-time optimizer seems likely to be willing to invoke the
compiler with the additional flags needed to retain relocation information. Other binary rewriting systems, notably
OM [19] and Atom [18], have the same requirement, and most linkers are capable of producing these tables.

2.2 Position-Independent Code

Many compilers can be instructed to emit code that does not rely on being bound to any particular position in the
program’s address space. These code sequences are often referred to asposition-independent code(PIC). In particular,
PIC sequences do not contain any relocatable addresses embedded in the instructions. This property enables the code
to work regardless of its memory location at runtime. Furthermore, PIC does not need to be patched by the loader,
enabling it to be mapped as read-only data—which is useful for shared code such as dynamically linked libraries [14].

When a compiler is emitting position-independent code it typically creates jump tables that are also position-
independent. These tables are usually embedded in the text segment of the executable and consist of a sequence of
offsets rather than virtual addresses. A jump that uses the offset table first loads a nearby address,1 then uses this
to index into the table and retrieve an offset. The offset is added to the address that was previously loaded and then
used in an indirect jump to reach the desired destination. The problems posed by position-independent jump tables are
three-fold:(i) the offset tables, which are really no different than data, appear in the instruction stream;(ii) the code
sequences that perform the indirect jumps are often complicated and may not adhere to a single pattern that is easily
recognizable; and(iii) it is entirely possible that an offset table does not contain relocation entries. Taken together,
these properties make the task of disassembling PIC sequences involving jump tables more difficult than standard
code.

3 Two Methods for Instruction Disassembly

3.1 Linear Sweep

A straightforward approach to disassembly is to decode everything appearing in sections of the executable that are
typically reserved for machine code. This method is used by programs such as the GNU utilityobjdump[9] as well as
by link-time optimizers such asalto [15], OM [19], and Spike [6]. Its main advantage is simplicity. However, it has
the disadvantage that any data that is embedded in the instruction stream is misinterpreted as code and disassembled.
Only under special circumstances (such as when an invalid opcode is decoded) can these situations be discovered.

The problem is illustrated by the code fragment shown in Figure 1, taken from the machine code for the func-
tion strrchr in the standard C library (libc) under RedHat Linux on a Pentium III processor. Starting at address
0x809ef47, threeNULL bytes of data (0x00, shown highlighted) were inserted to push the loop header at address
0x809ef4a forward, presumably for alignment purposes. The NULL bytes and subsequent instructions are misin-
terpreted by the utilityobjdump, as it uses the scheme described above to decode instructions. By inspection, we can
figure out that the jump at address0x809efaa targets the middle of whatobjdumpbelives to be an instruction. In
addition, the instructions it decoded are rather suspicious in their current context (theadd at address0x809ef49 ref-
erences an absolute memory location that does not even appear in the scope of executable!). The instruction sequence
is clearly invalid, but the linear sweep algorithm is unable to discern data from code.

The problem in this case arises because on the Intel x86 architecture, a NULL byte can be a valid opcode; it would
not have arisen if the programmer had usednop instructions to force alignment. However, the larger point illustrated
by this example remains valid: Data embedded in the text segment can be misidentified as code by the linear sweep
algorithm, and this can cause disassembly errors in some or all of the remainder of the instruction stream.

1On the Intel x86 this is done using a ‘call 0’ instruction followed by a ‘pop %eax’ instruction, which has the effect of storing the latter
instruction’s address into register%eax.

2

Location Memory Contents Disassembly Results

...
0x809ef45: eb 3c
0x809ef47: 00 00
0x809ef49: 00
0x809ef4a: 83 ee 04 83 ee
0x809ef4f: 04 83

...

0x809efaa: 73 9e
...

jmp 0x809ef83
add %al, (%eax)
add %al,

0xee8304ee(%ebx)
add $0x83, %al

jae 0x809ef4a

���
Figure 1: An Example of Disassembly Problems using Linear Sweep

3.2 Recursive Traversal

The problem with the linear sweep algorithm, illustrated by the example in Figure 1, is that it does not take into
account the control flow behavior of the program: in particular, thejmp instruction immediately before the three
NULL bytes inserted for alignment. As a result, it is unable to discern that these alignment bytes are not reachable
during execution, and mistakenly interprets them as executable code. An obvious fix would be to take into account
the control flow behavior of the program being disassembled in order to determine what to disassemble. Intuitively,
whenever we encounter a branch instruction during disassembly, we determine the possible control flow successors of
that instruction, i.e., addresses where execution could continue, and proceed with disassembly at those addresses (e.g.,
for a conditional branch instruction we would consider the branch target and the fall-through address).

Variations on this basic approach to disassembly, which we termrecursive traversal, are used by a number of
binary translation and optimization systems [3, 20]. A virtue of the algorithm is its simplicity and effectiveness in
avoiding disassembly of data. The basic algorithm for recursive traversal is:

proc Disassemble(Addr, instrList)f
if (Addr has already been visited)

return;
do f

instr = DecodeInstr(Addr);
Addr.visited = true;
add instr to instrList;
if (instr is a branch or function call) f

T = set of possible control flow successors of instr;
for each (target 2 T) f
Disassemble(target, instrList);gg

else Addr += instr.length; /* addr of next instruction */g while Addr is a valid instruction address;g
Each executable contains an entry point, which is usually specified in the program header. The routineDisassem-
ble() is initially invoked with this entry point. Under the assumption that we are able to identify all possible control
flow successors of each branch and function call operation in the program, this ensures that any instruction that is
reachable from the program entry is correctly disassembled.

This method is able to handle the code fragment shown in Figure 1. Upon decoding the jump instruction at address
0x809ef45, disassembly continues at address0x809ef83, the (only) control flow successor for this instruction.
Eventually the instruction at address0x809efaa is reached by a path from this point, and this in turn causes disas-
sembly to proceed from the instruction at0x809ef4a. The threeNULL bytes are never disassembled, since they are
not reachable by any execution path through the program.

3

Location Memory Contents Disassembly Results

...
0x80b1d8b: 8d 84 c0 95 1d 0b 08
0x80b1d92: ff e0
0x80b1d94: 8d
0x80b1d95: 74 26 00
0x80b1d98: 8b 06
0x80b1d9a: 13 02
0x80b1d9c: 89 07

...

lea 0x80b1d95 (%eax,%eax,8),%eax
jmp *%eax
lea

0x0(%esi,1),%esi
mov (%esi),%eax
adc (%edx),%eax
mov %eax,(%edi)

���
Figure 2: An Example of Disassembly Problems using Recursive Traversal

The key assumption in this algorithm is that we can identify all possible control flow successors of each control
transfer operation in the program. This may not always be straightforward in the case of indirect jumps. For jump
tables appearing in the text segment, this poses a correctness issue: any imprecision in determining the size of such
a jump table will result either in a failure to disassemble some reachable code (if the table size is overestimated) or
erroneous disassembly of data (if its size is underestimated). The problem is complicated by the fact that the structure
of the code generated forswitchstatements can differ widely from one instance of aswitch to another, even for a
specific compiler and target architecture.

Existing proposals for identifying the targets of indirect jumps usually resort to nontrivial program analyses such
as program slicing [4] or constant propagation [8]. We need a control flow graph for the function in order to carry
out such analyses. Unfortunately, the construction of a control flow graph for a function before all of its instructions
have been disassembled does not seem straightforward.2 Instead, we resort to a simpler technique based on relocation
information. When disassembling the code for a functionf , let R f be the set of relocatable text segment addresses
a such thata lies between the start address forf and the start address of the function followingf , and letJ f be the
set of addressesa such thata2 Rf and locationa itself contains a relocatable text segment address. Intuitively, we
expect an indirect jump to an addressa be implemented by loadinga (which must be a text segment address, under
the assumption that all code is in the text segment) into a registerr and then jumping indirectly throughr, and in this
case the addressa has to be relocatable; the setR f consists of all such addresses that lie within the functionf , and
hence might be possible targets for an indirect jump inf . The setJ f specifies those elements ofRf that are jump table
entries, i.e., which do not contain code and hence cannot be the target of a jump. The set of possible targets of an
indirect jump within f is then taken to be the set of addressesR f �Jf .

This approach seems plausible, in that it uses a conservative over-estimate of the set of possible targets of each
indirect jump, which means that every address that could in fact be a target of the jump is considered and all reachable
code is disassembled. The problem is that we may also consider addresses that are not in fact targets. This can
produce incorrect disassembly results, as illustrated by an example from a C library routine under RedHat Linux
called mpn add n, shown in Figure 2.

In the Intel x86 instruction set, anlea (“load effective address”) instruction of the form ‘lea
baseAddr(r0,r1,m),r2’ has the effect

r2 baseAddr+
ontentsOf(r0)+m�
ontentsOf(r1):
Thelea instruction at address0x80b1d8b in Figure 2 therefore computes an address into register%eax whose
value depends on the contents of%eax before this instruction. An inspection of the hand-coded assembly routine for
this function reveals that a loop begins at address at0x80b1d98, and the address computed by thislea instruction

2Accurate identification of the possible targets of an indirect jump through a jump table can be difficult even if we assume that a control flow
graph is available, since we cannot in general count on the jump in a program being accompanied by a bounds check that would enable us to
identify the extent of the jump table. Such checks may be excised from hand-crafted assembly code by a careful programmer who is aware of
specific invariants that hold in the program; an aggressive optimizing compiler may be able to elide the check based on program analyses to identify
the range of values for a variable [10] or using optimizations analogous to the elimination of array bounds checks [11, 16]. We may also encounter
indirect jumps that don’t involve a jump table and hence don’t have a bounds check.

4

is somewhere in the middle of this loop; exactly where is determined by the contents of%eax. 3 It turns out that
this register always takes on a value that results in a valid instruction address being computed. However, during a
static examination of the instruction stream during disasembly, we cannot guarantee that
ontentsOf(%eax) 6= 0,
since such guarantees in general require nontrivial analyses such as constant propagation or program slicing, which
in turn require the control flow graph for the function, which is not available during disassembly. Since the address
0x80b1d95 appears as a relocatable text segment address within the function, and this location does not itself contain
a relocatable text segment address, it is considered as a possible target of the indirect jump at location0x80b1d92
during recursive traversal disassembly (this corresponds to the possibility that register%eax could have the value 0
when this instruction is executed). As a result, we continue disassembling the input starting at location0x80b1d95.
The problem is that this address is in the middle of an instruction, i.e., recursive traversal produces an incorrect
disassembly in this case.

4 An Improved Algorithm

The linear sweep and recursive traversal disassembly algorithms discussed in the previous section have complementary
strengths and weaknesses. The former does not rely on the precise identification of targets of indirect jumps for correct
disassembly, but it has trouble coping with data embedded in the instruction stream; the latter is able to decode around
data embedded in the text segment, but it may have problems with indirect jumps if their targets cannot be precisely
identified. This section discusses how these two algorithms can be combined to exploit the strengths of each.

4.1 Extending the Linear Sweep Algorithm

The simple linear sweep algorithm discussed in Section 3.1 has the disadvantage that any data appearing in the text
segment causes disassembly errors. In particular, this means that this algorithm cannot deal with jump tables embedded
in the text segment. In this section we discuss how the linear sweep algorithm can be extended to handle jump tables
embedded in the instruction stream.

As mentioned in Section 2.1, we assume that relocation information is available in the file being disassembled. We
can take advantage of such information to identify jump tables embedded in the text segment (note that jump tables
in the data segment do not pose a problem: our primary goal here is to identify the extent of jump tables in the text
segment so that we can avoid misinterpreting them as code). Each addressa i appearing in a jump table embedded in
the text segment has the following properties:(i) the memory locations containingai are marked relocatable; and(ii) the addressai itself points into the text segment.

These properties, while necessary for jump table entries, may not be sufficient: depending on the architecture, relo-
catable addresses, possibly pointing into the text segment, may also appear as immediate operands in an instruction.
However, the instruction sets of typical modern architectures impose an (architecture-specific) upper boundK max on
the number of such immediate operands that can appear adjacent to each other in an instruction (e.g., for the Intel x86
architecture,Kmax = 2). Thus, if the text segment containsn adjacent relocatable addresses each of which point into
the text segment (n> Kmax), at most the firstKmax of these may be part of an instruction; the remainingn�Kmax

addresses must be data. We can use this information to modify the linear sweep algorithm so that, during disassembly,
it goes around any such data blocks identified in the text segment. Of course, this does not resolve the status of the
first Kmax entries in the sequence, i.e., determine whether they are part of the jump table or immediate operands of an
instruction. We will return to this point shortly.

A crucial property of this approach is that it allows us to identify the end of a jump table that appears in the text
segment. The text segment therefore becomes divided into “chunks” of code separated by jump tables. Each chunk
starts either at the entry point of a function or at the end of the previous jump table. We use the simple linear sweep
algorithm of Section 3.1 to disassemble each such chunk, then examine the last instruction in the disassembled chunk.
Suppose that the last instruction containsm addresses (0� m� Kmax) as immediate operands appearing at the end
of the instruction. Then we know that of then contiguous relocatable addresses appearing at the end of that chunk,
m addresses are part of instructions and the remainingn�m addresses constitute jump table entries. The resulting
algorithm is as follows:

3The instruction ‘lea 0x0(%esi,1),%esi’ at address0x80b1d94 serves as a 4-byte no-op whose purpose is to align the first instruction
in the loop on an 8-byte boundary.

5

1. For each sequence ofN contiguous relocatable text segment addresses appearing in the program (N > K max),
mark the lastN�Kmax addresses in the sequence asdata.

2. For each sequence of unmarked addresses in the text segment do:

(a) Disassemble using the simple linear sweep algorithm of Section 3.1. Stop when disassembly reaches a
marked location.

(b) If the last instruction being disassembled was incompletely disassembled when the marked location was
reached, discard this instruction.

(c) Examine the last correctly disassembled instruction, letm be the number of relocatable text segment ad-
dresses appearing at its end (0�m� Kmax).

There must beKmax �munmarked relocatable text segment addresses between the end of this instruction
and the next marked location. Mark each of these addresses asdata.

The resulting algorithm is able to handle jump tables appearing in the text segment. However, because it relies
on relocation information, it is still unable to deal with data embedded in the text segment that does not have any
relocation information associated with it, such as the NULL bytes in the example of Figure 1. We next discuss how
we can combine our enhanced linear sweep algorithm and recursive traversal to address this problem.

4.2 A Hybrid Disassembly Algorithm

The biggest problem with both the recursive traversal algorithm discused in Section 3.2, and the extended linear sweep
algorithm described in the previous secion, is that they can result in undetected disassembly errors that can compromise
the correctness of the overall binary rewriting system. The basic idea behind our approach is to combine these two
algorithms in a way that allows us to detect, and identify the extent of, such disassembly errors.

Our approach is straightforward. We disassemble the program using the extended linear sweep algorithm described
in Section 4.1, then verify the results of this disassembly a function at a time using the recursive traversal algorithm.
The verification process checks that the instruction sequence obtained for each function is self-consistent, i.e., does
not contain errors such as a branch into the middle of an instruction. Any function for which verification fails, i.e.,
for which the linear sweep and recursive traversals disagree, is precluded from subsequent optimization. A function is
verified as follows:

– Use recursive traversal to disassemble each instruction in the function.

– For each instructionI so obtained at addressaI , check that the original disassembly using linear sweep has also
obtained the instructionI at addressaI . If not, reportfailure.

– If no failure is encountered while processing the instructions in the function, reportsuccess.

As a practical measure, the verification step does not actually construct a second copy of the disassembled instruction
sequence for the function, since this would be wasteful of memory. Instead it simply checks that the instructions that
it encounters as it goes along match the disassembly results obtained using the linear sweep.

If verification fails for a function, the code for that function is marked “problematic” and is precluded from sub-
sequent optimization. We retain the original machine code sequence for such functions, and insert it back into the
program after optimization of the remainder of the program. This may require updates to addresses within the ma-
chine code for such problematic functions, since they may not be reinserted at their original addresses. Such addresses
are identified from the original relocation information associated with them.

One could imagine extending this approach so that, if verification fails for a function because of a disagreement
between the linear sweep and the recursive traversal algorithms, we might try to determine whether one of them is
correct. In this case, we could use the results of the disassembly algorithms deemed to have produced a correct result,
instead of simply giving up on the function and marking it as problematic. For example, if a function does not contain
any indirect jumps, we can be guaranteed that the recursive traversal algorithm is correct. Our current system does not
implement such extensions.

6

Disassembly Time(sec)
Program TLinear TRecursive THybrid THybrid=TLinear THybrid=TRecursive

compress 1.16 1.02 2.06 1.78 2.02
gcc 10.63 7.47 16.4 1.54 2.20
go 2.64 2.16 4.40 1.67 2.04
ijpeg 1.87 1.54 3.10 1.66 2.01
li 1.61 1.34 2.67 1.66 1.99
m88ksim 1.96 1.63 3.29 1.68 2.02
perl 2.84 2.32 4.73 1.66 2.04
vortex 4.40 3.24 7.07 1.61 2.18

GEOMETRIC MEAN: 1.66 2.06

(a) SPECint-95

Disassembly Time(sec)
Program TLinear TRecursive THybrid THybrid=TLinear THybrid=TRecursive

bzip2 1.44 1.18 2.45 1.70 2.08
crafty 2.32 1.88 3.82 1.65 2.03
eon 5.71 4.19 9.28 1.62 2.22
gcc 14.59 10.82 23.94 1.64 2.21
gzip 1.45 1.19 2.41 1.66 2.02
mcf 1.18 1.00 1.98 1.68 1.98
parser 1.71 1.38 2.83 1.66 2.05
twolf 2.10 1.73 3.52 1.68 2.04
vortex 3.91 2.87 6.28 1.61 2.19
vpr 1.72 1.46 2.91 1.69 1.99

GEOMETRIC MEAN: 1.66 2.08

(b) SPECint-2000

Key:
TLinear: Disassembly time using the extended linear sweep algorithm
TRecursive: Disassembly time using recursive traversal
THybrid: Disassembly time using the hybrid algorithm

Table 1: Performance: Disassembly Speed

5 Experimental Results

We tested and evaluated the various disassembly algorithms described here within the context of PLTO, a link-time
optimizer we have developed for the Intel x86 architecture [17], using the SPECint-95 and SPECint-2000 benchmark
suites. Our experiments were run on an otherwise unloaded 550 MHz Pentium III system with 1 GB of main memory
running RedHat Linux 7.1. The programs were compiled withgccversionegcs-2.96at optimization level-O3, with
additional flags instructing the linker to retain relocation information and to produce statically linked executables. The
use of statically linked executables results from our requirement that the input binaries contain relocation information;
the linkerld refuses to retain relocation information for executables that are not statically linked. It turns out to
be useful because it forces us to deal with highly optimized library code, including hand-crafted assembly code,
that presents interesting disassembly challenges. Of these programs, theeonprogram from the SPECint-2000 suite
contains jump tables in the text segment resulting from fragments of position-independent code.

We measured the disassembly time (which includes the time taken to read the text segment into memory) for the
three different algorithms—extended linear sweep, recursive traversal, and hybrid—as well as the “precision” of our
hybrid disassembly algorithm as given by the amount of code that is marked as “problematic.” The execution times
of the linear sweep and recursive traversal algorithms are given for reference purposes only, since neither algorithm
produces correct disassembly results (each of them fails silently on some portions of the program, as described earlier).
The results are shown in Table 1. As one would expect, the time taken by the hybrid algorithm is roughly equal to
the sum of the times for the linear sweep and recursive traversal algorithms. On average, the hybrid is about 66%
slower than the linear traversal scheme and about twice as slow as the recursive traversal scheme. For our purposes,
the disassembly time accounts for only a relatively small fraction of the total processing time, so the additional time

7

No. of Functions No. of Text Bytes
Program Nf Pf Pf =Nf (%) Nb Pb Pb=Nb (%)

compress 570 4 0.70 291552 792 0.27
gcc 2418 3 0.12 1146304 736 0.06
go 919 4 0.44 485472 792 0.16
ijpeg 968 4 0.41 403664 800 0.20
li 928 4 0.43 334992 800 0.24
m88ksim 832 4 0.48 394656 800 0.20
perl 887 4 0.45 502768 800 0.16
vortex 1506 4 0.27 671936 792 0.12

GEOMETRIC MEAN: 0.38 0.16

(a) SPECint-95

No. of Functions No. of Text Bytes
Program Nf Pf Pf =Nf (%) Nb Pb Pb=Nb (%)

bzip2 634 3 0.47 339216 736 0.22
crafty 673 4 0.59 449632 792 0.18
eon 2288 4 0.17 810256 800 0.10
gcc 2607 3 0.12 1384176 736 0.05
gzip 663 3 0.45 344464 736 0.21
mcf 572 4 0.70 294880 792 0.27
parser 884 4 0.45 385280 792 0.21
twolf 751 4 0.53 457184 792 0.17
vortex 1506 4 0.27 671936 792 0.12
vpr 832 4 0.48 391440 800 0.20

GEOMETRIC MEAN: 0.38 0.16

(b) SPECint-2000

Key:
Nf : Total no. of functions
Pf : No. of functions inferred to be “problematic”
Nb: Total no. of bytes in the text segment
Pb: No. of bytes in “problematic” functions

Table 2: Performance: Precision of Disassembly

taken by the hybrid disassembly algorithm does not pose a performance issue overall.
Table 2 shows the “precision” of disassembly, in the sense of the proportion of code in a program that is prop-

erly disassembled and passes verification. All of the problematic functions identified result from highly optimized
library routines. Three programs have 3 problematic functions each, which werestrrchr (also calledrindex),
mpn add n, and mpn sub n. The other programs have 4 problematic functions each: the three mentioned above

and mpn cmp. In the latter case, the problem is that during verification, the recursive traversal incorrectly disas-
sembles what it thinks is a conditional jump inmpn add n that goes to the middle of another valid instruction in
mpn cmp. The functionstrrchr accounts for the majority (448 bytes) of the problematic code.

It can be seen that the amount of code found to be problematic is very small: on average, fewer than 0.4% of
the functions, comprising less than 0.2% of the program’s text segment. In other words, over 99.8% of the text
segment is verified to have been correctly disassembled and eligible for subsequent processing. This results in effective
optimization of these binaries, with significant performance improvements [17].

6 Related Work

The simple linear sweep disassembly algorithm described in Section 3.1 is used by a number of systems that analyze
or modify executable files. These include the GNUobjdumputility [9]; the qpt profiling tool [12] and its successor,
EEL [13]; thealto link-time optimizer [15]; as well as the OM [19] and Spike [6] link-time optimizers and the Atom
binary instrumentation tool [18] from Compaq. All of these systems can produce incorrect disassemblies for input
binaries whose text segments contain data. As it happens, most of these systems, e.g.,qpt, alto, OM, Spike, and Atom,

8

target RISC architectures, where the fixed-sized instructions make it easier to detect disassembly errors.
Examples of binary rewriting systems that use recursive traversal for disassembly include UQBT [5] and the work

of Theiling [20]. Neither of these relies on relocation information to identify addresses. UQBT handles indirect jumps
and indirect function calls using “speculative disassembly,” i.e. disassembly of areas that appear to be code, in the
expectation that they might be the targets of such control transfers [2]. The system keeps track of how much of the text
it has disassembled, and explores gaps in coverage as possible code. When disassembling such gaps, a “speculative”
bit is set, which means that if an invalid instuction is disassembled, that disassembly is abandoned. Disassembly can
then be restarted at the next word (for RISC machines) or byte (for machines such as the Pentium). Theiling describes
a system that relies on knowledge of the specific compiler used to generate an executable to guide its disassembly [20].
A problem with this approach is that we cannot always guarantee that all of the code in an executable will have been
produced using the same compiler, e.g., in the case of statically linked binaries where different libraries may have been
compiled with different compilers (or different versions of a compiler). Theiling’s algorithm assumes the existence of
a module that identifies the targets of indirect jumps; however, the paper does not specify how this is carried out.

There has also been a lot of work on dynamic binary rewriting and dynamic optimization (see, e.g., [1, 7]). The
disassembly issues for such systems are very different from those discussed in this paper, since at runtime we can
examine an indirect jump operation just before it is executed in order to identify the actual address of the jump target.

7 Conclusions

Correct disassembly of an executable is a fundamental requirement of any tool that intends to modify executable pro-
grams. Existing algorithms for static disassembly suffer from the disadvantage that they can “fail silently” and produce
incorrectly disassembled code. This, in turn, can compromise the correctness of the entire binary rewriting tool. In this
paper we discussed some of the reasons why these algorithms can fail, and propose a hybrid disassembly algorithm
that is able to check the disassembled instruction sequence it produces. This allows it to discover disassembly errors
and limit the scope of such errors. Code fragments that are found to possibly contain disassembly errors in this way are
precluded from subsequent optimizations. Experiments using the SPECint-95 and SPECint-2000 benchmark suites
indicates that it is able to successfully decode over 99.8% of the text segment of the input binaries.

References

[1] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A transparent dynamic optimization system”,Proc. SIGPLAN ’00
Conference on Programming Language Design and Implementation, June 2000, pp. 1–12.

[2] C. Cifuentes, personal communication, May 2001.

[3] C. Cifuentes and K. J. Gough, “Decompilation of Binary Programs“,Software—Practice and Experience, 25(9), Jul. 1995.

[4] C. Cifuentes and M. Van Emmerik, “Recovery of Jump Table Case Statements from Binary Code”Proceedings of the Inter-
national Workshop on Program Comprehension, May 1999.

[5] C. Cifuentes, M. Van Emmerik, D. Ung, D. Simon, and T. Washington, “Preliminary Experiences with the UQBT Binary
Translation Framework”,Proc. Workshop on Binary Translation, Oct. 1999.

[6] R. Cohn, D. Goodwin, P. G. Lowney, and N. Rubin, “Optimizing Alpha Executables on Windows NT with Spike”,Digital
Technical Journal, Vol. 9, No. 4, 1997, pp. 3–20.

[7] C. Consel, L. Hornof, J. Lawall, R. Marlet, G. Muller, J. Noyé, S. Thibault, and E.-N. Volanschi, “Tempo: Specializing
systems applications and beyond”, InACM Computing Surveys, Symposium on Partial Evaluation (SOPE ’98), 30(3), Sep
1998.

[8] B. De Sutter, B. De Bus, K. De Bosschere, P. Keyngnaert, and B. Demoen, “On the Static Analysis of Indirect Control
Transfers in Binaries”,Proc. International Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA), 2000.

[9] GNU Project – Free Software Foundation,objdump, GNU Manuals Online,
http://www.gnu.org/manual/binutils-2.10.1/html chapter/
binutils 4.html.

9

[10] W. Harrison, “Compiler Analysis of the Value Ranges for Variables”,IEEE Transactions on Software Engineering, 3(3), pp.
243–250, May 1977.

[11] P. Kolte and M. Wolfe, “Elimination of Redundant Array Subscript Range Checks”,Proc. SIGPLAN ’95 Conference on
Programming Language Design and Implementation, June 1995, pp. 270–278.

[12] J. R. Larus and T. Ball, “Rewriting Executable Files to Measure Program Behavior”Software—Practice and Experience
24(2), 197–218, Feb. 1994.

[13] J. R. Larus and E. Schnarr, “EEL: Machine-Independent Executable Editing”,Proc. SIGPLAN ’95 Conference on Program-
ming Language Design and Implementation, June 1995, pp. 291–300.

[14] J. R. Levine,Linkers and Loaders, Morgan Kaufman, 2000.

[15] R. Muth, S. K. Debray, S. Watterson, and K. De Bosschere, “alto: A Link-Time Optimizer for the Compaq Alpha”,Software
Practice and Experience31:67–101, Jan. 2001.

[16] R. Rugina and M. C. Rinard, “Symbolic Bounds Analysis of Pointers, Array Indices, and Accessed Memory Regions”,Proc.
SIGPLAN ’00 Conference on Programming Language Design and Implementation, June 2000, pp. 182–195.

[17] B. Schwarz, S. Debray, G. Andrews, and M. Legendre, “PLTO: A Link-Time Optimizer for the Intel IA-32 Architecture”3rd
Workshop on Binary Translation, Sept. 2001.

[18] A. Srivastava and A. Eustace, “ATOM: A System for Building Customized Program Analysis Tools”,Proc. SIGPLAN ’94
Conference on Programming Language Design and Implementation, June 1994, pp. 196–205.

[19] A. Srivastava and D. W. Wall, “A Practical System for Intermodule Code Optimization at Link-Time”,Journal of Program-
ming Languages, March 1993, pp. 1–18.

[20] H. Theiling, “Extracting Safe and Precise Control Flow from Binaries”Proceedings of the 7th Conference on Real-Time
Computing Systems and Applications, Dec. 2000.

10

